Back to Browse Journals » International Journal of Nanomedicine » Volume 6

Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants

Authors Ballo A, Agheli H, Lausmaa J, Thomsen P, Petronis S

Published Date December 2011 Volume 2011:6 Pages 3415—3428

DOI http://dx.doi.org/10.2147/IJN.S25867

Published 20 December 2011

Ahmed Ballo1,3, Hossein Agheli2,3, Jukka Lausmaa4, Peter Thomsen1,3, Sarunas Petronis2,3
1
Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 2Applied Physics, Chalmers University of Technology, Gothenburg, Sweden; 3BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; 4Department of Chemistry and Materials Technology, SP Technical Research Institute of Sweden, Borås, Sweden

Abstract: An implantable model system was developed to investigate the effects of nanoscale surface properties on the osseointegration of titanium implants in rat tibia. Topographical nanostructures with a well-defined shape (semispherical protrusions) and variable size (60 nm, 120 nm and 220 nm) were produced by colloidal lithography on the machined implants. Furthermore, the implants were sputter-coated with titanium to ensure a uniform surface chemical composition. The histological evaluation of bone around the implants at 7 days and 28 days after implantation was performed on the ground sections using optical and scanning electron microscopy. Differences between groups were found mainly in the new bone formation process in the endosteal and marrow bone compartments after 28 days of implantation. Implant surfaces with 60 nm features demonstrated significantly higher bone-implant contact (BIC, 76%) compared with the 120 nm (45%) and control (57%) surfaces. This effect was correlated to the higher density and curvature of the 60 nm protrusions. Within the developed model system, nanoscale protrusions could be applied and systematically varied in size in the presence of microscale background roughness on complex screw-shaped implants. Moreover, the model can be adapted for the systematic variation of surface nanofeature density and chemistry, which opens up new possibilities for in vivo studies of various nanoscale surface-bone interactions.

Keywords: in vivo, nanotopography, osseointegration, titanium implant, colloidal lithography

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors

Eduardo Pimenta, Suzanne Oparil

Vascular Health and Risk Management 2009, 5:453-463

Published Date: 19 May 2009

Comparison of disposable sutureless silicone ring and traditional metal ring in 23-gauge vitrectomy combined with cataract surgery

Wu J-G, Wei R-H, Liu A-H, Zhou X-X, Sun G-L, Li X-R

Clinical Ophthalmology 2011, 5:901-905

Published Date: 30 June 2011

Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients

Seidensticker F, Neubauer AS, Wasfy T, Stumpf C, Thurau SR, Kampik A, Kernt M

Clinical Ophthalmology 2011, 5:1667-1671

Published Date: 29 November 2011

Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex

Zhang J, Peng Q, Shi S, Zhang Q, Sun X, Gong T, Zhang Z

International Journal of Nanomedicine 2011, 6:3405-3414

Published Date: 19 December 2011

Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines

Haniu H, Saito N, Matsuda Y, Kim YA, Park KC, Tsukahara T, Usui Y, Aoki K, Shimizu M, Ogihara N, Hara K, Takanashi S, Okamoto M, Ishigaki N, Nakamura K, Kato H

International Journal of Nanomedicine 2011, 6:3487-3497

Published Date: 21 December 2011

RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells

Cai LL, Liu P, Li X, Huang X, Ye YQ, Chen FY, Yuan H, Hu FQ, Du YZ

International Journal of Nanomedicine 2011, 6:3499-3508

Published Date: 21 December 2011

In vitro and in vivo studies of surface-structured implants for bone formation

Xia L, Feng B, Wang PZ, Ding SY, Liu ZY, Zhou J, Yu R

International Journal of Nanomedicine 2012, 7:4873-4881

Published Date: 11 September 2012

Peritopic anesthesia: a new alternative in cataract surgery

Abreu JA, Abreu R, Cordovés LM, Aguilar JJ

Clinical Ophthalmology 2013, 7:555-556

Published Date: 15 March 2013

Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites

Geilich BM, Webster TJ

International Journal of Nanomedicine 2013, 8:1177-1184

Published Date: 21 March 2013