Back to Browse Journals » Clinical Ophthalmology » Volume 8

P2Y2 receptor agonists for the treatment of dry eye disease: a review

Authors Lau OCF, Samarawickrama C, Skalicky SE

Published Date January 2014 Volume 2014:8 Pages 327—334

DOI http://dx.doi.org/10.2147/OPTH.S39699

Received 11 November 2013, Accepted 7 January 2014, Published 30 January 2014

Oliver C F Lau,1 Chameen Samarawickrama,1,2 Simon E Skalicky1–3

1
Sydney Eye Hospital, Sydney, NSW, Australia; 2Save Sight Institute, University of Sydney, Sydney, NSW, Australia; 3Ophthalmology Department, Addenbrooke's Hospital, Cambridge, United Kingdom

Abstract: Recent advances in the understanding of dry eye disease (DED) have revealed previously unexplored targets for drug therapy. One of these drugs is diquafosol, a uridine nucleotide analog that is an agonist of the P2Y2 receptor. Several randomized controlled trials have demonstrated that the application of topical diquafosol significantly improves objective markers of DED such as corneal and conjunctival fluorescein staining and, in some studies, tear film break-up time and Schirmer test scores. However, this has been accompanied by only partial improvement in patient symptoms. Although evidence from the literature is still relatively limited, early studies have suggested that diquafosol has a role in the management of DED. Additional studies would be helpful to delineate how different subgroups of DED respond to diquafosol. The therapeutic combination of diquafosol with other topical agents also warrants further investigation.

Keywords: dry eye disease, meibomian gland disease, aqueous tear deficiency, diquafosol, P2Y2 agonists

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Detemir as a once-daily basal insulin in type 2 diabetes

Nelson SE

Clinical Pharmacology: Advances and Applications 2011, 3:27-37

Published Date: 18 August 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010