Back to Journals » International Journal of Nanomedicine » Volume 5

The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice

Authors Chen B, Jin N, Wang J, Ding J, Gao C, Cheng J, Xia G, Gao F, Zhou Y, Chen Y, Zhou G, Li X, Zhang Y, Tang M, Wang X

Published 10 August 2010 Volume 2010:5 Pages 593—599

DOI https://doi.org/10.2147/IJN.S12162

Review by Single anonymous peer review

Peer reviewer comments 4



Bao-An Chen1, Nan Jin1, Jun Wang1, Jiahua Ding1, Chong Gao1, Jian Cheng1, Guohua Xia1, Feng Gao1, Yin Zhou1, Yue Chen1, Guina Zhou1, Xiaomao Li2, Yu Zhang3, Men Tang3, Xuemei Wang3

1Department of Hematology, Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Physics, University of Saarland, D-266041 Saarbruechen, Germany; 3National Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing, People’s Republic of China

Abstract: We investigated the effect of magnetic nanoparticles of Fe3O4 (Fe3O4-MNPs) on the mice immune system. Imprinting control region (ICR) mice were assigned randomly into four groups and treated with normal saline or low, medium, or high doses of Fe3O4-MNPs, respectively. After intravenous administration of Fe3O4-MNPs for 72 hours, the peripheral T cells and the induction of primary immune responses in mice were investigated by flow cytometry and determined using enzyme-linked immunosorbent assay, respectively. The results showed that the ratio of spleen to body weight was not different between the experimental groups and control group (P > 0.05). The lymphocyte transformation rates in the suspension of spleen were higher in low-dose group than those in the control group (P < 0.05), while the proliferation of splenocytes was low in the medium and high groups when compared to the control group (P < 0.05). In peripheral blood, both the proportions of subset CD4+ and CD8+ T lymphocytes in the low-dose group were higher than those in the control group, whereas there was no difference in the number of CD4+ T cells between the medium- and low-dose groups. Interestingly, the Fe3O4-MNPs enhanced the production of interleukin-2 (IL-2), interferon-γ, and IL-10 but did not affect the production of IL-4 in peripheral blood. It is concluded that Fe3O4-MNPs could influence immune functions of normal ICR mice in a dose-dependent manner.

Keywords: magnetic nanoparticle of Fe3O4, immune function, splenocyte proliferation, cytokine

Creative Commons License © 2010 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.