Back to Browse Journals » Neuropsychiatric Disease and Treatment » Volume 7 » Issue 1

Nondrug-related aspect of treating Ekbom disease, formerly known as restless legs syndrome

Authors Mitchell UH

Published Date May 2011 Volume 2011:7(1) Pages 251—257

DOI http://dx.doi.org/10.2147/NDT.S19177

Published 6 May 2011

Ulrike H Mitchell
Department of Exercise Sciences, Brigham Young University, Provo, UT, USA

Abstract: Ekbom disease (EKD), formerly known as restless legs syndrome (RLS) has affected and bothered many people over the centuries. It is one of the most prevalent neurological disorders in Europe and North-America, affecting about 10% of the population. The main characteristics are the strong urge to move, accompanied or caused by uncomfortable, sometimes even distressing, paresthesia of the legs, described as a "creeping, tugging, pulling" feeling. The symptoms often become worse as the day progresses, leading to sleep disturbances or sleep deprivation, which leads to decreased alertness and daytime functions. Numerous studies have been conducted assessing the efficacy of dopaminergic drugs, opioids, and other pharmacologic agents in alleviating EKD symptoms. However, there is also a growing body of evidence demonstrating the effectiveness of nonpharmacologic treatments including life style changes, physical activity programs, pneumatic compression, massage, near-infrared light therapy, and complementary therapies. The working mechanisms behind these alternatives are diverse. Some increase blood flow to the legs, therefore reducing tissue hypoxia; some introduce an afferent counter stimulus to the cortex and with that "close the gate" for aberrant nerve stimulations; some increase dopamine and nitric oxide and therefore augment bio-available neurotransmitters; and some generate endorphins producing an analgesic effect. The advantages of these treatments compared with pharmacologic agents include less or no side effects, no danger of augmentation, and less cost.

Keywords: RLS, modalities, massage, intermittent compression, NIR

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia [Corrigendum]

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4705-4706

Published Date: 5 December 2013

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Corrigendum

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

Corrigendum: Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

Espandar L, Sikder S, Moshirfar M

Clinical Ophthalmology 2011, 5:159-160

Published Date: 6 February 2011

Erratum

Rushmia Karim, Raf Ghabrial, Betty Lin, Arj Ananda

Clinical Ophthalmology 2010, 4:935-936

Published Date: 19 August 2010