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Background: Lyme disease is a tick-borne illness caused by the spirochete Borrelia burgdorferi. 

Although antibiotic therapy is usually effective early in the disease, relapse may occur when 

administration of antibiotics is discontinued. Studies have suggested that resistance and 

recurrence of Lyme disease might be due to formation of different morphological forms of 

B. burgdorferi, namely round bodies (cysts) and biofilm-like colonies. Better understanding 

of the effect of antibiotics on all morphological forms of B. burgdorferi is therefore crucial to 

provide effective therapy for Lyme disease.

Methods: Three morphological forms of B. burgdorferi (spirochetes, round bodies, and biofilm-

like colonies) were generated using novel culture methods. Minimum inhibitory concentration 

and minimum bactericidal concentration of five antimicrobial agents (doxycycline, amoxicillin, 

tigecycline, metronidazole, and tinidazole) against spirochetal forms of B. burgdorferi were 

evaluated using the standard published microdilution technique. The susceptibility of spiro-

chetal and round body forms to the antibiotics was then tested using fluorescent microscopy 

(BacLight™ viability staining) and dark field microscopy (direct cell counting), and these 

results were compared with the microdilution technique. Qualitative and quantitative effects 

of the antibiotics against biofilm-like colonies were assessed using fluorescent microscopy and 

dark field microscopy, respectively.

Results: Doxycycline reduced spirochetal structures ∼90% but increased the number of round 

body forms about twofold. Amoxicillin reduced spirochetal forms by ∼85%–90% and round 

body forms by ∼68%, while treatment with metronidazole led to reduction of spirochetal struc-

tures by ∼90% and round body forms by ∼80%. Tigecycline and tinidazole treatment reduced 

both spirochetal and round body forms by ∼80%–90%. When quantitative effects on biofilm-

like colonies were evaluated, the five antibiotics reduced formation of these colonies by only 

30%–55%. In terms of qualitative effects, only tinidazole reduced viable organisms by ∼90%. 

Following treatment with the other antibiotics, viable organisms were detected in 70%–85% 

of the biofilm-like colonies.

Conclusion: Antibiotics have varying effects on the different morphological forms of 

B. burgdorferi. Persistence of viable organisms in round body forms and biofilm-like colonies 

may explain treatment failure and persistent symptoms following antibiotic therapy of Lyme 

disease.
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Introduction
Lyme disease is a tickborne illness that was originally described in Old Lyme, Connecticut, 

in 1975 and subsequently shown to be caused by the spirochete Borrelia burgdorferi.1–4 The 

disease is transmitted by tick vectors of the genus Ixodes.2–4 The life cycle and distribution 

In
fe

ct
io

n 
an

d 
D

ru
g 

R
es

is
ta

nc
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
mailto:rstricker@usmamed.com


Infection and Drug Resistance 2011:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

98

Sapi et al

of these tick vectors involves rodents, reptiles, birds, and deer.2–4 

Lyme disease sometimes begins with a skin rash called erythema 

migrans following a tick bite. The rash may be followed a few 

weeks or months later by fatigue, musculoskeletal symptoms, 

neurologic problems, and/or cardiac abnormalities.1–4

Over the last 10 years, Lyme disease has grown into a major 

public health problem in the USA and central Europe.5–7 The 

disease occurs in all age groups with equal prevalence in men 

and women.5–7 In the United States, the Centers for Disease 

Control and Prevention (CDC) reported that the number of 

Lyme disease cases has doubled during the last 15 years.5 In 

2008, a total of 3896 cases of Lyme borreliosis were reported 

in Connecticut.5 However, these figures do not reflect the 

true incidence of Lyme disease because in 2003 Connecticut 

stopped requiring mandatory laboratory reporting of the 

disease.5 Therefore, the true number of Lyme disease cases 

may be at least 10-fold higher than reported.5–7 The increasing 

trend of the disease has been ascribed to ineffective preventive 

measures, suboptimal treatment regimens, and incomplete 

understanding of the nature of the causative spirochete.

