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Background: Circulating eosinophils are associated with tumor development. An eosinophil-related index, the neutrophil to eosinophil 
ratio (NER), can be used to predict the prognosis of patients with tumors. However, there is still a lack of efficient prognostic biomarkers for 
HCC. In this study, we aimed to investigate the predictive value of the NER and develop an optimal machine learning model for the 
recurrence of HCC patients. Patients and methods: A retrospective collection of 562 patients who underwent hepatectomy with a pathologic 
diagnosis of HCC was performed. The relationship between NER and progression-free survival (PFS) was investigated. We developed 
a new machine learning framework with 10 machine learning algorithms and their 101 combinations to select the best model for predicting 
recurrence after hepatectomy. The performance of the model was assessed by the area under the curve (AUC) of characteristics and 
calibration curves, and clinical utility was evaluated by decision curve analysis (DCA).
Results: Kaplan‒Meier curves showed that the PFS in the low NER group was significantly better than that in the high NER group. 
Multivariate Cox regression analysis showed that NER was an independent risk factor for recurrence after surgery. The random 
survival forests (RSF) model was selected as the best model that had good predictive efficacy and outperformed the TNM, BCLC, and 
CNLC staging systems.
Conclusion: The NER has good predictive value for postoperative recurrence in patients with hepatocellular carcinoma. Machine 
learning model based on NER can be used for accurate predictions.
Keywords: hepatocellular carcinoma, liver resection, recurrence, machine learning, neutrophil-to-eosinophil ratio

Introduction
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths 
worldwide.1,2 Hepatocellular carcinoma (HCC) accounts for 75–85% of primary liver cancers.1 Currently, hepatectomy is 
still considered one of the most effective therapeutic approaches for the treatment of primary liver cancer.3 However, due 
to the high recurrence rate of HCC, the long-term prognosis of patients with HCC after hepatectomy remains poor, with 
a 5-year recurrence rate of 60–70%.4 Although HCC-related biomarkers and prognostic models have been initially 
applied in clinical practice, the results are still unsatisfactory. Therefore, the question of how to screen more valuable 
indicators and construct models is the focus of clinical research.

Many studies have shown that chronic inflammation plays a major role in cancer cell proliferation, angiogenesis, and 
immunosuppression, and cancer-related inflammation (CRI) is associated with cancer prognosis.5 Serological indicators such 
as neutrophil counts and lymphocyte counts have been used for biomarker development in clinical studies because of their 
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advantages in convenience and low cost.6 Several inflammatory markers have been shown to predict the prognosis of patients 
with HCC, such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR),7 and lymphocyte-to- 
monocyte ratio (LMR).8 However, their predictive ability for the prognosis of HCC patients after hepatectomy remains 
controversial. The eosinophil count has been increasingly used in tumor prognostic studies as a newly developed inflammatory 
marker.9 A retrospective study of HCC patients treated with sorafenib found that lower peripheral blood eosinophil counts 
were associated with a poorer prognosis.10 A lower eosinophil-to-neutrophil ratio (NER) was found to be associated with 
a better prognosis in a study of patients with metastatic renal cell carcinoma treated with natalizumab plus ibritumomab.11 

Nevertheless, there is still a lack of studies correlating NER with HCC prognosis.
Favorable results have been reported from studies applying machine learning models to HCC. It has been demon

strated that machine learning models outperform traditional regression models in predicting HCC development.12 In this 
study, we aimed to analyze the relationship between preoperative NER and recurrence after hepatectomy in patients with 
HCC, seeking to discover whether NER could be used as a new prognostic marker for HCC. Machine learning 
algorithms were used to construct and screen the optimal model for recurrence after surgery.

Patients and Methods
Patient Selection
A total of 562 patients who received liver resection and were pathologically diagnosed with HCC at the Department of 
Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, between January 2013 and 
September 2021 were retrospectively included. We eliminated patients with other malignancies, preoperative antitumor 
therapy, macrovascular invasion, and postoperative liver transplantation for nontumor liver disease as well as patients 
lacking complete baseline and follow-up data. We also eliminated patients suffering from allergic diseases, blood 
disorders, and other conditions that could lead to alterations in the leucocyte count. The study followed the ethical 
guidelines of the Declaration of Helsinki. Subjects or their immediate family members signed an informed consent form 
before the procedure agreeing to the use of tumor tissue and clinical information for this study.

