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Abstract: Venous thromboembolism is a condition that includes deep vein thrombosis and pulmonary embolism. It is the third most 
common cardiovascular disease behind acute coronary heart disease and stroke. Over the past few years, growing research suggests 
that venous thrombosis is also related to the immune system and inflammatory factors have been confirmed to be involved in venous 
thrombosis. The role of inflammation and inflammation-related biomarkers in cerebrovascular thrombotic disease is the subject of 
ongoing debate. P-selectin leads to platelet-monocyte aggregation and stimulates vascular inflammation and thrombosis. The 
dysregulation of miRNAs has also been reported in venous thrombosis, suggesting the involvement of miRNAs in the progression 
of venous thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is a crucial component of the plasminogen-plasmin system, and 
elevated levels of PAI-1 in conjunction with advanced age are significant risk factors for thrombosis. In addition, it has been showed 
that one of the ways that neutrophils promote venous thrombosis is the formation of neutrophil extracellular traps (NETs). In recent 
years, the role of extracellular vesicles (EVs) in the occurrence and development of VTE has been continuously revealed. With the 
advancement of research technology, the complex regulatory role of EVs on the coagulation process has been gradually discovered. 
However, our understanding of the causes and consequences of these changes in venous thrombosis is still limited. Therefore, we 
review our current understanding the molecular mechanisms of venous thrombosis and the related clinical trials, which is crucial for 
the future treatment of venous thrombosis. 
Keywords: venous thromboembolism, miRNA, neutrophil extracellular traps, plasminogen activator inhibitor-1, EVs, inflammatory 
factor

Introduction
Venous thromboembolism (VTE) is a multifaceted, potentially fatal event that activates coagulation and fibrinolysis.1 It is 
a condition that includes pulmonary embolism (PE) and deep vein thrombosis (DVT).2 In addition, it is also the third most 
prevalent cardiovascular disease after stroke and coronary heart disease (CHD).3 Venous thrombosis (VT) is a leading cause 
of mortality as well as morbidity worldwide, occurring in approximately one case in 1000 people per year in affluent 
nations.4 DVT is the thrombosis that blocks the deep venous cavity, disrupting the venous reflux network and resulting in 
chronic deep venous dysfunction.5,6 Furthermore, DVT is a consequence of a complicated interaction between enzymes and 
cellular processes, in which the endothelium, platelets, and leukocytes coordinate a pro-inflammatory state that ultimately 
leads to the clot formation7 with higher mortality rate for acute DVT.8 To date, vascular ultrasound and digital subtraction 
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angiography are the primary techniques for diagnosing DVT. The lower extremity deep venous thrombosis (LEDVT) is 
diagnosed clinically based on venography, the gold standard.9 Even though both techniques have a high diagnostic value, the 
latter is quite intrusive and expensive, while the former lacks the ability to diagnose intraperitoneal venous embolism.10 In 
addition, ultrasound is not a routine and is only performed before discharge for patients with symptoms following major 
orthopedic surgery.11 The absence of specific clinical signs and non-specific symptoms associated with venous thrombosis 
may lead to a delayed or inaccurate diagnosis, ultimately resulting in poor patient prognosis.12,13 Both genetic and acquired 
factors can lead to the formation of venous thrombosis, which is a complex process whose molecular mechanism remains 
poorly understood. Therefore, exploring the mechanism is essential for effective treatment of venous thrombosis. Recently, 
there has been a lot of discussion on the mechanisms of venous thrombosis, including inflammatory, immunological, and 
neutrophil extracellular trap formation aspects, other factors under investigation include age, p-selection, 
MicroRNA(miRNA), PAI-1-induced venous thrombosis and extracellular vesicles (EVs). We have outlined these relevant 
molecular mechanisms involved in VTE (Figure 1), which may be an important target for future therapeutic interventions.