The frontline treatment for Lyme disease is administration 

of antibiotics such as doxycycline, minocycline, amoxicillin, 

cefuroxime, and ceftriaxone.8–14 Although treatment of early 

Lyme disease is generally successful, studies have shown 

that in spite of short-course antibiotic therapy of 2–4 weeks, 

some patients are not successfully treated and go on to develop 

persistent Lyme disease symptoms.8–11 Also, in the absence of 

sufficient antibiotic treatment in animals and humans, relapse of 

the disease may occur, suggesting that even after antibiotic treat-

ment, the host immune system fails to prevent recurrence.12–14 

A possible explanation for this clinical observation is the pres-

ence of different morphological forms of B. burgdorferi with 

differences in sensitivity to the antibiotic treatment.15–30

In this study, we developed novel evaluation methods 

involving optimal culture conditions for three different forms 

of B. burgdorferi (spirochetes, round bodies, and biofilm-like 

colonies) and improved bacterial viability determination 

techniques. These techniques were used to test the effective-

ness of antibiotics commonly used for Lyme disease treat-

ment against the different forms of B. burgdorferi. Our goal 

was to establish a useful in-vitro system to mimic the in-vivo 

effects of antibiotics on B. burgdorferi in order to develop 

better therapeutic approaches for Lyme disease.

Materials and methods
Culturing B. burgdorferi
Low passage isolates of the B31 and S297 strains of 

B.  burgdorferi were obtained from the American Type 

Culture Collection, Manassas, VA. B. burgdorferi was 

cultured in Barbour-Stoner-Kelly H (BSK-H) complete 

medium, with 6% rabbit serum (Sigma, St Louis, MO, 

#B8291). The cultures were incubated at 33°C with 5% 

CO
2
 and maintained in sterile 15 mL glass tubes without 

antibiotics. Homogeneous cultures having only one form 

(spirochete) of B. burgdorferi were obtained by maintain-

ing the cultures in a shaking incubator at 33°C and 250 rpm. 

At 250 rpm, there is no biofilm formation, and the culture 

remains homogeneous (E Sapi, unpublished observation).

The methods for generation and detection of round body 

forms of B. burgdorferi using culture tubes and dark field or 

fluorescent microscopy are described below. For generation of 

biofilm-like colonies of B. burgdorferi, spirochetes were inoc-

ulated in four-well chambers (BD BioCoat™ CultureSlides, 

BD Biosciences, Sparks, MD, #354557) or 24-well plates (BD 

BioCoat™ Multiwell Plates, BD Biosciences, Sparks, MD, 

#354408) coated with rat-tail collagen type I and incubated 

for 1 week without shaking. After the 1-week incubation, 

biofilm-like colonies were visualized using the qualitative 

and quantitative methods described below.

In-vitro testing of the antibacterial agents
Standard microdilution technique
To determine the minimum inhibitory concentration (MIC) 

of the antibiotics tested (the lowest concentration that will 

inhibit visible growth of B. burgdorferi spirochetes after 

a 72-hour incubation period), a standard microdilution 

method was used.31–33 For this procedure, 1 × 106 spirochetes 

were inoculated into each well of a 48-well tissue culture 

microplate containing 1 mL of BSK-H medium per well. 

The cultures were then treated with 100 µL of each antibiotic 

diluted in phosphate-buffered saline (PBS). Control cultures 

were treated with PBS alone, and all experiments were run 

in triplicate. The well plate was covered with parafilm and 

placed in the incubator for 72 hours. Cell proliferation was 

assessed using a bacterial counting chamber (Petroff-Hausser 

Counter-3902) after the 72-hour incubation.

To determine the minimum bactericidal concentration 

(MBC) of the antibiotics tested (the minimum concentra-

tion beyond which no spirochetes can be subcultured after a 

3-week incubation period), wells of a 48-well plate were filled 

with 1 mL of BSK-H medium, and 20 µL of antibiotic-treated 

spirochetes were added into each of the wells, in triplicate. 

