Back to Browse Journals » International Journal of Nanomedicine » Volume 5

Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells

Authors Bao-an Chen, Pei-pei Mao, Jian Cheng, et al

Published Date June 2010 Volume 2010:5 Pages 437—444

DOI http://dx.doi.org/10.2147/IJN.S10083

Published 21 June 2010

Bao-an Chen1, Pei-pei Mao1, Jian Cheng1, Feng Gao1, Guo-hua Xia1, Wen-lin Xu2, Hui-lin Shen2, Jia-hua Ding1, Chong Gao1, Qian Sun1, Wen-ji Chen1, Ning-na Chen1, Li-jie Liu3, Xiao-mao Li4, Xue-mei Wang5

1Department of Hematology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 3Institution of Physiology, Southeast University, Nanjing, People’s Republic of China; 4Department of Physics, University of Saarland, Saarbruecken, Germany; 5State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing, People’s Republic of China

Abstract: In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe3O4 nanoparticle [MNP (Fe3O4)] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of “classical” MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491–3509, 1539–1557, and 3103–3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1–1, PGY1–2, and PGY1–3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe3O4) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1–2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe3O4) or PGY1–2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe3O4) and PGY1–2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe3O4) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.

Keywords: K562/A02 cell line, multidrug resistance, magnetic nanoparticle of Fe3O4, recombinant plasmid vector PGY1–2

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other articles by this author:

Synergistic effect of the combination of nanoparticulate Fe3O4 and Au with daunomycin on K562/A02 cells

Bao-An Chen, Yong-Yuan Dai, Xue-Mei Wang, Ren-Yun Zhang, Wen-Lin Xu, et al

International Journal of Nanomedicine 2008, 3:343-350

Published Date: 9 October 2008

Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

Baoan Chen, Jian Cheng, Yanan Wu, Feng Gao, Wenlin Xu, et al

International Journal of Nanomedicine 2009, 4:73-78

Published Date: 18 March 2009

The reversal effect of magnetic Fe3O4 nanoparticles loaded with cisplatin on SKOV3/DDP ovarian carcinoma cells

Zhi Jiang, Bao-An Chen, Guo-Hua Xia, Qiang Wu, et al.

International Journal of Nanomedicine 2009, 4:107-114

Published Date: 30 April 2009

Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo

Bao-an Chen, Bin-bin Lai, Jian Cheng, et al

International Journal of Nanomedicine 2009, 4:201-208

Published Date: 23 September 2009

Effect of magnetic nanoparticles of Fe3O4 and 5-bromotetrandrine on reversal of multidrug resistance in K562/A02 leukemic cells

Jian Cheng, Weiwei Wu, Bao-an Chen, et al

International Journal of Nanomedicine 2009, 4:209-216

Published Date: 30 September 2009

Synergistic effect of magnetic nanoparticles of Fe3O4 with gambogic acid on apoptosis of K562 leukemia cells

Baoan Chen, Yiqiong Liang, Weiwei Wu, et al

International Journal of Nanomedicine 2009, 4:251-259

Published Date: 10 November 2009

Effect of Fe3O4-magnetic nanoparticles on acute exercise enhanced KCNQ1 expression in mouse cardiac muscle

Lijie Liu, Baoan Chen,Feixiang Teng, et al

International Journal of Nanomedicine 2010, 5:109-116

Published Date: 25 February 2010

The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice

Bao-An Chen, Nan Jin, Jun Wang, et al

International Journal of Nanomedicine 2010, 5:593-599

Published Date: 10 August 2010

Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice

Jun Wang, Yue Chen, Baoan Chen, et al

International Journal of Nanomedicine 2010, 5:861-866

Published Date: 13 October 2010

Magnetic Fe3O4 nanoparticles and chemotherapy agents interact synergistically to induce apoptosis in lymphoma cells

Hongmei Jing, Jing Wang, Ping Yang, et al

International Journal of Nanomedicine 2010, 5:999-1004

Published Date: 19 November 2010

Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies

Weiwei Wu, Baoan Chen, Jian Cheng, et al

International Journal of Nanomedicine 2010, 5:1079-1084

Published Date: 2 December 2010

Synthesis and antitumor efficacy of daunorubicin-loaded magnetic nanoparticles

Jun Wang, Baoan Chen, Jian Chen, et al

International Journal of Nanomedicine 2011, 6:203-211

Published Date: 24 January 2011

The changes of T lymphocytes and cytokines in ICR mice fed with Fe3O4 magnetic nanoparticles

Wang J, Chen B, Jin N, Xia G, Chen Y, Zhou Y, Cai X, Ding J, Li X, Wang X

International Journal of Nanomedicine 2011, 6:605-610

Published Date: 1 April 2011

Apoptotic mechanism of human leukemia K562/A02 cells induced by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin

Wang J, Chen B, Cheng J, Cai X, Xia G, Liu R, Wang X

International Journal of Nanomedicine 2011, 6:1027-1034

Published Date: 17 May 2011

Effect of interaction of magnetic nanoparticles of Fe3O4 and artesunate on apoptosis of K562 cells