Plasminogen Activator Inhibitor-1
The main protein of plasminogen-plasminase system, plasminogen activator inhibitor-1 (PAI-1), is a significant inhibitor 
of tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (U-PA).14 Inflammation stimulates 

Figure 1 Mechanisms of venous thrombosis through PAI-1, inflammatory factors, miRNA, age-related changes, NETs formation, P-selectin activation and immunological 
processes. (A) THCMA inhibits platelet activation and aggregation by P-selectin to reduce thrombosis and tissue factor-positive (TF+) EVs are associated with VTE (B) 
Exogenous cellular Fn-EDA stimulated NETosis in neutrophils via TLR4-stimulated thrombin-activated platelets and TLR4 contributes to Fn-EDA-mediated DVT. B-cell 
deficiency leads to an increase in circulating neutrophils and an increased abundance of NETs within the thrombus. NK cells promote venous thrombosis by activating 
neutrophils and producing IFN-γ-dependent NETs. (C) Ly6C+ monocytes and macrophages release IL-6 that induce mononuclear cell sources of MMP 9, and MMP 9 
participates in the process of thrombolysis. IL-1β, TF, XOD, GAB, and TNF-α regulate venous thrombosis through the NLRP 3 / IL-1 /NF-κB signaling mechanism. (D) Mir- 
185 inhibits thrombosis by regulating PI3K/Akt signaling pathway, which inhibits inflammation-induced tissue factor expression in deep vein endothelial cells. MiR-21 inhibits 
the expression of PTEN, increases the proliferation of endothelium and promotes the formation of new blood vessels and venous thrombosis. LncRNA SIRT1-AS reduces 
the incidence of aging-associated DVT by Sirt1/FOXO3a axis. 
Abbreviations: THCMA, 3S-1,2,3,4-tetrahydro-β-carboline-3-methyl aspartyl ester; EVs, extracellular vesicles; Fn-EDA, fibronectin containing extra domain A; TLR4, toll- 
like receptor 4; DVT, deep vein thrombosis; NETs, neutrophil extracellular traps; MMP 9, matrix metalloproteinase 9; TF, tissue factor; XOD, xanthine oxidase; GAB, Grb2- 
associated binding.
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endothelial cells to release tPA and PAI-1 locally. Besides, since platelets are the major circulating pool of PAI-1, 
activated platelets release a great number of PAI-1, leading to locally high levels of PAI-1 at growing fibrin clot sites,15,16 

thus increased PAI-1 is a risk factor for thrombosis. In addition, the polymorphism of RS1799889 in the promoter region 
of the PAI-1 gene has been detected in patients with thrombosis.17 However, there is no association between elevated 
levels of PAI-1 and the risk of venous thrombosis in recent study.18 The 5G allele is associated with reduced PAI-1 
transcript levels compared with 4G allele, so the presence of the 5G allele may lead to a reduced risk of thrombotic 
events. However, the risk of thrombosis for the 4G allele carrying the PAI-1 gene is controversial.19 Another study 
showed that PAI-1-siRNA strengthens the cavity-forming capacity of endothelial progenitor cells (EPCs) and signifi-
cantly accelerates EPCs homing. After PAI-1 gene silencing, PAI-1 mRNA and protein expression decreased, vascular 
endothelial growth factor (VEGF) expression increased, and light-like structure enhanced in inferior vena cava tissue. 
PAI-1 gene silencing could promote VT recanalization by enhancing the lumen-forming capacity of the rat EPCs.20

Inflammatory Factor
There is growing evidence showed that inflammatory factors linked to venous thrombosis. The role of inflammation and 
inflammation-related biomarkers in cerebrovascular thrombotic disease is a subject of ongoing debate.21,22 Vascular cell 
adhesion molecule 1 (VCAM-1) plays an important role in leukocyte adherence and migration among vascular 
endothelial cells and the level are elevated in endothelial cell inflammatory areas.23 Research has revealed that 
(lymphocyte antigen 6 complex)+Ly6C+ monocytes and macrophages are the primary myeloid cell source of inter-
leukin-6 (IL-6) in lytic thrombus, and IL-6 was known to induce monocyte-derived matrix metalloproteinase 9 (MMP9) 
production and that MMP9 has a weakened engagement in the process of thrombus lysis. The monocyte-IL6-MMP9 axis 
reflects a prospective non-anticoagulant target that may promote thrombolysis in individuals with completely occlusive 
DVT because of its crucial role in the IL-6 signaling pathway, which is essential for venous thrombosis and is influenced 
by the amount or lack of blood flow around the thrombus.24 Another research also revealed that inflammatory Ly6Chi 