Clinicopathological Variables
Baseline characteristics of the patients, including date of surgery, sex, age, HBsAg (Hepatitis B surface antigen), alpha- 
fetoprotein (AFP), albumin (Alb), Total bilirubin (TBIL), direct bilirubin (DBIL), Indirect Bilirubin (IBIL), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), alkaline phosphatase 
(ALP), hemoglobin count (HB), platelet count (PLT), and peripheral blood cell counts, were obtained to calculate 
systemic inflammatory parameters, including NER, NLR, PLR, and LMR. Tumor characteristics included the largest 
tumor diameter, tumor number, cirrhosis, microvascular invasion, capsular invasion, tumor satellite nodules, and tumor 
differentiation.

Postoperative Follow-Up
All patients were discharged from the hospital and followed up regularly in the outpatient clinic. Follow-up was every 3 
months for the first 2 years postoperatively and every 3–6 months thereafter. Dynamic contrast-enhanced computed 
tomography (CT) or gd- EOB- DTPA-enhanced magnetic resonance imaging (MRI) of the upper abdomen was 
performed if digestive ultrasound showed HCC recurrence and/or if there was substantially elevated alpha-fetoprotein 
(AFP). Furthermore, ancillary investigations included CT of the chest, CT of the lower abdomen, CT of the pelvis, or 
positron emission tomography (PET)-CT to be completed when clinically indicated. The diagnosis of tumor recurrence 
was confirmed by at least two imaging studies or liver histopathology. Once tumor recurrence was detected, surgical 
resection, local ablation, TACE, radiotherapy, systemic therapy, and supportive care could be selected based on the 
characteristics of tumor recurrence. Survival information was obtained through clinical follow-up or telephone follow-up. 
Follow-up surveys were conducted until September 2021. The start of follow-up was the date of surgery; the time 
interval from the start point to the first recurrence, first metastasis, death, or last follow-up was PFS.
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Statistical Analysis
Serum alpha-fetoprotein was used as a cutoff value of 400 ng/mL, and the cutoff values of the rest of the continuous 
variables were determined using X-tile 3.6.1 software (Yale University, New Haven, CT, USA). The patients were 
assigned to two groups (high and low groups) based on the optimal cutoff value. The Mann–Whitney U-test was used to 
compare continuous variables. Categorical variables were compared using the χ2 test or Fisher test. Using the Cox 
proportional risk model, we determined the independent risk factors associated with postoperative progression or death 
and gave the risk ratio (HR) and 95% confidence interval (CI). We used 10 machine learning algorithms and 101 
combinations of algorithms. The integrative algorithms included random survival forest (RSF), elastic network (Enet), 
Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal compo
nents (SuperPC), generalized boosted regression modeling (GBM), and survival support vector machine (survival-SVM). 
For each model, Harrell’s consistency index (C-index) was calculated for both the training and validation sets, and the 
model with the highest average C-index was considered the optimal model. The study was statistically analyzed using 
SPSS software version 26.0 (SPSS, Chicago, IL, USA) and R language software version 4.2.2. The results were 
considered statistically significant when the P value was less than 0.05.

Results
The Relationship Between Clinicopathological Characteristics and NER
As shown in Table 1, there were 469 male and 93 female patients, and the average age was 54.8 years old (range, 14–82 
years). The optimal cutoff value of 102.00 was obtained for NER using X-tile 3.6.1 software. High NER (>102.00) ratios 
were observed in 68 (12.10%) patients.

Tumor diameters tended to be larger in patients with high NER than in those with low NER (P=0.009). There were 
also differences in serum albumin levels between the two groups of patients (P=0.034), but there was no significant 
difference between the two groups in terms of other baseline characteristics. Complete Baseline patient clinicopatholo
gical characteristics are in Supplementary Table 1.

