Back to Browse Journals » Cell Health and Cytoskeleton » Volume 3

Precisely delivered nanomechanical forces induce blebbing in undifferentiated mouse embryonic stem cells

Authors Alexandra L Hemsley, Diana Hernandez, Christopher Mason, et al

Published Date January 2011 Volume 2011:3 Pages 23—34

DOI http://dx.doi.org/10.2147/CHC.S13863

Published 26 January 2011

Alexandra L Hemsley1, Diana Hernandez1, Christopher Mason1, Andrew E Pelling2,3, Farlan S Veraitch1
1Advanced Centre for Biochemical Engineering, 2The London Centre for Nanotechnology, Centre for Nanomedicine, University College London, London, UK; 3Department of Physics, University of Ottawa, Ottawa, ON, Canada

Abstract: The aim of this study was to probe the morphological response of single mouse embryonic stem cells (mESC) to precisely delivered nanomechanical forces. Plating mESC as single cells gave rise to either round compact or flattened fibroblastic morphologies. The expression of OCT4 and Nanog was reduced in flattened cells, indicating that this population had begun to differentiate. Upon application of >5 nN of force, using atomic force microscopy and simultaneous laser scanning confocal microscopy, round cells, but not flattened cells, were capable of forming mechanically induced blebs (miBlebs). Flattened cells appeared to have a more highly developed cytoskeleton than undifferentiated stem cells as characterized by the distribution of phospho-ezrin-radixin-moesin (pERM). Higher levels of pERM and an inability to form miBlebs in flattened cells imply that the earliest stages of embryonic stem cell differentiation are associated with the development of stronger mechanical links between the plasma membrane and the cytoskeleton.

Keywords: blebbing, embryonic stem cells, atomic force microscopy, cytoskeleton development, differentiation

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014

Population pharmacokinetics of olprinone in healthy male volunteers

Kunisawa T, Kasai H, Suda M, Yoshimura M, Sugawara A, Izumi Y, Iida T, Kurosawa A, Iwasaki H

Clinical Pharmacology: Advances and Applications 2014, 6:43-50

Published Date: 4 March 2014

Golgi GRASPs: moonlighting membrane tethers

Jarvela T, Linstedt AD

Cell Health and Cytoskeleton 2012, 4:37-47

Published Date: 4 May 2012

Integrins and extracellular matrix in mechanotransduction

Ramage L

Cell Health and Cytoskeleton 2012, 4:1-9

Published Date: 28 December 2011

Detemir as a once-daily basal insulin in type 2 diabetes

Nelson SE

Clinical Pharmacology: Advances and Applications 2011, 3:27-37

Published Date: 18 August 2011

Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors

Eduardo Pimenta, Suzanne Oparil

Vascular Health and Risk Management 2009, 5:453-463

Published Date: 19 May 2009