monocytes regulate the development, proliferation, and lysis of thrombus, which could be treated with transcription 
factor Nur77 (NR4A1) agonists at any stage of the illness.25 However, investigators were unable to establish any 
correlation between plasma tissue factor (TF), IL-6, VCAM-1 or D-dimer levels and the development of DVT, but it 
should be noted that blood samples were only taken at recruitment within three days of injury, which may be too early to 
detect a prethrombotic status.23 Another study has demonstrated that elevated levels of inflammatory factors interleukin- 
1β (IL-1β), tissue factor (TF), xanthine oxidase (XOD) and nuclear factor kappa B (NF-κB) may accelerate thrombosis.26 

The NLRP3/IL-1/NF-κB signaling mechanisms regulate IL-1 and tumor necrosis factor alpha (TNF-α), which may be 
essential signs of the prethrombotic condition due to slowed blood flow, impaired vascular endothelium, and elevated 
tissue factor expression. Therefore, VTE is the result of the coagulation system’s cascade reaction.27–29 Coagulation 
factor XII (FXII), an essential coagulation factor, was found to be associated with thrombosis, the study revealed that the 
knockdown of FXII markedly raised superoxide dismutase (SOD) concentrations, reduced the thrombosis and apoptosis, 
and raised the malondialdehyde (MDA) concentrations in DVT mice. Moreover, TNFα, IL-6, interleukin-8 (IL-8), and 
phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) signaling activation were all markedly decreased by FXII 
knockdown. The stimulation of PI3K/AKT signaling by the FXII protein causes an inflammatory response, which in turn 
leading to DVT. Therefore, focusing on FXII protein may show promise as a DVT therapy strategy.30 As we know, 
AKT2 is a subtype of AKT, in a mouse model of venous thrombosis, AKT2 could modulate endothelial cell-mediated 
blood coagulation homeostasis as well as facilitate endothrombotic recanalization and thrombus resolution. Besides, 
AKT2 could increase the expression of thrombomodulin (TM) and decrease the expression of TF in cultivated 
endothelial cells.31 According to another research, TM is thought to be a valuable marker for assessing endothelial 
impairment and plays a crucial role in DVT. The activation of the NF-κB signaling pathway leads to an increase in 
plasma TM levels and thrombus size.32 As for endothelial cells, study found that prothrombotic procoagulant phospho-
lipids was found on the surfaces of activated endothelial cells.33 The endothelium procoagulant action is supported by 
phospholipid-disrupting enzymes, TMEM16E and TMEM16F (Ca2+-activated phospholipid-disrupting enzyme), which 
externalize phosphatidylserine (PS), in the mice model of thrombosis caused by laser damage, PS externalization was 
inhibited and fibrin production in the vessel wall was decreased without affecting platelets when TMEM16E or 
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TMEM16F were deleted genetically or treated with TMEM16 inhibitors, the results demonstrate the involvement of 
endothelial TMEM16E in thrombosis and suggest TMEM16E as a possible target for therapeutic intervention to inhibit 
the development of thrombus.33,34 Besides, another recent research has demonstrated the Grb2-associated binding 2 
(GAB2), a signal adapter protein, plays a vital part in the dissemination of the inflammatory signals in endothelial cells 
induced by IL-1β and other cytokines of inflammation.35 In endothelial cells, GAB2 contributes to the activation of NF- 
κB and Rho.36 According to the study, greatly reducing IL-1-induced Rho-dependent exocytosis of Von Willebrand factor 
(VWF) and P-selectin then following adhesion of neutrophils to vascular cells was achieved by either gene silencing of 
GAB2 or mucosa-associated lymphoid tissue lymphoma translocation protein 1(MALT1), the effector signals molecule 
in the CBM (CARD recruited membrane-associated protein 3-B cell lymphoma 10 - MALT1) signalosome, or by 
pharmacologically inhibiting MALT1 with a particular inhibitor, mepazine.36 Additionally, IL-1-induced NF- 
κB-dependent production of tissue-related factors and VCAM-1 was decreased by MALT1 suppression. Gab2 loss or 
pharmacological suppression of MALT1 decreased venous thrombosis brought on by inferior vena cava-ligation-induced 
stenosis or stasis in mice and reduced the concentration of monocytes and neutrophils at the wound area, which was in 
accordance with the in vitro data.36 Furthermore, the findings of another investigation demonstrated that the neutrophil 
count, monocyte level, c-reactive protein (CRP) concentration, lymphocyte-to-monocyte ratio (LMR), and neutrophil-to- 
lymphocyte ratio (NLR) were significantly altered in accordance with the duration of cerebral venous thrombosis (CVT). 
Patients with CVT exhibit distinct inflammatory patterns throughout the course of their illness: higher levels of NLR and 
lower levels of LMR during the acute phase; higher levels of LMR and lower levels of CRP during the chronic phase.37

