Back to Browse Journals » Degenerative Neurological and Neuromuscular Disease » Volume 2

Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease

Authors Levin MC, Lee S, Gardner LA, Shin Y, Douglas JN, Groover CJ

Published Date December 2012 Volume 2012:2 Pages 175—187

DOI http://dx.doi.org/10.2147/DNND.S38353

Received 20 September 2012, Accepted 30 October 2012, Published 5 December 2012

Michael C Levin,1–3 Sangmin Lee,1,2 Lidia A Gardner,1,2 Yoojin Shin,1,2 Joshua N Douglas,1,3 Chassidy J Groover1,2

1Veterans Administration Medical Center, Memphis, TN, USA; 2Departments of Neurology, 3Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA

Abstract: Considering there are no treatments for progressive forms of multiple sclerosis (MS), a comprehensive understanding of the role of neurodegeneration in the pathogenesis of MS should lead to novel therapeutic strategies to treat it. Many studies have implicated viral triggers as a cause of MS, yet no single virus has been exclusively shown to cause MS. Given this, human and animal viral models of MS are used to study its pathogenesis. One example is human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Importantly, HAM/TSP is similar clinically, pathologically, and immunologically to progressive MS. Interestingly, both MS and HAM/TSP patients were found to make antibodies to heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an RNA-binding protein overexpressed in neurons. Anti-hnRNP A1 antibodies reduced neuronal firing and caused neurodegeneration in neuronal cell lines, suggesting the autoantibodies are pathogenic. Further, microarray analyses of neurons exposed to anti-hnRNP A1 antibodies revealed novel pathways of neurodegeneration related to alterations of RNA levels of the spinal paraplegia genes (SPGs). Mutations in SPGs cause hereditary spastic paraparesis, genetic disorders clinically indistinguishable from progressive MS and HAM/TSP. Thus, there is a strong association between involvement of SPGs in neurodegeneration and the clinical phenotype of progressive MS and HAM/TSP patients, who commonly develop spastic paraparesis. Taken together, these data begin to clarify mechanisms of neurodegeneration related to the clinical presentation of patients with chronic immune-mediated neurological disease of the central nervous system, which will give insights into the design of novel therapies to treat these neurological diseases.

Keywords: human T-lymphotropic virus type 1 (HTLV-1), multiple sclerosis, neurodegeneration, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), autoimmunity, spastic paraparesis, RNA-binding protein

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms

Levin MC, Douglas JN, Meyers L, Lee S, Shin Y, Gardner LA

Degenerative Neurological and Neuromuscular Disease 2014, 4:49-63

Published Date: 12 March 2014

Readers of this article also read:

Diabetes reversal via gene transfer: building on successes in animal models

Gerace D, Martiniello-Wilks R, Simpson AM

Research and Reports in Endocrine Disorders 2015, 5:15-29

Published Date: 29 January 2015

Corneal laceration caused by river crab

Vinuthinee N, Azreen-Redzal A, Juanarita J, Zunaina E

Clinical Ophthalmology 2015, 9:203-206

Published Date: 29 January 2015

Ocular surface disease in posttrabeculectomy/mitomycin C patients

Lam J, Wong TT, Tong L

Clinical Ophthalmology 2015, 9:187-191

Published Date: 29 January 2015

Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging

Verma VK, Kamaraju SR, Kancherla R, Kona LK, Beevi SS, Debnath T, Usha SP, Vadapalli R, Arbab AS, Chelluri LK

International Journal of Nanomedicine 2015, 10:711-726

Published Date: 20 January 2015

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014