The well plate was wrapped with parafilm and placed in the 

incubator for 3 weeks (21 days). After the incubation period, 

the plate was removed and observed for motile spirochetes 

in the culture.
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Dark field microscopy and fluorescent microscopy
To further test the effect of antibiotics on spirochete and 

round body forms of B. burgdorferi, the antibiotics were 

added to a set of 2-mL polystyrene culture tubes containing 

spirochetes at a concentration of 1 × 106 cells/mL and incu-

bated at 33°C with 5% CO
2
. These cultures were incubated 

for various time periods (24  hours, 48  hours, 72  hours, 

and 3 weeks) and cellular growth was scored. For each of 

these timepoints, cell proliferation assays were performed 

by directly counting the different morphological forms 

of B. burgdorferi using a bacterial counting chamber and 

dark field microscopy. Also, by performing LIVE/DEAD® 

BacLight™ Bacterial Viability Assay (Molecular Probes, 

Inc, Eugene, OR), the ratio of live (green) and dead (red) 

B.  burgdorferi morphological forms was calculated by 

counting these forms using a bacterial counting chamber and 

fluorescent microscopy (see below). For the dark field and 

fluorescent microscopy experiments, a Nikon Eclipse I–series 

CF160 microscope  was used (kindly donated by Dr Alan 

MacDonald and Turn the Corner Foundation).

Qualitative analysis of biofilm-like 
colonies
To qualitatively determine the effect of antibiotics on biofilm-

like colonies of B. burgdorferi, 1  ×  107 cells/mL from a 

homogeneous culture of spirochetes were inoculated in a 

collagen-coated four-well plate and incubated for 1 week. 

After the 1-week incubation, biofilm-like colonies were seen 

in the wells. These biofilm-like colonies were treated with 

various concentrations of antibiotics diluted in PBS. Control 

wells were treated with PBS alone, and cultures were run in 

triplicate. Plates were incubated for 72 hours, and wells were 

fixed with 500 µL of cold alcohol-formalin-acetic acid (AFA) 

for 20 minutes. The wells were then stained with 200 µL of 

2 × BacLight™ staining mixture for 15 minutes in the dark. 

Coverslips were applied using fluorescent mounting media, and 

pictures were immediately taken of control and treated wells.

Quantitative analysis of biofilm-like 
colonies after treatment with antibiotics
To quantify B. burgdorferi biofilm-like colonies after treat-

ment with various antibiotics, collagen-coated 24-well plates 

were inoculated with 2 × 106 cells/mL from a homogeneous 

culture of B. burgdorferi. The plates were incubated for 

7 days to generate biofilm-like colonies, and then treated with 

various concentrations of antibiotics diluted in PBS or with 

PBS alone, as described above. The plates were incubated 

for 72 hours, and wells were stained with 1 mL of crystal 

violet (0.1%) for 10 minutes. After 1 mL of 95% ethanol 

was added to extract stain, the biofilm-like colonies were 

washed twice with PBS and visualized at an optical density 

of 570 nm using a BioTek spectrophotometer.

Statistical analysis
Statistical analysis was performed by two-sample paired 

t-test using NCSS statistical software (NCSS LLC, 

Kaysville, UT).

Results
To compare results from different culture techniques, MIC 

and MBC values for antibiotic treatments were calculated and 

compared with published data (Table 1). The standard pub-

lished microdilution method involves culturing B. burgdorferi 

in microwell plates, while the new methodology made use of 

2-mL polystyrene test tubes. We observed a significant dif-

ference in MIC and MBC values between the two methods. 

Both MIC and MBC values were in agreement with published 

data when evaluated by the microdilution protocol. Using the 

novel culture tube method, MIC values increased .63-fold 

for doxycycline, .333-fold for tigecycline, .333-fold for 

amoxicillin, .833-fold for metronidazole, and .694-fold 

for tinidazole, compared with our microdilution values 

(Table  1). Furthermore, MBC values increased .8-fold 

for doxycycline, .80-fold for tigecycline,  .40-fold for 

amoxicillin, .50-fold for metronidazole, and .25-fold for 

tinidazole, compared with our microdilution values (Table 1). 