Mechanism of miRNA Leading to Venous Thrombosis
MicroRNA is an endogenous, highly conserved 19–22 short nucleotide fragment of a non-coding RNA molecule.38 As 
a protein that is directly affected by AKT, glycogen synthase kinase 3 (GSK3) is a crucial part of the PI3K/AKT signaling 
cascade and has the ability to influence cell survival, death, motility, and migration.39,40 Study has demonstrated that 
miRNA-185 was relevant with the proliferation and apoptosis of vascular endothelial cells by controlling the late 
glycation end product receptor (RAGE). MiR-185 can inhibit the expression of tissue factor in rat. The rat deep vein 
endothelial cells were induced by lipoderma endothelium, which was regulated by PI3K/AKT signaling pathways. MiR- 
185 inhibits thrombosis by reducing inflammation-induced tissue factor expression.41 In addition, another study found 
that miR-150 is an important microRNA that plays a key part in all kinds of cell functions. Moreover, miR-150 plays 
a crucial role in endothelial progenitor cells (EPCs), and its expression is downregulated in EPCs induced by DVT. The 
upregulation of miR-150 promotes angiogenesis and proliferation of EPCs through the targeting of SRC kinase signaling 
inhibitor 1 (SRCIN1) both in vitro and in vivo for thrombolysis.42 The Fas ligand (FASLG) gene is a target of miR-21, 
knockdown of FASLG can impair EPCs function, while the expression of miR-21 may stimulate EPCs proliferation and 
angiogenesis. In addition, In the EPCs of the DVT model rat, miR-21 expression is diminished. By targeting FASLG, 
miR-21 may promote the proliferation of endothelial progenitor cells and the creation of new blood vessels, which imply 
that miR-21 could be a potential indicator of thrombosis.43 In other side, it has been proved that miR-21 is closely related 
to PTEN (phosphatase and tensin gene), which inhibit cell proliferation and promote apoptosis under normal physiolo-
gical conditions and therefore plays an important role in thrombosis.44 MiR-21 can increase the proliferation of vascular 
endothelial cells and promote the formation of new blood vessels by inhibiting the expression of PTEN.45 A new study 
has uncovered that the function of miR-21 is to increase the rate of angiogenesis and cardiomyocyte survival by target to 
PTEN in heart failure.46 In summary, miR-21 plays a complex regulatory role in thrombosis, including inhibition of 
PTEN and FASLG, promotion of endothelial cell proliferation and neovascularization, and contribute to keratinocyte 
migration, angiogenesis and cardiomyocyte survival in heart failure. Further study should focus on the mechanism of 
miR-21 in thrombosis and provide a theoretical basis for the development of new treatments.

Mechanisms of Venous Thrombosis Associated with Aging
The risk of venous thrombosis increases with age,47 but the mechanisms underlying the increased risk of thrombosis with 
age are not well understood. Silent information regulator 1 (Sirt1) is associated with endothelial cell senescence, 
inflammation, oxidative stress and platelet adhesion. Sirt1antisense (Sirt1-AS) is an antisense long non-coding RNA 

https://doi.org/10.2147/JIR.S439205                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2023:16 6170