Table 1 Baseline Patient Clinicopathological Characteristics

Variable Total  
(n = 562)

NER High  
(n = 68)

NER Low  
(n = 494)

P

Gender 0.192

Female 93 (16.55) 15 (22.06) 78 (15.79)
Male 469 (83.45) 53 (77.94) 416 (84.21)

Age (years) 0.559

≤47 78 (13.88) 11 (16.18) 67 (13.56)
>47 484 (86.12) 57 (83.82) 427 (86.44)

HbsAg (ng/mL) 0.968

Negative 42 (7.47) 5 (7.35) 37 (7.49)
Positive 520 (92.53) 63 (92.65) 457 (92.51)

AFP (ng/mL) 0.125
≤400 415 (73.84) 45 (66.18) 370 (74.90)

>400 147 (26.16) 23 (33.82) 124 (25.10)

Alb (g/L) 0.034
≤49.9 504 (89.68) 56 (82.35) 448 (90.69)

>49.9 58 (10.32) 12 (17.65) 46 (9.31)

Largest tumor size (cm) 0.009
≤4.5 361 (64.23) 34 (50.00) 327 (66.19)

>4.5 201 (35.77) 34 (50.00) 167 (33.81)

(Continued)
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Cox Regression Analyses Between Clinicopathological Variables Associated with PFS 
After Surgery
As shown in Table 2, univariate and multivariate analyses using the Cox proportional hazards model were performed. 
Age (P=0.011), NER (P=0.002), GGT (P=0.006), largest tumor size (P=0.003), tumor number (P=0.003), microvascular 

Table 1 (Continued). 

Variable Total  
(n = 562)

NER High  
(n = 68)

NER Low  
(n = 494)

P

Tumor number 0.691
Single 523 (93.06) 62 (91.18) 461 (93.32)

Multiple 39 (6.94) 6 (8.82) 33 (6.68)

Differentiation 0.074
I–II 313 (55.69) 31 (45.59) 282 (57.09)

III–IV 249 (44.31) 37 (54.41) 212 (42.91)

Microvascular invasion 0.367
No 285 (50.71) 31 (45.59) 254 (51.42)

Yes 277 (49.29) 37 (54.41) 240 (48.58)

TNM 0.023
I 271 (48.22) 246 (49.80) 25 (36.76)

II 264 (46.98) 228 (46.15) 36 (52.94)

III 27 (4.8) 20 (4.05) 7 (10.29)

Note: Results are presented as n (%) for qualitative data. 
Abbreviations: P, p value; HBsAg, Hepatitis B surface antigen; AFP, alpha-fetoprotein; Alb, albumin; TNM, 
American Joint Committee on Cancer tumor-node-metastasis.

Table 2 Univariate and Multivariate Cox Regression Analyses of Risk Factors 
Associated with Progression-Free Survival (PFS) After Surgery in the Total 
Cohort

Variables Univariate Analysis Multivariate Analysis

HR (95% CI) P HR (95% CI) P

Gender

Female

Male 0.81 (0.62–1.07) 0.134
Age (years)

≤47

>47 1.35 (1.03–1.78) 0.033 1.46 (1.09–1.95) 0.011
AFP (ng/mL)

≤400

>400 1.56 (1.26–1.95) <0.001 1.22 (0.97–1.54) 0.094
NER

≤102.00

>102.00 1.93 (1.46–2.55) <0.001 2.05 (1.30–3.22) 0.002
NLR

≤3.32

>3.32 2.17 (1.65–2.87) <0.001 1.21 (0.80–1.83) 0.356
PLR

≤158.76

≥158.76 1.75 (1.29–2.38) <0.001 0.91 (0.63–1.30) 0.592

(Continued)
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invasion (P=0.019), satellite nodules (P=0.035), BCLC (P<0.001) and TNM (P=0.020) were significantly correlated with 
patient PFS. The complete Cox regression results are in Supplementary Table 2.

PFS Analysis
Until the end of follow-up, no patients were lost to follow-up, the median follow-up of all study patients was 61.0 
months, and the median PFS of the patients was 23.0 months. Based on the results of Cox regression, we plotted the KM 
curves of high and low NER patients in different subgroups of patients. Microvascular invasion, largest tumor size and 
tumor number were significant variables in multivariate Cox regression. AFP is currently the most commonly used serum 
tumor marker in the diagnosis and recurrence monitoring of liver cancer. The Kaplan‒Meier curves in Figure 1 show that 
patients in the low NER group had better PFS than those in the high NER group (P<0.0001). Among patients with 
AFP≤400 and negative microvascular invasion, largest tumor size ≤4.5 cm, and a single tumor, those in the low NER 
group had a higher PFS than those in the high NER group. The receiver operating characteristic (ROC) curve showed 
that the area under the curve for the NER was similar to the NLR and superior to the PLR and LMR (Supplementary 
Figure 1).

