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Background: Sputum culture result at the sixth month is essential for predicting therapeutic response to longer multidrug-resistant 
tuberculosis (MDR-TB) regimens. This study aimed to construct a predictive model using cavity-based radiomics to predict sputum 
status at the sixth month for MDR-TB patients treated with longer regimens.
Methods: This retrospective study recruited 315 MDR-TB patients treated with longer regimens from two centers (250 patients from 
center 1 and 65 patients from center 2), who were divided into persistently positive and conversion to negative sputum culture groups 
according to sputum results. Radiomics features were extracted based on the cavity, and a radiomics model was selected and 
established using a random forest classifier. The clinical characteristics and primary CT signs with significant differences were 
integrated to build a clinical model. A combined model was generated using the radiomics and clinical model. ROC curves, F1-score 
and DCA curves were used to assess the predictive performance of the models.
Results: Twenty-eight radiomics features were selected to build a radiomics model for predicting the sputum status. The radiomics model 
achieved good performance, with AUCs of 0.892 and 0.839 in the training and testing cohort, respectively, which was similar to the 
performance of the combined model (0.913 and 0.815) and much higher than that of the clinical model (0.688 and 0.525) in the two cohorts.
Conclusion: The cavity-based radiomics model has the potential to predict sputum culture status for MDR-TB patients receiving 
longer regimens, which could guide follow-up treatment effectively.
Keywords: machine learning, radiomics, tuberculosis, drug-resistance, therapeutic response

Introduction
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide and the leading cause of death due to infectious 
diseases until the coronavirus pandemic.1 According to the 2022 Global Tuberculosis Report of the World Health 
Organization (WHO), the annual number of deaths from TB has increased in 2020 and 2021, reversing the trend of slow 
decline between 2005 and 2019.2 Drug-resistant tuberculosis is a major threat to global control, particularly in strains with 
multidrug resistance.3 Multidrug-resistant tuberculosis (MDR-TB) is defined as a strain that is resistant to rifampicin and 
isoniazid.4 Almost 3.7% of new TB cases and 20% of retreatment cases have MDR-TB, which is unprecedented.4 Therefore, 
it is critical to develop an individualized treatment regimen based on a patient’s response to therapy.

Longer MDR-TB regimens have shown good clinical efficacy and safety. Longer MDR-TB regimens refer to a total 
treatment duration of 18–20 months consisted of at least four effective anti-TB drugs in the initial phase, and at least three TB 
agents are used for the rest of the treatment after bedaquiline is stopped.3 The 6-month sputum culture conversion result is an 
important index for assessing outcomes of MDR-TB treatment and thus regulates the treatment strategy.5 Evidence on the 
safety and effectiveness of some antituberculosis agents beyond 6 months, such as delamanid, is insufficient for review.3,6 
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Prolonging the use of these agents should be carefully considered. Therefore, it would be of great importance to predict sputum 
status after 6 months of longer MDR-TB treatment, which is beneficial for retesting drug resistance, adjusting therapeutic 
strategies, and establishing individualized treatment.

Chest computed tomography (CT) is a conventional method used to monitor treatment response and toxicity in 
patients receiving long-term MDR-TB treatment regimens.3,7,8 MDR-TB has various imaging features, including 
common radiological findings of cavitation, tree-in-bud (TIB), and consolidation.9 Cavitation is a gas-filled space 
within a pulmonary consolidation, mass, or nodule formed after the necrotic portion of the lesion is expelled 
through the bronchial tree.10 Cavitation is an important sign of TB, and evidence has demonstrated that thick- 
walled cavities are the most promising sign for differentiating MDR-TB.8,9 More importantly, cavity variations can 
measure the response to TB treatment.11 Radiomics is an approach that extracts multiple types of data from 
radiological images and converts these images into high-dimensional quantitative information that reflects the 
pathophysiology of lesions.12 A recent report has shown that CT radiomics features have the potential to identify 
MDR-TB in cavitary TB patients.10 However, no study has predicted the therapeutic effect at six months in 
patients with a longer MDR-TB regimen using CT radiomics based on cavitary signs.

The purpose of this study was to establish a more targeted radiomics model based on cavities to predict the sputum result at 
the sixth month for MDR-TB patients treated with longer MDR-TB regimens, which is helpful in formulating and regulating 
individualized therapy strategies.

Materials and Methods
Participants
This retrospective study was approved by the Ethics Committee of the local hospital. Informed consent from patients was 
waived by the committee, considering the retrospective nature of the study and the utilization of anonymized data, while 
ensuring patient privacy and confidentiality.

The patients recruited in our study were based on the following inclusion criteria: (a) confirmation of TB by sputum 
culture, microscopy, or polymerase chain reaction test; (b) determination of MDR-TB by drug-resistant testing (DST); (c) 
receiving longer MDR-TB regimens after the diagnosis of MDR-TB; (d) having the result of sputum culture at the sixth 
month after starting treatment; (e) performance of CT scans within one month before treatment; and (f) clear cavity on CT 
images. The exclusion criteria were as follows: (a) irregular or interrupted treatment; (b) image artifacts or incomplete 
clinical materials; (c) HIV seropositivity or diabetes; and (d) a history of pulmonary surgery, trauma, or other diseases.

