Back to Browse Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 3 » Issue 3

Mechanisms of improvement of respiratory failure in patients with COPD treated with NIV

Authors Annabel H Nickol, Nicholas Hart, Nicholas S Hopkinson, Carl-Hugo Hamnegård, John Moxham, et al

Published Date October 2008 Volume 2008:3(3) Pages 453—462

DOI http://dx.doi.org/10.2147/COPD.S2705

Published 12 October 2008

Annabel H Nickol1,2, Nicholas Hart1,3, Nicholas S Hopkinson1, Carl-Hugo Hamnegård4, John Moxham5, Anita Simonds1, Michael I Polkey1

1Respiratory Muscle Laboratory, Royal Brompton Hospital, London, UK; 2Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK; 3The Lane Fox Unit, St Thomas’ Hospital, London, UK; 4Department of Pulmonary Medicine and Clinical Physiology, Sahlgrenska University, Gotenborg, Sweden; 5Respiratory Muscle Laboratory, King’s College London School of Medicine, King’s College Hospital, London, UK

Background: Noninvasive ventilation (NIV) improves gas-exchange and symptoms in selected chronic obstructive pulmonary disease (COPD) patients with hypercapnic respiratory failure. We hypothesized NIV reverses respiratory failure by one or all of increased ventilatory response to carbon-dioxide, reduced respiratory muscle fatigue, or improved pulmonary mechanics.

Methods: Nineteen stable COPD patients (forced expiratory volume in one second 35% predicted) were studied at baseline (D0), 5–8 days (D5) and 3 months (3M) after starting NIV.

Results: Ventilator use was 6.2 (3.7) hours per night at D5 and 3.4 (1.6) at 3M (p = 0.12). Mean (SD) daytime arterial carbon-dioxide tension (PaCO2) was reduced from 7.4 (1.2) kPa to 7.0 (1.1) kPa at D5 and 6.5 (1.1) kPa at 3M (p = 0.001). Total lung capacity decreased from 107 (28) % predicted to 103 (28) at D5 and 103 (27) % predicted at 3M (p = 0.035). At D5 there was an increase in the hypercapnic ventilatory response and some volitional measures of inspiratory and expiratory muscle strength, but not isolated diaphragmatic strength whether assessed by volitional or nonvolitional methods.

Conclusion: These findings suggest decreased gas trapping and increased ventilatory sensitivity to CO2 are the principal mechanism underlying improvements in gas-exchange in patients with COPD following NIV. Changes in some volitional but not nonvolitional muscle strength measures may reflect improved patient effort.

Keywords: COPD; hypercapnic respiratory failure; NIV; pulmonary mechanics; ventilatory drive

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Cardiovascular and inflammatory effects of simvastatin therapy in patients with COPD: a randomized controlled trial

John ME, Cockcroft JR, McKeever TM, Coward WR, Shale DJ, Johnson SR, Thornton JG, Harrison TW, Knox AJ, Bolton CE

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:211-221

Published Date: 29 January 2015

Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies

Wang Z, Mu HJ, Zhang XM, Ma PK, Lian SN, Zhang FP, Chu SY, Zhang WW, Wang AP, Wang WY, Sun KX

International Journal of Nanomedicine 2015, 10:633-644

Published Date: 14 January 2015

Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

Wang X, Liu P, Yang W, Li L, Li P, Liu Z, Zhuo Z, Gao Y

International Journal of Nanomedicine 2014, 9:4899-4909

Published Date: 23 October 2014

An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery

Liu YC, Wang T, He FL, Liu Q, Zhang DX, Xiang SL, Su SP, Zhang J

International Journal of Nanomedicine 2011, 6:721-727

Published Date: 6 April 2011

Tuberculosis mortality in HIV-infected individuals: a cross-national systematic assessment

Christopher Au-Yeung, Steve Kanters, Erin Ding, et al

Clinical Epidemiology 2011, 3:21-29

Published Date: 19 January 2011

Therapeutic interventions and adjustments in the management of Parkinson disease: role of combined carbidopa/levodopa/entacapone (Stalevo®)

Paolo Solla, Antonino Cannas, Francesco Marrosu, et al

Neuropsychiatric Disease and Treatment 2010, 6:483-490

Published Date: 4 August 2010

Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits

Linhua Zhang, Yue Li, Chao Zhang, et al

International Journal of Nanomedicine 2009, 4:175-183

Published Date: 4 September 2009

EphrinA1-targeted nanoshells for photothermal ablation of prostate cancer cells

Andre M Gobin, James J Moon, Jennifer L West

International Journal of Nanomedicine 2008, 3:351-358

Published Date: 9 October 2008