Since these MIC and MBC results suggested that our novel 

method used more optimal culture conditions that allowed 

the organisms to resist antibiotic treatment, we based further 

experiments on this method.

To evaluate in-vitro antibiotic sensitivity of spiro-

chete and round body morphological forms, two strains of 

B. burgdorferi (B31 and S297) were incubated for 72 hours 

with different antibiotics at concentrations above the calcu-

lated MIC and MBC. Antibiotic sensitivity was evaluated 

using the direct cell counting and dark field morphological 

evaluation methods (Figure 1). Treatment with these higher 

concentrations showed that doxycycline reduced spirochetal 

structures ∼90% but increased the number of cystic round 

body forms about twofold (Figure  1A). Treatment with 

metronidazole led to reduction of both spirochetal and cys-

tic round body forms by ∼70% (Figure 1B). Treatment with 

either tigecycline or tinidazole reduced both spirochetal and 

cystic round body forms by ∼80%–90% (Figures 1C and 1D). 

Amoxicillin reduced spirochetal structures ∼70% and cystic 

round body forms by ∼68% (Figure 1E). No difference was 
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seen in antibiotic sensitivity testing between the two strains of 

B. burgdorferi (B31 and S297). Using this method, we found 

that the most effective doses of the antibiotics against the spi-

rochete forms of B. burgdorferi were 250 µg/mL for doxycy-

cline, 250 µg/mL for metronidazole, 20 µg/mL for tigecycline, 

500 µg/mL for tinidazole, and 250 µg/mL for amoxicillin.

To examine in-vitro persistence of spirochete and round 

body forms of B. burgdorferi, the B31 and S297 strains were 

incubated for 72 hours and then evaluated by the direct cell 

counting and dark field evaluation methods (Figure 2). As in the 

previous set of experiments, doxycycline was found to be more 

effective against spirochetes while metronidazole and tinidazole 

were more effective against round body forms (Figure 2A). To 

test the concept that by discontinuing antibiotics, spirochete 

forms persist and cystic round body forms convert back to 

spirochete forms, the treated cultures were sub-cultured in fresh 

medium without antibiotics. After 3 weeks of subculturing, 

doxycycline had reduced spirochetal forms by ∼45% and round 

bodies by ∼85%, suggesting that round body forms converted 

back to spirochete forms in more favorable growth conditions 

(fresh growth medium and no antibiotic stress). Similarly, 

metronidazole reduced spirochetal forms by ∼50% and round 

bodies by ∼80%, while tinidazole reduced spirochetal forms 

by ∼94% and round bodies by ∼96% (Figure 2B).

To confirm preliminary results, the B31 and S297 

strains of B. burgdorferi were further evaluated in vitro for 

antibiotic sensitivity of spirochete and round body mor-

phological forms by a fluorescent microscopy technique 

(BacLight™ staining). B. burgdorferi was incubated for 

72 hours with antibiotics at concentrations higher than their 

calculated MIC and MBC. In this set of experiments, we 

calculated the post-treatment ratio of live/dead spirochetes 

and round bodies using SYTO®9 green-fluorescent nucleic 

acid stain (live cells) and propidium iodide red-fluorescent 

nucleic acid stain (dead cells) (Figure 3A). Doxycycline 

treatment reduced spirochetes by ∼94% but in the remaining 

6% of the population, ∼5% were still alive (stained green) 

while ∼1% were dead (stained red). Tinidazole treatment 

reduced spirochetes by ∼95%, but in the remaining 5% of 

the population ∼3% were still alive while ∼2% were dead. 

Tigecycline treatment was most effective as this reduced 

spirochetes by  ∼98%, and in the remaining 2% of the 

population ∼1.5% were still alive and ∼0.5% were dead. 

Metronidazole treatment reduced spirochetes by ∼54%, 

but in the remaining 46% of the population ∼45% were 

still alive and only ∼1% were dead. Amoxicillin treatment 

reduced spirochetes by ∼69%, but in the remaining 31% of 

the population ∼30% were alive and only ∼1% cells were 

dead (Figure 3A).

