Back to Browse Journals » International Journal of Nephrology and Renovascular Disease » Volume 7

Obesity, hypertension, and chronic kidney disease

Authors Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE

Published Date February 2014 Volume 2014:7 Pages 75—88

DOI http://dx.doi.org/10.2147/IJNRD.S39739

Received 25 October 2013, Accepted 4 December 2013, Published 18 February 2014

Michael E Hall,1,2 Jussara M do Carmo,2 Alexandre A da Silva,2 Luis A Juncos,1,2 Zhen Wang,2 John E Hall2

1Department of Medicine, 2Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA

Abstract: Obesity is a major risk factor for essential hypertension, diabetes, and other comorbid conditions that contribute to development of chronic kidney disease. Obesity raises blood pressure by increasing renal tubular sodium reabsorption, impairing pressure natriuresis, and causing volume expansion via activation of the sympathetic nervous system and renin-angiotensin-aldosterone system and by physical compression of the kidneys, especially when there is increased visceral adiposity. Other factors such as inflammation, oxidative stress, and lipotoxicity may also contribute to obesity-mediated hypertension and renal dysfunction. Initially, obesity causes renal vasodilation and glomerular hyperfiltration, which act as compensatory mechanisms to maintain sodium balance despite increased tubular reabsorption. However, these compensations, along with increased arterial pressure and metabolic abnormalities, may ultimately lead to glomerular injury and initiate a slowly developing vicious cycle that exacerbates hypertension and worsens renal injury. Body weight reduction, via caloric restriction and increased physical activity, is an important first step for management of obesity, hypertension, and chronic kidney disease. However, this strategy may not be effective in producing long-term weight loss or in preventing cardiorenal and metabolic consequences in many obese patients. The majority of obese patients require medical therapy for obesity-associated hypertension, metabolic disorders, and renal disease, and morbidly obese patients may require surgical interventions to produce sustained weight loss.

Keywords: visceral adiposity, type II diabetes, sodium reabsorption, glomerular filtration rate, sympathetic nervous system, renin-angiotensin-aldosterone system

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Uptake of bright fluorophore core-silica shell nanoparticles by biological systems

Zane A, McCracken C, Knight DA, Young T, Lutton AD, Olesik JW, Waldman WJ, Dutta PK

International Journal of Nanomedicine 2015, 10:1547-1567

Published Date: 20 February 2015

Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration

Wan W, Zhang S, Ge L, Li Q, Fang X, Yuan Q, Zhong W, Ouyang J, Xing M

International Journal of Nanomedicine 2015, 10:1273-1290

Published Date: 12 February 2015

Nanocomplexation of thrombin with cationic amylose derivative for improved stability and hemostatic efficacy

Zhuang B, Li Z, Pang J, Li W, Huang P, Wang J, Zhou Y, Lin Q, Zhou Q, Ye X, Ye H, Liu Y, Zhang LM, Chen R

International Journal of Nanomedicine 2015, 10:939-947

Published Date: 29 January 2015

Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging

Verma VK, Kamaraju SR, Kancherla R, Kona LK, Beevi SS, Debnath T, Usha SP, Vadapalli R, Arbab AS, Chelluri LK

International Journal of Nanomedicine 2015, 10:711-726

Published Date: 20 January 2015

Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies

Wang Z, Mu HJ, Zhang XM, Ma PK, Lian SN, Zhang FP, Chu SY, Zhang WW, Wang AP, Wang WY, Sun KX

International Journal of Nanomedicine 2015, 10:633-644

Published Date: 14 January 2015

Intracameral phenylephrine and ketorolac injection (OMS302) for maintenance of intraoperative pupil diameter and reduction of postoperative pain in intraocular lens replacement with phacoemulsification

Lindstrom RL, Loden JC, Walters TR, Dunn SH, Whitaker JS, Kim T, Demopulos GA, Tjia K

Clinical Ophthalmology 2014, 8:1735-1744

Published Date: 5 September 2014

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014

Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses

Thomes BE, Callaghan TA

Clinical Ophthalmology 2013, 7:1529-1534

Published Date: 25 July 2013

Difluprednate ophthalmic emulsion 0.05% (Durezol®) administered two times daily for managing ocular inflammation and pain following cataract surgery

Stephen Smith, Douglas Lorenz, James Peace, et al.

Clinical Ophthalmology 2010, 4:983-991

Published Date: 30 August 2010