Huang et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


(lncRNA) of Sirt1, DVT development is related to endothelial cell senescence and low lncRNA expression of Sirt1-AS 
and Sirt1. Sirt1 delays senescence to reduce the incidence and production of age-related thrombosis, and the 
Sirt1antisense lncRNA (lncRNA Sirt1-AS) mitigates DVT by modulating the Sirt1/FOXO3a axis. Specifically, it reduces 
the incidence of senescence-associated DVT by enhancing human vascular endothelial cell (HUVEC) viability and 
proliferation while decreasing HUVEC apoptosis.48 In a cross-sectional research of mice and humans, researcher found 
that Deoxyribonuclease 1(DNase 1) could inhibit age-induced increases in endogenous thrombin generation and venous 
thrombosis. The work revealed that circulating cell-free DNA increased with aging via NETosis-independent processes.49 

The NETosis, which involves the release of NETs following the activation of neutrophils in vitro, has been demonstrated 
to be mediated by hydrogen peroxide (H2O2).50

The Mechanism of Neutrophil Traps Promoting Thrombosis
Vascular Willebrand factor or glycoprotein Iba-dependent platelet “Priming” triggers the activation of integrin αllbβ3, 
which in turn regulates neutrophil and T cells binding. Neutrophil binding of platelet αllbβ3 to SLC44A2 results in the 
production of highly prothrombotic NETs.51 Therefore, it is believed that one of ways in which neutrophils encourage 
venous thrombosis is by forming NETs.52 Additionally, NETs utilize transforming growth factor-β (TGF-β) in thrombi to 
up-regulate fibroblasts and facilitate fibrotic thrombus remodeling.53 It has long been thought that arterial and venous 
thrombosis involve different mechanisms,54,55 but recent studies have revealed that the neutrophil play a crucial role in 
both arterial and venous thrombosis. The transcription factor Kruppel-like Factor 2 (KLF2) is the key regulator of 
neutrophil activation, which can be triggered by anti-phospholipid antibodies or be lost through KLF2 gene expression. 
This leads to the aggregation of P-selectin glycoprotein ligand-1 (PSGL-1) via reconstitution of cortical actin, thereby 
increasing adhesion potential at thrombotic sites.56 Another study also revealed that in the progression of heart failure 
and myocardial hypertrophy, KLF2 controls thrombosis and activation of neutrophil.57 In addition, recent research 
demonstrated that under a live microscope, the neutrophil “plucked” an extension of megakaryocytes in blood vessels, 
known as pre-platelets, to regulate the platelet production. Along with cxcr4-cxcl12-dependent migration to the periatrial 
megakaryocytes, the neutrophil activate platelets via reactive oxygen species and trigger activation of myosin light chain 
and extracellular signal-regulated kinases. Through these mechanisms mentioned above, neutrophils accelerate platelet 
growth and promote stable platelet release. After myocardial infarction, neutrophils lead to excessive release of young 
reticular platelets and increase the risk of re-ischemia, and on the contrary, ablation neutrophil can normalize platelet and 
reduce the thrombus burden of recurrent and venous thrombosis after myocardial infarction.58

Cellular fibronectin containing extra domain A (Fn-EDA) is a toll-like receptor 4 (TLR4) endogenous ligand that 
promotes thrombotic inflammation.59–63 Overweight and obesity are known to increase the chance of developing 
VTE.64,65 In a diet-induced obesity mouse model, researchers found increased plasma levels of Fn-EDA in high-fat 
(HF) fed animals.59 Additionally, individuals with VTE had high plasma levels of Fn-EDA and were linked to body mass 
index (BMI). Under co-morbid diet-induced obesity circumstances, genetic ablation of Fn-EDA decreased susceptibility 
to DVT. Besides, the research revealed that exogenous cellular Fn-EDA stimulated NETosis in neutrophils via TLR4- 
stimulated thrombin-activated platelets and that TLR4 contributes to Fn-EDA-mediated DVT. Therefore, Fn-EDA/TLR4 
axis may be involved in NETosis and the development of DVT in mice. The elevated levels of Fn-EDA in plasma may be 
an important mechanism for promoting DVT in the context of diet-induced obesity.59

