Back to Journals » Diabetes, Metabolic Syndrome and Obesity » Volume 2

p38 MAPK inhibition reduces diabetes-induced impairment of wound healing

Authors Medicherla S, Wadsworth S, Cullen B, Silcock D, Ma JY, Mangadu R, Kerr I, Chakravarty S, Luedtke GL, Dugar S, Protter AA, Higgins L

Published 23 June 2009 Volume 2009:2 Pages 91—100

DOI https://doi.org/10.2147/DMSO.S5859

Review by Single anonymous peer review

Peer reviewer comments 4



Satyanarayana Medicherla1, Scott Wadsworth2, Breda Cullen3, Derek Silcock3, Jing Y Ma1, Ruban Mangadu1, Irene Kerr1, Sarvajit Chakravarty1, Gregory L Luedtke1, Sundeep Dugar1, Andrew A Protter1, Linda S Higgins1

1Scios Inc., Fremont, CA, USA; 2Center for Biomaterials and Advanced Technologies, Somerville, NJ, USA; 3Johnson & Johnson Wound Management, Gargrave, UK

Abstract: In healthy tissue, a wound initiates an inflammatory response characterized by the presence of a hematoma, infiltration of inflammatory cells into the wound and, eventually, wound healing. In pathological conditions like diabetes mellitus, wound healing is impaired by the presence of chronic nonresolving inflammation. p38 mitogen-activated protein kinase (MAPK) inhibitors have demonstrated anti-inflammatory effects, primarily by inhibiting the expression of inflammatory cytokines and regulating cellular traffic into wounds. The db/db mouse model of type 2 diabetes was used to characterize the time course of expression of activated p38 during impaired wound healing. The p38α-selective inhibitor, SCIO-469, was applied topically and effects on p38 activation and on wound healing were evaluated. A topical dressing used clinically, PromogranTM, was used as a comparator. In this study, we established that p38 is phosphorylated on Days 1 to 7 post-wounding in db/db mice. Further, we demonstrated that SCIO-469, at a dose of 10 µg/wound, had a positive effect on wound contraction, granulation tissue formation, and re-epithelialization, and also increased wound maturity during healing. These effects were similar to or greater than those observed with PromogranTM. These results suggest a novel approach to prophylactic and therapeutic management of chronic wounds associated with diabetes or other conditions in which healing is impaired.

Keywords: p38 MAPK ihibition, diabetic wound healing, db/db mouse, nonresolving healing, PromogranTM

Creative Commons License © 2009 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.