Wang Y, Han Y, Yang Y, Yang J, Guo X, Zhang J, Pan L, Xia G, Chen B

International Journal of Nanomedicine 2011, 6:1185-1192

Published Date: 9 June 2011

Effect of magnetic Fe3O4 nanoparticles with 2-methoxyestradiol on the cell-cycle progression and apoptosis of myelodysplastic syndrome cells

Xia G, Chen B, Ding J, Gao C, Lu H, Shao Z, Gao F, Wang X

International Journal of Nanomedicine 2011, 6:1921-1927

Published Date: 8 September 2011

Study of the enhanced anticancer efficacy of gambogic acid on Capan-1 pancreatic cancer cells when mediated via magnetic Fe3O4 nanoparticles

Wang C, Zhang H, Chen B, Yin H, Wang W

International Journal of Nanomedicine 2011, 6:1929-1935

Published Date: 9 September 2011

A promising strategy for overcoming MDR in tumor by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin

Cheng J, Wang J, Chen BA, Xia GH, Cai XH, Liu R, Ren YY, Bao W, Wang XM

International Journal of Nanomedicine 2011, 6:2123-2131

Published Date: 27 September 2011

Prevention of acute graft-versus-host disease by magnetic nanoparticles of Fe3O4 combined with cyclosporin A in murine models

Cheng J, Zhou Y, Chen B, Wang J, Xia G, Jin N, Ding J, Gao C, Chen G, Miao Y, Li W, Liu Z, Wang X

International Journal of Nanomedicine 2011, 6:2183-2189

Published Date: 3 October 2011

Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system

Zhang H, Wang C, Chen B, Wang X

International Journal of Nanomedicine 2012, 7:235-242

Published Date: 12 January 2012

Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells

Wang L, Zhang HJ, Chen BA, Xia GH, Wang S, Cheng J, Shao Z, Gao C, Bao W, Tian L, Ren YY, Xu PP, Cai XH, Liu R, Wang XM

International Journal of Nanomedicine 2012, 7:789-798

Published Date: 14 February 2012

Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

Ren Y, Zhang H, Chen B, Cheng J, Cai X, Liu R, Xia G, Wu W, Wang S, Ding J, Gao C, Wang J, Bao W, Wang L, Tian L, Song H, Wang X

International Journal of Nanomedicine 2012, 7:2261-2269

Published Date: 3 May 2012

Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line

Cheng J, Cheng L, Chen B, Xia G, Gao C, Song H, Bao W, Guo Q, Zhang H, Wang X

International Journal of Nanomedicine 2012, 7:2843-2852

Published Date: 8 June 2012

Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells

Fang L, Chen B, Liu S, Wang R, Hu S, Xia G, Tian Y, Cai X

International Journal of Nanomedicine 2012, 7:4109-4118

Published Date: 30 July 2012

Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo

Li K, Chen B, Xu L, Feng J, Xia G, Cheng J, Wang J, Gao F, Wang X

International Journal of Nanomedicine 2013, 8:1867-1877

Published Date: 9 May 2013

Readers of this article also read:

Magnetic nanoparticle of Fe3O4 and 5-bromotetrandrin interact synergistically to induce apoptosis by daunorubicin in leukemia cells

Baoan Chen, Jian Cheng, Mingfang Shen, Feng Gao, Wenlin Xu, et al 

International Journal of Nanomedicine 2009, 4:65-71

Published Date: 18 March 2009

Radiolucency below the crown of mandibular horizontal incompletely impacted third molars and acute inflammation in men with diabetes

Minoru Yamaoka, Yusuke Ono, Masahide Ishizuka, Kouichi Yasuda, et al.

Clinical, Cosmetic and Investigational Dentistry 2009, 1:27-34

Published Date: 11 May 2009

Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer

Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M

International Journal of Nanomedicine 2011, 6:2305-2319

Published Date: 12 October 2011

Does Veritas® play a role in breast reconstruction? a case report

Borgognone A, Anniboletti T, De Vita F

Breast Cancer: Targets and Therapy 2011, 3:175-177

Published Date: 20 December 2011

Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering

Naghavi Alhosseini S, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, Kargozar S, Jalali N

International Journal of Nanomedicine 2012, 7:25-34

Published Date: 4 January 2012

Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy

Gold M, Lorenzl S, Stewart AJ, Morimoto BH, Williams DR, Gozes I

Neuropsychiatric Disease and Treatment 2012, 8:85-93

Published Date: 9 February 2012

Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumor treatment: in vitro evaluation of cytotoxicity and magnetohyperthermia efficacy

Estevanato LC, Da Silva JR, Falqueiro AM, Mosiniewicz-Szablewska E, Suchocki P, Tedesco AC, Morais PC, Lacava ZG

International Journal of Nanomedicine 2012, 7:5287-5299

Published Date: 5 October 2012