Doxycycline treatment increased round bodies by ∼275% 

(Figure 3B). Out of this population ∼270% were alive and 

only ∼5% were dead. Tinidazole treatment reduced round 

bodies by ∼94%, but in the remaining 6% of the population 

only ∼2% were dead. Tigecycline treatment reduced round 

bodies by ∼96%, but in the remaining 4% of population 

only ∼1% were dead. Metronidazole treatment reduced 

round bodies by ∼68%, but in the remaining 32% of the 

population ∼15% were dead. Amoxicillin treatment reduced 

round bodies by ∼32%, but in the remaining 68% of the 

population ∼30% were dead (Figure 3B). The microscopic 

appearance of the B31 and S297 strains of B. burgdorferi 

following treatment with each antibiotic is shown in Figures 

3C and 3D, respectively.

In the next experiments, a biof ilm-like form of 

B. burgdorferi was evaluated quantitatively using a crystal 

violet staining method and qualitatively using the fluorescent 

microscopy technique (BacLight™ staining) (Figure  4). 

Using the quantitative staining method, doxycycline reduced 

biofilm-like colonies by ∼40%, tinidazole reduced biofilm-

like colonies by ∼50%–55%, tigecycline reduced biofilm-like 

colonies by ∼35%, and amoxicillin and metronidazole reduced 

biofilm-like colonies by ∼30% (Figure 4A). For qualitative 

Table 1 MIC and MBC determination by different methodsa

Antibiotics Microdilution  
method/literature 
data (MIC) µg/mL

Our data (MIC) µg/mL Microdilution  
method/literature  
data (MBC) µg/mL

Our data (MBC) µg/mL

Microdilution  
method

Direct cell  
counting

BacLight™  
staining

Microdilution  
method

Direct cell  
counting

BacLight™  
staining

Doxycycline 0.06–2.00 0.4 .25 .25 0.25–6.40 25 .200 .200
Tigecycline 0.006 0.015 .5 .5 0.05 0.125 .10 .10
Amoxicillin 0.03–2.00 0.3 .100 .100 ,0.03–32.00 5 .200 .200
Metronidazole 0.06–32.00 0.3 .250 .250 .4 10 .500 .500
Tinidazole – 0.09 .62.5 .62.5 .128 10 .250 .250

Notes: aComparison of MIC and MBC values for different antibiotics by standard microdilution method (published literature and our data) and novel direct cell counting and 
fluorescent BacLight™ staining methods in reference to spirochete forms of Borrelia burgdorferi B31.
Abbreviations: MBC, minimum bactericidal concentration; MIC, minimum inhibitory concentration.
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analysis of bacterial cells in biofilm-like colonies, cultures 

were treated as described above for 72  hours and stained 

with BacLight™ fluorescent viability stain (Figure  4B). 

In the absence of antimicrobial agents, B. burgdorferi form 

biofilm-like colonies in which ∼98% of the colonies stain 

green (live cells) and ∼2% red (dead cells) (Figure 4Ba). 

Doxycycline-treated colonies were similar in size to control 

colonies and ∼70% stained green and ∼30% stained red 

(Figure 4Bb). Tinidazole-treated colonies were very tiny and 

loose in their morphology, and ∼10% stained green and ∼90% 

Effect of doxycycline at different concentrations on
B. burgdorferi-B31 strain after 72 hours
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Figure 1A Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to different concentrations 
(between calculated MIC and MBC) of five antibiotics after 72-hour treatment measured by dark-field microscopy.
Note: *P values ,0.05 indicates statistical significance compared with control.
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Effect of metronidazole at different concentrations on
B. burgdorferi-B31 strain after 72 hours
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Effect of metronidazole at different concentrations on
B. burgdorferi-S297 strain after 72 hours
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Figure 1B Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to different concentrations 
(between calculated MIC and MBC) of five antibiotics after 72-hour treatment measured by dark-field microscopy.
Note: *P values ,0.05 indicates statistical significance compared with control.

stained red (Figure 4Bc). Tigecycline-treated colonies were 

similar in size to control colonies, and ∼70% stained green 

and ∼30% stained red (Figure 4Bd). Metronidazole-treated 

and amoxicillin-treated colonies were larger in size than 

control colonies, and ∼80%–85% stained green while ∼20% 

stained red (Figure 4Be and 4Bf).