Table 2 (Continued). 

Variables Univariate Analysis Multivariate Analysis

HR (95% CI) P HR (95% CI) P

LMR

≤2.51
>2.51 1.72 (1.30–2.27) <0.001 1.05 (0.72–1.52) 0.797

GGT (μmol/L)

≤42.7
>42.7 1.66 (1.36–2.02) <0.001 1.37 (1.10–1.72) 0.006

Largest tumor size (cm)

≤4.5
>4.5 1.88 (1.53–2.30) <0.001 1.44 (1.13–1.82) 0.003

Tumor number

Single
Multiple 2.10 (1.49–2.97) <0.001 1.73 (1.20–2.50) 0.003

Microvascular invasion

No
Yes 0.59 (0.48–0.72) <0.001 0.75 (0.60–0.96) 0.019

Satellite nodules

No
Yes 2.03 (1.54–2.69) <0.001 1.40 (1.02–1.92) 0.035

BCLC

0
A 0.85 (0.64–1.14) 0.286 0.97 (0.72–1.31) 0.862

B 2.73 (1.75–4.26) <0.001 5.00 (1.94–12.92) <0.001

CNLC
I

II 1.69 (1.38–2.07) <0.001 0.95 (0.42–2.15) 0.906

III 1.31 (0.49–3.54) 0.591 0.17 (0.04–0.75) 0.020

Abbreviations: HR, hazard ratio; CI, confidence interval; P, p value; AFP, alpha-fetoprotein; NER, 
neutrophil-to-eosinophil ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte 
ratio; LMR, lymphocyte-to-monocyte ratio; GGT, γ-glutamyl transpeptidase; BCLC, BarcelonaClinic 
Liver Cancer; CNLC, China liver cancer staging.
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Figure 1 Kaplan–Meier curves of PFS for patients with different NER groups. (A) Kaplan–Meier curves of PFS for patients with different NER groups in the total cohort. (B–E) Kaplan- 
Meier curves of PFS in different NER groups in patients negative for microvascular invasion (B), alpha-fetoprotein (AFP) ≤400 (C), Tumor diameter ≤4.5cm (D), single tumor (E). 
Abbreviations: PFS, progression-free survival; NER, neutrophil-to-eosinophil ratio.
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Development and Assessment of the Machine Learning Model
As shown in Table 3, all HCC patients were randomized into the training cohort (n=393) and validation cohort (n=169) at 
a ratio of 3:1. The complete clinicopathologic characteristics comparison between the two cohorts is in Supplementary 
Table 3. In the training cohort, we built a machine learning framework containing 10 machine learning algorithms and 
101 combinations of them and computed the average C-index of each model in both cohorts to evaluate the predictive 
ability of the models (Figure 2A). The best model was the random survival forests model with the highest average 
C-index (0. 745). The error rate of the model stabilized when the ntree was 650 (Figure 2B). The C-index was 0.808 for 
the training set, and the C-index of the validation set was 0.682. According to the ranking of the importance of variables 
by the VIMP method in Figure 2C, NER was a relatively important metric.

Table 3 The Clinicopathologic Characteristics of Patients in the Training and Validation 
Cohorts

Variable Total  
(n = 562)

Training Cohort  
(n = 393)

Validation Cohort  
(n = 169)

P

Gender 0.453

Female 93 (16.55) 62 (15.78) 31 (18.34)
Male 469 (83.45) 331 (84.22) 138 (81.66)

Age (years) 0.498

≤47 78 (13.88) 52 (13.23) 26 (15.38)
>47 484 (86.12) 341 (86.77) 143 (84.62)

AFP (ng/mL) 0.066

≤400 415 (73.84) 299 (76.08) 116 (68.64)
>400 147 (26.16) 94 (23.92) 53 (31.36)

NER 0.472

≤102.00 494 (87.9) 348 (88.55) 146 (86.39)
>102.00 68 (12.1) 45 (11.45) 23 (13.61)

NLR 0.235

≤3.32 496 (88.26) 351 (89.31) 145 (85.80)
>3.32 66 (11.74) 42 (10.69) 24 (14.20)