According to WHO guidelines,3 longer MDR-TB regimens refer to a total treatment duration of 18–20 months 
consisted of at least four effective anti-TB drugs in the initial phase, and at least three TB agents are used for the rest of 
the treatment after bedaquiline is stopped. According to the 6-month sputum culture conversion result, these patients 
were divided into persistently positive and conversion to negative groups. The persistently positive group was defined as 
the sputum culture results remained positive 6 months after treatment with a longer MDR-TB regimens, otherwise it was 
defined as the conversion to negative groups.

Finally, 315 MDR-TB patients were reviewed for selection. The training cohort recruited in Hospital 1 from 
June 2013 to December 2022 was composed of 250 MDR-TB patients, which included 72 patients with persistently 
positive sputum cultures and 178 patients whose sputum cultures had converted to negative sputum cultures. In addition, 
from December 2020 to December 2022 in Hospital 2, we recruited 65 MDR-TB patients as the testing cohort that 
comprised 30 patients with persistently positive sputum cultures and 35 patients with conversion to negative sputum 
cultures. The patient selection process is depicted in detailedly in Figure 1.

CT Image Acquisition
All pretreatment chest CT images were acquired using a Light Speed VCT, Revolution CT, or Optima CT 680 system 
(GE Healthcare). The scanning parameters were 120 kV tube voltage, automatic tube current modulation, 500 ms rotation 
time, 1.375 pitch, and 512×512 matrix. The image reconstruction parameters for the slice thickness were 1.25 to 1.5 mm.
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Evaluation of Primary CT Signs
The primary CT signs were analyzed separately by two radiologists with rich experience in TB diagnosis, who were 
blinded to the final sputum culture results. The primary signs included (a) TIB sign, (b) consolidation, (c) emphysema, 
(d) enlarged mediastinal lymph nodes, (e) pleural effusion, (f) bronchiectasis, (g) calcified nodules, (h) fibrostripe, (i) 
number of cavities, and (g) wall thickness of cavities. A detailed definition of the CT signs is provided in the 
Supplementary Material.

Cavity Segmentation
Regions of interest (ROIs), that is, the cavities, were manually delineated on the CT images layer-by-layer using a 3D slicer 
(http://www.slicer.org), including circumambient satellite lesions in lung windows. The entire cavity segmentation process 
was performed and confirmed by two experienced radiologists using chest CT images. In addition, the participants were 
blinded to the final results.

Process of Radiomics Feature Extraction
To homogenize the datasets prior to feature extraction, image resampling (to the same voxels of 1×1 × 1 mm3 in-plane 
resolution) was performed to ensure the correct calculation of radiomics features. The discretization of intensity values 
inside the ROIs was followed by a fixed bin width of 25 Hounsfield units, which has been reported to yield the most 
reproducible radiomic features for CT images. In addition, default package image normalization (z-score normalization) 
of PyRadiomics was applied to CT images to mitigate differences in image quality and noise across examinations.

Radiomic features were extracted from the original and filtered images. The Laplacian of Gaussian was applied with five 
different Gaussian values ranging from 1 to 5 mm to the original image. In addition, the wavelet-transformed images were filtered 
using either a low-bandpass filter or a high-bandpass filter in the x-, y-, and z-directions. Radiomics features can be divided into 
three categories: first-order features, shape and size features, and texture features. Detailed information regarding the radiomics 
features is provided in the official documentation of PyRadiomics. (https://pyradiomics.readthedocs.io/en/latest/features.html).

Figure 1 The flowchart of patient selection.
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Feature Selection
The radiomics features were first normalized to the training cohort using the MinMaxScaler method as well as to the 
testing cohort. To overcome the imbalanced dataset of conversion to negative and sputum cultures persistently positive, 
we used the synthetic minority oversampling technique to balance the number of the two groups. Subsequently, the 
maximal information coefficient was applied to select the features according to the maximal information coefficient 
values, which ranged in decreasing order, and the top 200 features were selected. The recursive feature elimination (RFE) 
method was used to further screen the most predictable radiomics features. The RFE algorithm selects features in training 
datasets relevant to the prediction of target labels and removes weak features using importance gain. We used tenfold 
cross-validation to avoid overfitting. Finally, based on the highest cross-validated score, we selected the features to 
construct the model and visualize the process.

Model Construction
Relying on the selected radiomics features, a random forest classifier (RFC) model was trained on the training dataset using 
sputum status as the outcome. In addition, clinical characteristics and primary CT signs with significant differences were 
screened to construct a clinical model using logistic regression. Finally, we established a combined model combining selected 
radiomic features and clinical characteristics using RFC. The training cohort was randomly divided into two parts by the ratio 
of 7:3, then we trained and validated these three models on it by tenfold cross validation. We tested it on an external testing 
cohort by selecting the best model for cross validation. Feature selection and model construction were performed using Python 
scikit-learn package (version 3.8, Scikit-learn Version 0. 21, http://scikit-learn.org/). The radiomics-based machine learning 
workflow pipeline is shown in Figure 2.