Discussion
The goal of our study was to demonstrate the in-vitro suscep-

tibility of different morphological forms of B. burgdorferi 

to various antibiotics using improved technical approaches 

in order to understand why antibiotic treatment for patients 

with Lyme disease could fail. To successfully eradicate 
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Effect of tinidazole at different concentrations on
B. burgdorferi-B31 strain after 72 hours
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Effect of tinidazole at different concentrations on
B. burgdorferi-S297 strain after 72 hours
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Figure 1C Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to different concentrations 
(between calculated MIC and MBC) of five antibiotics after 72-hour treatment measured by dark-field microscopy. 
Note: *P values ,0.05 indicates statistical significance compared with control.

B. burgdorferi, antimicrobial agents should eliminate all 

morphological forms of the organism. Furthermore, for 

better demonstration of antibiotic susceptibility of different 

morphological forms of B. burgdorferi, there is a need for 

reliable in-vitro testing methods.

The spirochete form of B. burgdorferi is the most active 

form, with periplasmic flagella that make the organisms 

motile.15,16 Spirochetes can also enter into tissues and cause 

intracellular infection.17,18 Adverse environmental conditions 

such as change in temperature, pH, starvation, and most 

importantly antibiotic exposure can cause a phenotypic 

change in the spirochete.19,20 This change involving surface 

proteins is hypothesized to be the way in which the spirochete 

evades the host immune system.
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Effect of tigecycline at different concentrations on
B. burgdorferi-S297 strain after 72 hours
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Effect of tigecycline at different concentrations on
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Figure 1D Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to different concentrations 
(between calculated MIC and MBC) of five antibiotics after 72-hour treatment measured by dark-field microscopy. 
Note: *P values ,0.05 indicates statistical significance compared with control.

The change in phenotypic expression could also lead to 

structural alterations in the spirochete form and induction 

of the cyst form, a knob-shaped structure containing one or 

multiple spirochetes.21–24 Cysts have a low metabolic rate 

that enables them to survive in a hostile environment until 

conditions become favorable for them to multiply again.21–25 

These cyst forms have been detected in spinal fluid, and have 

been linked to neuroborreliosis.22 The spirochetes can also dis-

integrate into minute particles called granules.25 These gran-

ules are liberated through the periplasmic sheath surrounding 
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Effect of amoxicillin at different concentrations on
B. burgdorferi-B31 strain after 72 hours
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Effect of amoxicillin at different concentrations on
B. burgdorferi-S297 strain after 72 hours
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Figure 1E Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to different concentrations 
(between calculated MIC and MBC) of five antibiotics after 72-hour treatment measured by dark-field microscopy.
Note: *P values ,0.05 indicates statistical significance compared with control.

the spirochete body by budding and extrusion, and they may 

also be transmissible.25 Both cysts and granules are together 

referred to as round body forms in this study. Several studies 

have shown that B. burgdorferi can convert from the spirochete 

form to the round body form in vitro when presented with an 

unfavorable environment, and the organism can revert back to 

the spirochete form when conditions are again favorable for 

growth.21–24 The presence of atypical forms of B. burgdorferi 

may be the reason why the spirochete can survive in infected 

tissues for years or even for decades.21–24
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Effect of tinidazole, metronidazole and doxycycline at different
concentrations on B. burgdorferi-B31 strain after 72 hours
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Effect of tinidazole, metronidazole and doxycycline at different
concentrations on B. burgdorferi-S297 strain after 72 hours
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Figure 2A Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to the most effective 
concentrations of three antibiotics measured by dark-field microscopy. Tinidazole, metronidazole, and doxycycline effect on B. burgdorferi after 72-hour treatment. 
Note: *P values ,0.05 indicates statistical significance compared with control.