PLR 0.571

≤158.76 505 (89.86) 355 (90.33) 150 (88.76)
≥158.76 57 (10.14) 38 (9.67) 19 (11.24)

LMR 0.662

≤2.51 68 (12.1) 46 (11.70) 22 (13.02)
>2.51 494 (87.9) 347 (88.30) 147 (86.98)

Largest tumor size (cm) 0.067

≤4.5 361 (64.23) 262 (66.67) 99 (58.58)
>4.5 201 (35.77) 131 (33.33) 70 (41.42)

Tumor number 0.532

Single 523 (93.06) 364 (92.62) 159 (94.08)
Multiple 39 (6.94) 29 (7.38) 10 (5.92)

Differentiation 0.563

I-II 313 (55.69) 222 (56.49) 91 (53.85)
III–IV 249 (44.31) 171 (43.51) 78 (46.15)

Microvascular invasion 0.294

No 285 (50.71) 205 (52.16) 80 (47.34)
Yes 277 (49.29) 188 (47.84) 89 (52.66)

Note: Results are presented as n (%) for qualitative data. 
Abbreviations: P, p value; AFP, alpha-fetoprotein; NER, neutrophil-to-eosinophil ratio; NLR, neutrophil-to-lymphocyte 
ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio.
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Figure 2 The computational framework for machine learning algorithms. (A) A combination of 101 machine learning algorithms was generated by synthesizing the 
computational framework. The C-index of each model was calculated through the training and validation cohorts and sorted by the average C-index. (B) Prediction error 
rates. (C) Ranking of variable importance (VIMP) of features. (D–E) ROC curve and AUC of the RSF model in the training cohort (D) and validation cohort (E). 
Abbreviations: RSF, random survival forest; Enet, elastic network; plsRcox, partial least squares regression for Cox; SuperPC, supervised principal components; GBM, 
generalized boosted regression modeling; survival-SVM, survival support vector machine; HB, Hemoglobin; GGT, γ-glutamyl transpeptidase; NER, neutrophil-to-eosinophil 
ratio; MVI, microvascular invasion; NLR, neutrophil-to-lymphocyte ratio; RBC, red blood cell; AFP, alpha-fetoprotein; WBC, white blood cell; AST, aspartate aminotransfer
ase; DBIL, direct bilirubin; PLR, platelet-to-lymphocyte ratio; ALB, albumin; LMR, lymphocyte-to-monocyte ratio; IBIL, indirect Bilirubin; PLT, platelet count; ALT, alanine 
aminotransferase; HbsAg, Hepatitis B surface antigen; TBIL, total bilirubin; ALP, alkaline phosphatase; AUC, area under the curve; PFS, progression-free survival.
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The AUCs of 1-, 2-, and 3-year PFS were 0.851, 0.919, and 0.942, respectively, in the training cohort and 0.779, 
0.721, and 0.693, respectively, in the validation cohort (Figure 2D–E). The calibration curves had good prediction 
consistency, and the DCA curves of the model also indicated that the model had a good net benefit (Figure 3).

The model was compared with other widely used staging models (including the BCLC, TNM, and CNLC staging 
systems) using ROC curves in the total cohort. The 1-, 3-, and 5-year AUCs of the current model (0.830, 0.865, 0.862) 
were higher than those of TNM staging (0.652, 0.609, and 0.601), BCLC (0.645, 0.593, and 0.589), and CNLC (0.573, 
0.540, and 0.531), respectively, and the predictive effectiveness of the above three models was not as good as that of the 
model. The comparison between different models indicates that this model had good predictive ability (Figure 4A–D).

Figure 3 The calibration curves and the DCA curves of the model. (A and B) The calibration curves in the training cohort (A) and validation cohort (B). (C–H) The DCA 
curves in the training cohort (C–E) and validation cohort (F–H). 
Abbreviation: DCA, decision curve analysis.
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Figure 4 Receiver operating characteristic (ROC) curves and Kaplan–Meier curves of the model. (A–D) ROC curve and AUC of the RSF model (A), TNM staging system 
(B), BCLC staging system (C), and CNLC staging system (D) in the total cohort. (E–G) Kaplan–Meier curve of PFS in the total cohort (E), training cohort (F), and validation 
cohort (G). 
Abbreviations: AUC, area under the curve; PFS, progression-free survival.
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Risk Stratification
The scores for recurrence risk were calculated based on the model, and the optimal cutoff point (59.53) was automatically 
calculated by X-tile software. Patients were categorized into the low-risk group (≤59.53) and the high-risk group 
(>59.53), and survival curves were calculated to compare the PFS in the two different risk groups. The results showed 
that recurrence risk stratification had a good ability to identify patients for recurrence (Figure 4).

