Back to Browse Journals » International Journal of Nanomedicine » Volume 4

Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain

Authors Soubir Basak, David Brogan, Hans Dietrich, Rogers Ritter, et al.

Published Date April 2009 Volume 2009:4 Pages 9—26

DOI http://dx.doi.org/10.2147/IJN.S4114

Published 1 April 2009

Soubir Basak1, David Brogan2, Hans Dietrich2, Rogers Ritter3, Ralph G Dacey2, Pratim Biswas1

1Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; 2Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; 3Stereotaxis Inc., St. Louis, MO, USA

Abstract: A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient.  

Keywords: nanoparticle ferrofluid, gel-brain model, drug delivery, magnetic agglomeration, transport, magnetic fields

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Binding of plasma proteins to titanium dioxide nanotubes with different diameters

Kulkarni M, Flašker A, Lokar M, Mrak-Poljšak K, Mazare A, Artenjak A, Čučnik S, Kralj S, Velikonja A, Schmuki P, Kralj-Iglič V, Sodin-Semrl S, Iglič A

International Journal of Nanomedicine 2015, 10:1359-1373

Published Date: 18 February 2015

Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies

Wang Z, Mu HJ, Zhang XM, Ma PK, Lian SN, Zhang FP, Chu SY, Zhang WW, Wang AP, Wang WY, Sun KX

International Journal of Nanomedicine 2015, 10:633-644

Published Date: 14 January 2015

Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles

Schütz CA, Staedler D, Crosbie-Staunton K, Movia D, Chapuis Bernasconi C, Kenzaoui BH, Prina-Mello A, Juillerat-Jeanneret L

International Journal of Nanomedicine 2014, 9:3481-3498

Published Date: 23 July 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex

Zhang J, Peng Q, Shi S, Zhang Q, Sun X, Gong T, Zhang Z

International Journal of Nanomedicine 2011, 6:3405-3414

Published Date: 19 December 2011

The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals

Men Y, Wang XX, Li RJ, Zhang Y, Tian W, Yao HJ, Ju RJ, Ying X, Zhou J, Li N, Zhang L, Yu Y, Lu WL

International Journal of Nanomedicine 2011, 6:3125-3137

Published Date: 2 December 2011

Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes

Wang L, Zhang MY, Zhang N, Shi JJ, Zhang HL, Li M, Lu C, Zhang ZZ

International Journal of Nanomedicine 2011, 6:2641-2652

Published Date: 31 October 2011