In addition to round body forms, we and others recently 

noted that B. burgdorferi has the capability to form organized 

structures called biofilm-like colonies.26,27 Biofilms are 

adherent polysaccharide-based matrices that protect bacteria 

from the hostile host environment and facilitate persistent 

infection.28–30 These organized structures are responsible 

for a number of chronic infections, including periodontitis, 

chronic otitis media, endocarditis, gastrointestinal infection, 

and chronic lung infection. Formation of biofilm-like colonies 

would allow B. burgdorferi to survive various environmental 
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Effect of tinidazole, metronidazole and doxycycline at different
concentrations on B. burgdorferi-B31 strain after 3 weeks
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Figure 2B Susceptibility of the spirochete and round body forms of strain B31 (top panels) and strain S297 (bottom panels) of B. burgdorferi to the most effective 
concentrations of three antibiotics measured by dark-field microscopy. Tinidazole, metronidazole, and doxycycline effect on B. burgdorferi after 3 weeks of subculturing 
following 72-hour treatment. 
Note: *P values ,0.05 indicates statistical significance compared with control.

stresses including exposure to antibacterial agents.28–30 Recent 

studies suggest that bacteria live in an environment deep within 

the biofilm-like colonies where diffusion of antibiotics might be 

difficult, and in that state the bacteria could become 1000 times 

more resistant to antibiotics.28–30 This resistance could also be 

one of the reasons why conventional antibiotic therapy that 

is usually effective against free-floating bacteria becomes 

ineffective once a pathogen forms biofilm-like colonies.28–30

In this study, novel methods of in-vitro antibiotic 

susceptibility evaluation were used. These methods include 

optimal culture and treatment conditions such as the culture 

apparatus (tubes, to limit oxygen content), temperature, density 
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Percentage live and dead spirochetes after treatment of B31 strain with different
antibiotics at their most effective concentration after 72 hours
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Figure 3A Evaluation of live/dead spirochete and round body forms of B. burgdorferi following treatment with five antibiotics measured by fluorescent microscopy using 
SYTO®9 green-fluorescent stain (live organisms) and propidium iodide red-fluorescent stain (dead organisms). Effect of doxycycline, tinidazole, tigecycline, metronidazole, 
and amoxicillin on spirochete forms of strain B31 (top panel) and strain S297 (bottom panel).
Notes: *P values calculated were ,0.05 indicating statistical significance compared with control for live and dead spirochetes.

of inoculum, amount of culture medium, and CO
2
 level.34,35 

These methods should counteract problems with culture vari-

ability of B. burgdorferi strains that have been described in the 

past.36,37 Furthermore our novel procedures involve better bac-

terial viability determination methods such as fluorescent and 

dark field microscopy. These microscopic evaluation methods 

are more reliable and sensitive than the standard published 

bacterial viability determination protocols.38,39 Being meta-

bolically inactive, round body forms of B. burgdorferi could 

not be detected by standard protocols, but they can be directly 

visualized under the microscope by our novel evaluation 

methods. This explains why the standard protocols measure 
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Percentage live and dead round bodies after treatment of B31 strain with different
antibiotics at their most effective concentration after 72 hours
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Figure 3B Evaluation of live/dead spirochete and round body forms of B. burgdorferi following treatment with five antibiotics measured by fluorescent microscopy using 
SYTO®9 green-fluorescent stain (live organisms) and propidium iodide red-fluorescent stain (dead organisms). Effect of doxycycline, tinidazole, tigecycline, metronidazole and 
amoxicillin on round body forms of strain B31 (top panel) and strain S297 (bottom panel).
Notes: *P values calculated were ,0.05 indicating statistical significance compared with control for live and dead round bodies. 

effectiveness of antibiotics only in reference to metabolically 

active spirochete forms while our novel antibiotic sensitivity 

study measures effectiveness of antibiotics in reference to all 

morphological forms of B. burgdorferi.