Discussion
In this study, we used NER for the first time to predict postoperative recurrence in patients with hepatocellular carcinoma. Kaplan‒ 
Meier curves showed that the PFS in the low NER group was significantly better than that in the high NER group. Multivariate 
Cox regression analysis showed that NER was an independent risk factor for recurrence after surgery. In the subgroup analyses of 
the total cohort of patients, such as for patients with AFP≤400, negative microvascular invasion, largest tumor size ≤4.5, and single 
tumor, lower NER was still associated with a better prognosis. Then, we built a model with the machine learning framework, 
which had good predictive efficacy and outperformed the TNM, BCLC, and CNLC staging systems.

An association between inflammation-based markers such as NLR and PLR and the prognosis of hepatocellular carcinoma has 
been demonstrated.13,14 However, the effects of current biomarkers and clinical models remain inconsistent. With the develop
ment of HCC precision treatment, there is an urgent need for more accurate predictive indices and models to guide the prognosis of 
HCC. Circulating neutrophils are thought to drive tumor progression through immunosuppression and direct enhancement of 
tumor cell survival.15 Eosinophils are circulating leukocytes and are commonly associated with host immune and prognostic 
inflammatory responses to parasites.16 However, recent studies have found that eosinophils also play a role in tumor 
development.17,18 Meanwhile, high baseline eosinophil counts were all significantly associated with better prognosis in metastatic 
renal cell carcinoma,19 metastatic melanoma,20 and non-small cell lung cancer.21 The relationship between eosinophils and HCC 
is still undetermined, but some studies have suggested that eosinophils may play an antitumor role in hepatobiliary carcinoma.22 

Furthermore, a study found that IL-5-activated eosinophils inhibited the growth of HCC cells in vitro through eosinophil-mediated 
direct cytotoxicity.23 Eosinophils can be recruited in the tumor region,9 and a recent study found that eosinophils can be used to 
differentiate between alpha protein-negative HCC and cirrhotic patients.24 As an eosinophil-related indicator, lower NER has 
been shown to correlate with improved prognosis in immunotherapy for melanoma and urothelial carcinoma (UC).25,26 In our 
study, NER was an independent risk factor for PFS and one of the most important factors in the recurrence model; this relationship 
has not been mentioned in other studies of HCC markers. Meanwhile, AFP, tumor diameter, MVI, and number of tumors were also 
correlated with the prognosis of the tumor, which is similar to the results obtained from existing studies.27

Numerous studies have confirmed that patients with lower AFP have a better prognosis.28 In our subgroup analysis, 
we found that among patients with AFP≤400 ng/mL, patients with NER >102.00 were more likely to experience 
recurrence. Similarly, in the subgroup of patients without vascular invasion, with the largest tumor diameter ≤4.5 cm, 
and with a solitary tumor, the prognosis of patients with NER >102.00 was also poor. In the clinical follow-up and 
treatment of this group of patients, close follow-up was needed. As a convenient, accessible, low-cost, and reliable 
biomarker, NER has the potential to become a novel marker for predicting the prognosis of hepatocellular carcinoma that 
deserves further exploration in subsequent studies.

Many studies have shown that machine learning plays an important role in research related to the medical field, and 
machine learning (ML) is increasingly used for clinical decision-making, disease diagnosis, and predicting patient 
prognosis.29 Recurrence models for HCC patients using machine learning methods such as LASSO regression and random 
forests have better predictive efficacy.30 In this study, the best model chosen by comparing 101 combinations of algorithms 
exhibits better predictive ability and avoids the limitations of inadequate algorithms. However, this study was not without 
limitations. We only performed internal validation; external validation in multicenter studies is still necessary.

Conclusion
This study confirms the good predictive value of NER for postoperative recurrence in patients with hepatocellular 
carcinoma. Lower NER was still associated with a better prognosis. Machine learning models based on NER can provide 
more accurate predictions.
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