Back to Browse Journals » Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy » Volume 3

New treatments in the management of type 2 diabetes: a critical appraisal of saxagliptin

Authors Baptist Gallwitz

Published Date May 2010 Volume 2010:3 Pages 117—124

DOI http://dx.doi.org/10.2147/DMSO.S4857

Published 10 May 2010

Baptist Gallwitz

Dept Medicine IV, Tübingen University, Otfried-Müller-Str, 10, 72076 Tübingen, Germany

Abstract: Saxagliptin is a novel dipeptidyl peptidase-4 inhibitor (DPP-4 inhibitor) for the treatment of type 2 diabetes, with a duration profile for once daily dosing. It is highly selective for DPP-4 in comparison to other enzymes of the dipeptidyl peptidase family. DPP-4 inhibitors elevate plasma concentrations of the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP). This effect results in a glucose-dependent stimulation of insulin secretion and an inhibition of glucagon secretion without an intrinsic risk for hypoglycemia. In comparison to sulfonylureas and thiazolidinediones that promote weight gain, DPP-4 inhibitors are weight neutral. Saxagliptin has been approved by the FDA for the US and by the EMEA for Europe in 2009. Clinical trials showed a dose-dependent inhibition of DPP-4 by saxagliptin in doses ranging from 2.5 to 100 mg daily without serious side effects. Type 2 diabetic patients receiving 5 mg to 10 mg saxagliptin once daily had a significant lowering of HbA1c and glycemic parameters along with good tolerability and safety. Saxagliptin has demonstrated a good efficacy for glycemic parameters in various patient populations either in monotherapy or in combination with metformin and other oral antidiabetic drugs as well as a favorable cardiovascular profile. With its high selectivity for DPP-4 and its clinical and cardiovascular profile, saxagliptin is an attractive novel DPP-4 inhibitor.

Keywords: type 2 diabetes, diabetes therapy, DPP-4 inhibitors, incretin based therapy, GLP-1, saxagliptin

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Readers of this article also read:

Diabetes reversal via gene transfer: building on successes in animal models

Gerace D, Martiniello-Wilks R, Simpson AM

Research and Reports in Endocrine Disorders 2015, 5:15-29

Published Date: 29 January 2015

Corneal laceration caused by river crab

Vinuthinee N, Azreen-Redzal A, Juanarita J, Zunaina E

Clinical Ophthalmology 2015, 9:203-206

Published Date: 29 January 2015

Ocular surface disease in posttrabeculectomy/mitomycin C patients

Lam J, Wong TT, Tong L

Clinical Ophthalmology 2015, 9:187-191

Published Date: 29 January 2015

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia [Corrigendum]

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4705-4706

Published Date: 5 December 2013

Corrigendum

Schneider EW, Johnson MW

Clinical Ophthalmology 2011, 5:1315-1316

Published Date: 16 September 2011

Corrigendum: Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

Espandar L, Sikder S, Moshirfar M

Clinical Ophthalmology 2011, 5:159-160

Published Date: 6 February 2011

Erratum

RA Kurt, K Gündüz

Clinical Ophthalmology 2010, 4:981-982

Published Date: 6 September 2010