Back to Journals » International Journal of Nanomedicine » Volume 6

Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells

Authors Fraga, Bruxel, Lagranha, Ferreira Teixeira H, Matte U

Published 7 October 2011 Volume 2011:6 Pages 2213—2220

DOI https://doi.org/10.2147/IJN.S22335

Review by Single anonymous peer review

Peer reviewer comments 3



Michelle Fraga1,2, Fernanda Bruxel1, Valeska Lizzi Lagranha2,3, Helder Ferreira Teixeira1, Ursula Matte2,3
1Post Graduation Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, 2Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, 3Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Background: Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes.
Methods: Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction.
Results: The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE.
Conclusion: The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.

Keywords: plasmids, cationic nanoemulsions, phospholipids, physicochemical characterization, gene transfer, stearylamine

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.