Back to Browse Journals » Neuropsychiatric Disease and Treatment » Volume 4 » Issue 6

Treatment options and patient perspectives in the management of fibromyalgia: future trends

Authors Kim Lawson

Published Date November 2008 Volume 2008:4(6) Pages 1059—1071

DOI http://dx.doi.org/10.2147/NDT.S3468

Published 16 November 2008

Kim Lawson

Biomedical Research Centre, Sheffield Hallam University, Faculty of Health and Wellbeing, Sheffield, UK

Abstract: Fibromyalgia (FM) is a common, complex, and difficult to treat chronic widespread pain disorder, which usually requires a multidisciplinary approach using both pharmacological and non-pharmacological (education and exercise) interventions. It is a condition of heightened generalized sensitization to sensory input presenting as a complex of symptoms including pain, sleep dysfunction, and fatigue, where the pathophysiology could include dysfunction of the central nervous system pain modulatory systems, dysfunction of the neuroendocrine system, and dysautonomia. A cyclic model of the pathophysiological processes is compatible with the interrelationship of primary symptoms and the array of postulated triggers associated with FM. Many of the molecular targets of current and emerging drugs used to treat FM have been focused to the management of discrete symptoms rather than the condition. Recently, drugs (eg, pregabalin, duloxetine, milnacipran, sodium oxybate) have been identified that demonstrate a multidimensional efficacy in this condition. Although the complexity of FM suggests that monotherapy, non-pharmacological or pharmacological, will not adequately address the condition, the outcomes from recent clinical trials are providing important clues for treatment guidelines, improved diagnosis, and condition-focused therapies.

Keywords: fibromyalgia, pain, sleep dysfunction, fatigue, exercise, pharmacological treatments

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Liposomes and nanotechnology in drug development: focus on ocular targets

Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N

International Journal of Nanomedicine 2013, 8:495-504

Published Date: 14 February 2013

In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells

Jaworski S, Sawosz E, Grodzik M, Winnicka A, Prasek M, Wierzbicki M, Chwalibog A

International Journal of Nanomedicine 2013, 8:413-420

Published Date: 24 January 2013

Retraction

Cárdenas WH, Mamani JB, Sibov TT, Caous CA, Amaro E Jr, Gamarra LF

International Journal of Nanomedicine 2012, 7:5107-5108

Published Date: 21 September 2012

Do calcifying nanoparticles really contain 16S rDNA?

Shiekh FA

International Journal of Nanomedicine 2012, 7:5051-5052

Published Date: 18 September 2012

Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells

Zhang Y, Huang Y, Zhang P, Gao X, Gibbs RB, Li S

International Journal of Nanomedicine 2012, 7:4473-4485

Published Date: 13 August 2012

Corrigendum: Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

Espandar L, Sikder S, Moshirfar M

Clinical Ophthalmology 2011, 5:159-160

Published Date: 6 February 2011