Defibrotide, a heterogeneous mixture of polyanionic oligonucleotides, has been currently approved for the treatment 
of transplant-related venous occlusive disease. Recently, researchers have conducted in vitro experiments and mouse 
models to determine the mechanism by which defibrotide inhibits NET formation and venous thrombosis in antipho-
spholipid syndrome (APS). This study revealed the role of NETs in the thrombotic complications of APS. At a dose of 1– 
10 μg mL−1, defibrin significantly inhibited NET formation in IgG-stimulated control neutrophils isolated from APS 
patients.66 Defibrotide elevates intracellular cyclic AMP levels in neutrophils, thereby mitigating the inhibition of NET 
formation through blockade of adenosine A2A receptors or suppression of cyclic AMP-dependent kinases. In a model 
where antiphospholipid antibodies accelerated thrombosis, defibrin at doses ranging from 15–150 mg/kg/day inhibited 
both NET formation and venous thrombosis and the effect was diminished in adenosine A2A receptor knockout mice. 
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This study has demonstrated the mechanism by which defibrin can counteract thrombotic inflammation mediated by 
neutrophils in APS.66

Selection
P-selectin is an adhesion molecule expressed on the surface of activated platelets and endothelial cells,67,68 leading to 
platelet-monocyte aggregation and stimulating vascular inflammation and thrombosis.69 Therefore, inhibiting the expres-
sion of p-selectin is a good option for reducing the thrombosis. 3S-1,2,3,4-tetrahydro-β-carboline-3-methyl aspartyl ester 
(THCMA) is a new small molecule inhibitor of p-selectin, which can remarkably restrict platelet aggregation in vitro and 
down-regulate serum p-selectin and TNFα expression levels in vivo. THCMA has been successfully developed as 
a nanomedicine and is 100-fold more effective in inhibiting arterial and venous thrombosis and 10-fold more effective in 
suppressing inflammation than PSI-697, a drug in clinical trials.68,69 The doses of THCMA that inhibit thrombosis do not 
produce clotting disorders and no risk of bleeding, the drug significantly improves oral efficacy, which could be used for 
oral therapy of arterial and venous thrombosis, cancer-related thrombosis and inflammation.68

Immunological Mechanism of Venous Thrombosis
Over the past few years, growing research suggest that the production of venous thrombosis also involves the immune 
system. As thrombosis originates from severe hypoxia in deep venous environment, endothelial cells are subjected to 
oxidative stress. This encourages the binding of additional pattern recognition molecules or mannose-binding lectin 
(MBL) to the surface of endothelial cell via the lectin pathway, which in turn activates mannose-binding lectin-associated 
serine protease 2 (Masp-2), then Masp-2 can cleave prothrombin to thrombin and forms fibrin.70–74 According to the 
study by Damoah et al, having elevated levels of the complement-activating enzyme Masp-2 raises the chance for 
developing venous thromboembolism in the future.75 Furthermore, the absence of B cells in mice indirectly contributes to 
venous thrombosis by elevating neutrophil counts and increasing fibrinogen levels. The inferior vena cava (IVC) stenosis 
model demonstrated an augmented incidence of venous thrombosis due to B-cell deficiency, which was hypothesized by 
investigators to be caused by a rise in circulating neutrophils leading to an increased abundance of NETs within the 
thrombus and upregulation of fibrinogen production.76 Through the production of Interferon-γ (IFN-γ)-dependent NETs, 
natural killer (NK) cells contribute to the development of venous thrombosis, which DVT decreases with NK cell 
depletion.77 Moreover, the activation of innate effect-memory T cells plays a crucial role in regulating venous wall 
inflammation and thrombus lysis after thrombosis.78 Besides, a study demonstrated that regulatory T cells (Treg) 
clustered in venous clots of blood, where they formed the stromal cell protein SPARC (secreted protein acidic and 
rich in cysteine) which promoted the MMP activity of monocytes. Treg thrombolysis is through the control of monocyte 
recruitment, differentiation, and regulation of the activity of MMP, which is possible to use clot Tregs therapeutically to 
speed up thrombus clearance.79 Mast cell protease-4 (MMCP-4) is a chymase-type particle-localized protease that has 
been discovered to be crucial in the development of DVT, in the deep vein thrombosis-affected mice, chymase decreased 
the activity of plasmin within thrombus, the inhibition of chymase could eliminate and avoid deep vein thrombosis 
without lengthening the bleeding duration, which reduce chymase activity without disrupting the coagulation cascade, 
these findings offer a potential pharmaceutical approach to treat or prevent DVT.80

