Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection

Authors Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan PT, Yao X

Published Date September 2012 Volume 2012:7 Pages 5007—5018

DOI http://dx.doi.org/10.2147/IJN.S34973

Received 13 June 2012, Accepted 3 August 2012, Published 24 September 2012

A Mohammed Fayaz,1,* Zhujun Ao,1,3,* Morkattu Girilal,2 Liyu Chen,3,4 Xianzhong Xiao,4 PT Kalaichelvan,2 Xiaojian Yao1,3

1
Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada; 2CAS in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India; 3Department of Microbiology, 4School of Basic Medical Sciences, Central South University, Changsha, Hunan, People’s Republic of China

*Both authors contributed equally to this work

Abstract: Recent research suggests that today’s condoms are only 85% effective in preventing human immunodeficiency virus (HIV) and other sexually transmitted diseases. In response, there has been a push to develop more effective ways of decreasing the spread of the disease. The new nanotechnology-based condom holds the promise of being more potent than the first-generation products. The preliminary goal of this study was to develop a silver nanoparticles (Ag-NPs)-coated polyurethane condom (PUC) and to investigate its antimicrobial potential including the inactivation of HIV and herpes simplex virus (HSV) infectiousness. The Ag-NPs-coated PUC was characterized by using ultraviolet-visible spectrophotometry, Fourier transform-infrared spectroscopy, high-resolution scanning electron microscopy, and energy-dispersive analysis of X-ray spectroscopy. Nanoparticles were stable on the PUC and not washed away by water. Morphology of the PUC was retained after coating. The NP binding is due to its interaction with the nitrogen atom of the PUC. No significant toxic effects was observed when human HeLa cells, 293T and C8166 T cells were contacted to Ag-NPs-coated PUC for three hours. Interestingly, our results demonstrated that the contact of the Ag-NPs-coated PUC with HIV-1 and HSV-1/2 was able to efficiently inactivate their infectiousness. In an attempt to elucidate the antiviral action of the Ag-NPs, we have demonstrated that the anti-HIV activity was primarily mediated by the Ag-NPs, which are associated with the PUC. In addition, the data showed that both macrophage (M)-tropic and T lymphocyte (T)-tropic strains of HIV-1 were highly sensitive to the Ag-NPs-coated PUC. Furthermore, we also showed that the Ag-NPs-coated PUC was able to inhibit the growth of bacteria and fungi. These results demonstrated that the Ag-NPs-coated PUC is able to directly inactivate the microbe’s infectious ability and provides another defense line against these sexually transmitted microbial infections.

Keywords: silver nanoparticles, condom, HIV-1, HSV-1/2, antimicrobial

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Targeting nanomaterials: future drugs for cancer chemotherapy

Zhang Y, Chen T

International Journal of Nanomedicine 2012, 7:5283-5286

Published Date: 10 October 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Corrigendum

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010