Back to Journals » Journal of Inflammation Research » Volume 1

Neuroinflammation and tumor necrosis factor signaling in the pathophysiology of Alzheimer’s disease

Authors McAlpine, Tansey M

Published 6 November 2008 Volume 2008:1 Pages 29—39

DOI https://doi.org/10.2147/JIR.S4397

Review by Single anonymous peer review

Peer reviewer comments 3



Fiona E McAlpine, Malú G Tansey

Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects nearly one in two individuals over 90 years of age. Its neuropathological hallmarks are accumulation of extraneuronal plaques of amyloid-beta (Aβ), the presence of neurofibrillary tangles formed by aberrantly hyperphosphorylated tau, progressive synaptic loss, and neurodegeneration which eventually results in decline of memory and cognitive faculties. Although the etiology of sporadic AD in humans is unknown, mutations in amyloid precursor protein or components of its processing machinery (β-secretase and γ-secretase) result in overproduction of Aβ1–40 and 1–42 peptides and are sufficient to cause disease. In this review, we highlight the experimental and clinical evidence that suggests a close association between neuroinflammation and AD pathogenesis. Overproduction of inflammatory mediators in the brain occurs when microglia, which are often found in close physical association with amyloid plaques in AD brains, become chronically activated. It has been proposed that elevated levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF), may inhibit phagocytosis of Aβ in AD brains thereby hindering efficient plaque removal by resident microglia. In support of this idea, the bacterial endotoxin lipopolysaccharide, a potent trigger of inflammation that elicits production of TNF and many other cytokines, can accelerate the appearance and severity of AD pathology in several animal models of AD. We review the evidence implicating TNF signaling in AD pathology and discuss how TNF-dependent processes may contribute to cognitive dysfunction and accelerated progression of AD. We conclude by reviewing the observations that provide compelling rationale to investigate the extent to which new therapeutic approaches that selectively target the TNF pathway modify progression of neuropathology in pre-clinical models of AD as well as the promising findings with the use of nonsteroidal anti-inflammatory drugs and recent clinical trials with Aβ immunotherapy.

Keywords: neuroinflammation, tumor necrosis factor, microglia, neurodegeneration, Alzheimer’s disease

Creative Commons License © 2008 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.