Back to Browse Journals » International Journal of Nanomedicine » Volume 7

The effects of magnetite (Fe3O4) nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3) cells and in RAW 264.7 macrophages

Authors Liu YC, Wu PC, Shieh DB, Wu SN

Published Date March 2012 Volume 2012:7 Pages 1687—1696

DOI http://dx.doi.org/10.2147/IJN.S28798

Received 3 December 2011, Accepted 2 February 2012, Published 27 March 2012

Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,7

1Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan

Aims: Fe3O4 nanoparticles (NPs) have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.
Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3) cells via voltage clamp methods.
Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP) with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.
Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.

Keywords: iron oxide, ion current, free radical

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Nutritional deficits in elderly smokers with respiratory symptoms that do not fulfill the criteria for COPD

Obase Y, Mouri K, Shimizu H, Ohue Y, Kobashi Y, Kawahara K, Oka M

International Journal of Chronic Obstructive Pulmonary Disease 2011, 6:679-683

Published Date: 9 December 2011

Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells

Halamoda Kenzaoui B, Vilà MR, Miquel JM, Cengelli F, Juillerat-Jeanneret L

International Journal of Nanomedicine 2012, 7:1275-1286

Published Date: 5 March 2012

Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material

Amna T, Hassan MS, Nam KT, Bing YY, Barakat NAM , Khil MS, Kim HY

International Journal of Nanomedicine 2012, 7:1659-1670

Published Date: 27 March 2012

Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

Wahajuddin, Arora S

International Journal of Nanomedicine 2012, 7:3445-3471

Published Date: 6 July 2012

Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

Roohi F, Lohrke J, Ide A, Schuetz G, Dassler K

International Journal of Nanomedicine 2012, 7:4447-4458

Published Date: 10 August 2012

Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle

Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ

International Journal of Nanomedicine 2012, 7:5137-5149

Published Date: 27 September 2012

Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer

Campos da Paz M, Almeida Santos MF, Santos CM, da Silva SW, de Souza LB, Lima EC, Silva RC, Lucci CM, Morais PC, Azevedo RB, Lacava ZG

International Journal of Nanomedicine 2012, 7:5271-5282

Published Date: 4 October 2012

Choroidal thinning in high myopia measured by optical coherence tomography

Ikuno Y, Fujimoto S, Jo Y, Asai T, Nishida K

Clinical Ophthalmology 2013, 7:889-893

Published Date: 15 May 2013