We found that doxycycline signif icantly reduced 

the spirochete form of B. burgdorferi (∼90%) but also 

increased the round body forms twofold. Amoxicillin 

reduced spirochetal forms by ∼85%–90% and round 

body forms by ∼68%. In contrast, metronidazole, tinida-

zole, and tigecycline significantly decreased both the spi-

rochete and the round body forms of B. burgdorferi, but 

live organisms could still be detected following treatment 
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Figure 3C Evaluation of live/dead spirochete and round body forms of B. burgdorferi 
following treatment with five antibiotics measured by fluorescent microscopy using 
SYTO®9 green-fluorescent stain (live organisms) and propidium iodide red-fluorescent 
stain (dead organisms). Visualization of spirochete and round body forms of strain B31 
following antibiotic treatment measured by dark field microscopy: (Ca) Control; (Cb) 
Doxycycline; (Cc) Tinidazole; (Cd) Metronidazole; (Ce) Tigecycline; (Cf) Amoxicillin.
Note: All images taken at 40× magnification.
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Figure 3D Evaluation of live/dead spirochete and round body forms of B. burgdorferi 
following treatment with five antibiotics measured by fluorescent microscopy 
using SYTO®9  green-fluorescent stain (live organisms) and propidium iodide 
red-fluorescent stain (dead organisms). Visualization of spirochete and round 
body forms of strain S297 following antibiotic treatment measured by dark field 
microscopy: (Da) Control; (Db) Doxycycline; (Dc) Tinidazole; (Dd) Metronidazole; 
(De) Tigecycline; (Df) Amoxicillin. 
Note: All images taken at 40× magnification.

with these agents. Furthermore, the antibiotics studied 

were equally effective or ineffective against two different 

strains (B31 and S297) of B. burgdorferi. This observation 

confirms the reliability of our experimental technique. It 

remains to be seen whether combinations of antibiotics 

would be more effective than individual antibiotics alone 

in our in-vitro culture system.

Our results delineate antibiotic concentrations that are 

effective in vitro. Whether equivalent concentrations can 

be attained with clinical use of these agents in vivo remains 

to be determined.39–45 An in-vitro study showed that tige-

cycline destroyed the spirochete and round body forms of 

B. burgdorferi.39 However, an in-vivo study in mice showed 

that tigecycline was ineffective during the late stage of Lyme 

disease based on the persistence of viable and infectious but 

nondividing or slowly dividing organisms in the animals.46 Our 

study demonstrated that tigecycline was effective against the 

spirochete and round body forms of B. burgdorferi but was not 

effective against the biofilm-like mass. One possible explana-

tion for the conflicting in-vitro and in-vivo results could be 

the presence of these biofilm-like colonies in the late stage 

of the disease, which renders B. burgdorferi more resistant 

against the antibiotic. Another possibility is that intracellular 

invasion of the spirochete in vivo could protect it from the 

action of antibiotics.17,18 Further evaluation of B. burgdorferi 

localization in tissues and biofilm-like masses is warranted.

To summarize, this study outlines novel in-vitro methods 

to determine optimal growth conditions for B. burgdorferi. The 

study also describes novel microscopic viability determination 

methods to assess three morphological forms of B. burgdorferi 

(spirochetes, round bodies, and biofilm-like colonies), and the 

methods were used to evaluate antibiotic susceptibility of the 

different morphological forms of this complex organism. Our 

in-vitro methodology will facilitate the design of experiments 
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Quantitative analysis of B31 biofilm like colonies after treatment with
antibiotics by crystal violet protocol
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Quantitative analysis of S297 biofilm like colonies after treatment with
antibiotics by crystal violet protocol
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Figure 4A Evaluation of biofilm-like colonies of B. burgdorferi. Quantitative analysis of biofilm-like colonies of strain B31 (top panel) and strain S297 (bottom panel) measured 
by crystal violet staining technique.

that mimic tissue-based in-vivo conditions in order to optimize 

the antibiotic treatment of Lyme disease.
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