Back to Browse Journals » International Journal of Nanomedicine » Volume 6

Investigation of folate-conjugated fluorescent silica nanoparticles for targeting delivery to folate receptor-positive tumors and their internalization mechanism

Authors Yang H, Lou C, Xu M, Wu C, Miyoshi H, Liu Y

Published Date September 2011 Volume 2011:6 Pages 2023—2032

DOI http://dx.doi.org/10.2147/IJN.S24792

Published 19 September 2011

Hong Yang1,*, Changchun Lou1,*, Mingming Xu1, Chunhui Wu1, Hirokazu Miyoshi2, Yiyao Liu1,3
1Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China; 2Radioisotope Research Center, University of Tokushima, Tokushima, Japan; 3Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
*These authors contributed equally to this work

Abstract: Multifunctionalized nanoparticles (NPs) are emerging as ideal tools for gene/drug delivery, bioimaging, labeling, or intracellular tracking in biomedical applications, and have attracted considerable attention owing to their unique advantages. In this study, fluorescent silica NPs were synthesized by a modified Stöber method using conjugates of 3- mercaptopropyltrimethoxysilane (MPS) and maleimide-fluorescein isothiocyanate (maleimide-FITC). Mean diameters of the NPs were controlled between 212–2111 nm by regulating MPS concentration in the reaction mixture. Maleimide-FITC molecules were doped into NPs or conjugated to the surface of NPs through the chemical reaction of maleimide and thiol groups. The data showed that the former NPs are better than the latter by comparing their fluorescence intensity. Furthermore, folate molecules were linked to the FITC-doped silica NPs by using polyethylene glycol (PEG) (NH2-PEG-maleimide) as a spacer, thus forming folate receptor targeting fluorescent NPs, referred to as NPs(FITC)-PEG-Folate. The quantitative analysis of cellular internalization into different cancer cells showed that the delivery efficiency of KB cells (folate receptor-positive cells) is more than six-fold higher than that of A549 cells (folate receptor-negative cells). The delivery efficiency of KB cells decreased significantly after free folate addition to the cell culture medium because the folate receptors were occupied by the free folate. The NPs endocytosis mechanism was also investigated. It was shown that clathrin, an inhibitor of cell phagocytosis, markedly decreased the NPs uptake into KB cells, suggesting that it plays an important role in NPs cellular internalization. These results demonstrated that the novel particles of NPs(FITC)-PEG-Folate are promising for fluorescent imaging or targeting delivery to folate receptor-positive tumors.

Keywords: fluorescent nanoparticles, silica, folate, targeted delivery, cellular internalization

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

The future role of personalized medicine in the treatment of glioblastoma multiforme

Jing Li, Chunhui Di, Austin K Mattox, et al

Pharmacogenomics and Personalized Medicine 2010, 3:111-127

Published Date: 19 August 2010

Positive response to neoadjuvant cyclophosphamide and doxorubicin in topoisomerase II nonamplified/HER2/neu negative/polysomy 17 absent breast cancer patients

Henry G Kaplan, Judith A Malmgren, Mary Atwood, et al

Cancer Management and Research 2010, 2:213-218

Published Date: 20 August 2010

A promising strategy for overcoming MDR in tumor by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin

Cheng J, Wang J, Chen BA, Xia GH, Cai XH, Liu R, Ren YY, Bao W, Wang XM

International Journal of Nanomedicine 2011, 6:2123-2131

Published Date: 27 September 2011

Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages

Perez AP, Cosaka ML, Romero EL, Morilla MJ

International Journal of Nanomedicine 2011, 6:2715-2728

Published Date: 4 November 2011

Mipomersen and other therapies for the treatment of severe familial hypercholesterolemia

Bell DA, Hooper AJ, Watts GF, Burnett JR

Vascular Health and Risk Management 2012, 8:651-659

Published Date: 28 November 2012

MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice

Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L

International Journal of Nanomedicine 2012, 7:5957-5967

Published Date: 3 December 2012

Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

Ververis K, Hiong A, Karagiannis TC, Licciardi PV

Biologics: Targets and Therapy 2013, 7:47-60

Published Date: 25 February 2013

Effect of budesonide on fibroblast-mediated collagen gel contraction and degradation

Fang Q, Schulte NA, Kim H, Kobayashi T, Wang X, Miller-Larsson A, Wieslander E, Toews ML, Liu X, Rennard SI

Journal of Inflammation Research 2013, 6:25-33

Published Date: 27 February 2013

Effects of regenerative radioelectric asymmetric conveyer treatment on human normal and osteoarthritic chondrocytes exposed to IL-1β. A biochemical and morphological study

Collodel G, Fioravanti A, Pascarelli NA, Lamboglia A, Fontani V, Maioli M, Santaniello S, Pigliaru G, Castagna A, Moretti E, Iacoponi F, Rinaldi S, Ventura C

Clinical Interventions in Aging 2013, 8:309-316

Published Date: 19 March 2013