Immobilization is known to be an important risk factor for the VTE development, but a protracted state of inactivity 
of paralyzed spinal cord injury (SCI) patients and free-ranging hibernating brown bears is protected from VTE. Thienel 
et al has demonstrated that mass spectrometry-based proteomics can identify antithrombotic properties in the platelets of 
hibernating brown bears, with heat shock protein 47(HSP47) being most markedly diminished. The rationale behind this 
is that the downregulation or ablation of HSP47 leads to a decrease in immune cell activation and neutrophil trap 
formation, thereby promoting thromboprotection in patients with spinal cord injury and bears and mice. This cross- 
species conservation of platelet characteristics may provide antithrombotic therapy as well as prognostic indicators.81

Immune thrombosis refers to the innate immune response triggered by the formation of blood clots in blood vessels 
and serves as a framework for the interaction between the immune system (innate and adaptive) and endothelial 
dysregulation-mediated thrombotic response caused by inflammation. The immune cells support the related molecules 
and produce specific intravascular scaffolds that promote pathogen recognition, containment, and destruction. These 
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mechanisms preserve the integrity of the host without resulting in serious side effects.82,83 The previous study showed 
IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) were the independent predictors of accelerated VTE 
development and they concluded that systemic inflammation is a key driver of VTE risk after major trauma.84 Future 
work will need to further determine the importance of immunothrombosis for host protection and characterize in more 
detail the host molecules involved in this process, without causing significant collateral damage to the host.

Extracellular Vesicles (EVs) in the Coagulation Mechanism of VTE
Many clinical cases of VTE have unknown causes and lack typical clinical symptoms, so there is an urgent need to 
develop reliable biomarkers for assisting in the prediction and diagnosis of VTE. Extracellular vesicles (EVs) produced 
by activated, damaged, or apoptotic cells carry a variety of bioactive substances and play diverse physiological roles 
while participating in the pathological processes of numerous diseases. The procoagulant specificity of EVs is also 
associated with the expression of TF. The previous study showed tumor cells constitutively release EVs that may 
contribute to thrombosis in cancer patients. Clinical studies have found that levels of circulating tumor–derived, tissue 
factor-positive (TF+) EVs in pancreatic cancer patients are associated with VTE.85 Besides, the activity of PS and TF 
expressed by EVs is much higher than that of the mother cell, which can significantly shorten mice’s bleeding time and 
promote thrombosis formation.85 The researchers discovered that inhibiting CD36 reduced the binding of endothelial, 
monocyte, and platelet EVs to resting platelets.86 The binding of EVs to platelets was also reduced by annexin V or an 
antibody to PS, suggesting that EV PS plays a role in the binding process.86 In addition, EV also carries P-selectin 
glycoprotein ligand-1 and glycoprotein GpIb, which respectively mediate EVs activation and platelet activation. 
Endothelial cells and vWF interact to rapidly deposit TF-associated EVs at the site of thrombus formation, thus more 
effectively promoting initiation and amplification of the coagulation cascade.87

In addition to directly promoting coagulation, EVs can also promote thrombosis through indirect mechanisms. For 
example, activated platelets can transfer “cargo” such as arachidonic acid via EVs, thereby inducing the activation of 
other platelets.88 There is a close relationship between inflammation and thrombosis, and it has recently been discovered 
that EVs can indirectly promote coagulation by influencing the inflammatory system. High-level EVs can significantly 
up-regulate the expression of pro-inflammatory signaling molecules, activate systemic coagulation response and induce 
inflammation and apoptosis.89

Summary and Future Perspectives
In this review, we provide a comprehensive overview of the mechanisms underlying PAI-1, inflammatory factors, 
miRNA, age-related changes, neutrophil extracellular traps formation, P-selectin activation, immunological processes 
and extracellular vesicles (EVs) in relation to venous thrombosis (Figure 1). We reviewed venous thrombosis biomarkers 
from ongoing clinical trials, as shown in Table 1, as well as published clinical trials related to venous thrombosis as 
shown in Table 2. With regard to venous thrombosis, we have outlined the important points as follows: firstly, increased 
PAI-1 is regarded as a thrombosis risk factor, although there is debatable evidence about the thrombosis risk association 

Table 1 Ongoing Clinical Trials Involving Biomarker in VTE

Biomarker Trail ID Study Population Target Status

Platelet NCT05240508 Cancer patients are starting therapy Platelet FcɣRIIa 

expression

Recruiting

Neutrophil extracellular 

traps (NETs)

NCT03781531 Consecutive patients age >18 years with 

objectively confirmed venous thromboembolism 

diagnosed < 2 days

DNA and histones Recruiting

D-dimer combined with 

other thrombus 

molecular marker

NCT05515549 Surgical patients with high risk of venous 

thrombosis

Not yet recruiting

New Genetic Markers NCT03977870 Patients with VTE Whole Genome 

Analysis

Not yet recruiting
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with the 4G allele in the PAI-1 gene.19 Besides, vein thrombosis is influenced by inflammatory factors, such as IL6, IL-1, 
and TNF-α, as well as other factors mediated by various signaling pathways like VCAM-1, TF, TM, VWF, and 
P-selectin. Venous thrombosis is also connected to the immune system and miRNA. Importantly, although immobility 
is a known risk factor for venous thrombosis, the downregulation or ablation of HSP47 in patients with SCI and bears 
leads to a decrease in immune cell activation and neutrophil trap formation, thereby promoting thromboprotection in SCI 
patients and bears. This offers a crucial concept for the management of venous thrombosis. The connection between 
inflammation and the immune system in venous thrombosis warrants more research as well. Additionally, NETosis is also 
involved in the mechanism of venous thrombosis caused by aging, which may share similar linked mechanism. Notably, 
age-related and immunological venous thrombosis have been linked to neutrophil trap development; hence, one potential 
treatment for venous thrombosis might be to inhibit neutrophil trap formation. Besides, EVs involved in the pathological 
process of various clinical VTE-related diseases, and has potential applications in indicating the risk of VTE and aiding 
in the diagnosis and treatment of VTE.

However, venous thrombosis is a complex illness, there are still unknown mechanisms. Therefore, inactive venous 
thrombosis may not be predicted even after testing all available indicators. It is critical to continue to explore of the 
underlying mechanisms of venous thrombosis. The more clearly the mechanisms of venous thrombosis are understood, 
the greater therapeutic and diagnostic targets for venous thrombosis are identified.

Data Sharing Statement
The authors declare that the submitted data is available. This paper does not contain any other individual or collective 
published or written works data except those specifically annotated and cited in the paper.

Consent for Publication
We declare that all authors agreed to publish the manuscript at this journal based and followed publication ethics.

Funding
This study was supported by the Affiliated Hospital of Guangdong Medical University “Clinical Medicine+” CnTech Co- 
construction Platform (no. CLP2021B004), the Discipline Construction Project of Guangdong Medical University 
(no.4SG21279P), the Discipline Construction Project of Guangdong Medical University (no. 4SG21276P), the Basic 
and Applied Basic Research Foundation of Guangdong Province Regional Joint Fund Project (The Key Project) 
(no. 2020B1515120021), Zhanjiang city science and technology development special fund competitive allocation project 
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Disease Model Study Population Mechanism Ref
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chronic 

myeloproliferative 
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AK2-V617F activates β1/Β2 integrin to accelerate the 
venous thrombosis.

[90]

Lower extremity deep 

venous thrombosis 

(LEDVT)

Mice LEDVT patients Mir-185 activates the PI3K/AKT signaling pathways to 

inhibit the expression of tissue factor and fibrin to 

reduce thrombosis.

[41]

Deep vein thrombosis 

(DVT)

Mice DVT patients LncRNA Sirt1-AS reduce DVT by modulating the Sirt 

1 / Foxo3a axis.

[48]

Venous thromboembolism 
(VTE)

Spinal cord injury 
patients, bears and 

mice

Spinal cord injury 
patients

Downregulation or ablation of HSP47 reduces the 
activation of immune cells and the formation of 

neutrophil traps, which is conducive to thrombopoietin 

of spinal cord injury patients, bears and mice.

[81]

VTE Mice VTE patients Through PI3K/AKT signaling, FXII controls the 

development of thrombosis

[30]
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