Statistical Analysis
Statistical analysis was performed using SPSS software (version 26) and Python Scikit-learn package. The kappa test was 
used to evaluate the inter-reader agreement of the primary CT signs. Continuous variables were analyzed using an 
independent two-sample t-test, whereas differences in categorical variables were analyzed using the χ2-test or Wilcoxon 
test. The predictive performance of the model was quantified through the area under the receiver operator characteristic 
(ROC) curve (AUC) in both the training and testing cohort. The ROC curve was plotted, and the 95% confidence interval 
was calculated. The DeLong test was used to compare the AUCs of these three models in the two cohorts and evaluate 

Figure 2 Workflow of model construction.

https://doi.org/10.2147/IDR.S435984                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2023:16 6896

Lv et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://scikit-learn.org/
https://www.dovepress.com
https://www.dovepress.com


whether overfitting occurred. Decision curve analysis (DCA) was applied to determine the clinical usefulness of these 
models by calculating the net benefits at different threshold probabilities in the training and testing cohorts. Briefly, the 
net benefit is equivalent to the proportion of net true positives. From this binary prediction, the sensitivity, specificity, 
precision, negative predictive value, accuracy, balanced accuracy, and F1-score were determined. The reported statistical 
significance level was two-sided at p < 0.05.

Results
Clinical Characteristics and Primary CT Signs
An overview of the baseline patient characteristics is presented in Table 1. As shown in Table 1, no significant differences were 
found in clinical characteristics and primary CT signs in the training set, except for age, TIB, consolidation, and emphysema. 
The mean age and previous TB treatment duration of patients with persistently positive sputum cultures were higher than those 
of patients who converted to negative sputum cultures (p<0.05). TIB, emphysema and consolidation were more common in 
patients who converted to negative results (p<0.05). In addition, there were no significant difference in clinical characteristics 
and primary CT signs in the testing cohort. The wall thicknesses of the cavities in the two groups are listed in Table 2. This 
shows that the thickness of the cavity wall was not statistically different between the two groups in either the training or the 
testing cohorts. Excellent interobserver agreement was observed for all primary CT signs (k > 0.7, all).

Table 1 Clinical Characteristics and CT Signs of Persistently Positive and Conversion to Negative Sputum Cultures Groups in the 
Training Cohort and Testing Cohort

Characteristic Training Cohort (n=250) p Testing Cohort (n=65) p

Persistently 
Positive

Conversion to 
Negative

Persistently 
Positive

Conversion to 
Negative

(n=72) (n=178) (n=30) (n=35)

Demographic Features

Age (mean±SD years) 42.74±12.15 36.52±15.24 0.002* 45.43±16.19 44.77±12.30 0.853

Previous TB treatment duration, n(%)
≤ 1 year 8 (11.11) 62 (34.83) <0.001* 6 (20.00) 5 (14.29) 0.334

>1 year, ≤5 years 30 (41.67) 69 (38.76) 10 (33.33) 16 (45.71)

>5 years, ≤10 years 22 (30.56) 17 (9.55) 5 (16.67) 9 (25.71)
>10 years 12 (16.66) 30 (16.86) 9 (30.00) 5 (14.29)

Gender, n(%)

Male 50 (69.44) 112 (62.92) 0.328 21 (70.00) 30 (85.71) 0.124
Female 22 (30.56) 66 (37.08) 9 (30.00) 5 (14.29)

Alcohol consumption, n(%)

Yes 13 (18.06) 49 (27.53) 0.116 13 (43.33) 16 (45.71) 0.847
No 59 (81.94) 129 (72.47) 17 (56.67) 19 (54.29)

Smoking, n(%)

Yes 32 (44.44) 68 (38.20) 0.362 14 (46.67) 12 (34.29) 0.310
No 40 (55.56) 110 (61.80) 16 (53.33) 23 (65.71)

CT Signs

TIB, n(%)
Presence 54 (75.00) 158 (88.76) 0.006* 23 (76.67) 28 (80.00) 0.745

Absence 18 (25.00) 20 (11.24) 7 (23.33) 7 (20.00)

Consolidation, n(%)
Presence 59 (81.94) 162 (91.01) 0.043* 19 (63.33) 23 (65.71) 0.841

Absence 13 (18.06) 16 (8.99) 11 (36.67) 12 (34.29)

Emphysema, n(%)
Presence 18 (25.00) 17 (9.55) 0.001* 7 (23.33) 6 (17.14) 0.534

Absence 54 (75.00) 161 (90.45) 23 (76.67) 29 (82.86)

(Continued)
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Feature Selection
In total, 28 radiomics features were extracted based on cavities using RFE according to the highest cross-validation score. 
The results of feature selection and its importance in the radiomics model based on the training cohort are displayed in 
Figure 3. A clustering map of the 28 radiomics features in the training dataset is shown in Figure 4. The radiomic features 
showed obvious clusters that had different responses to conversion from negative to positive.

Model Performance
The predictive model for the status of sputum culture based on radiomics features can differentiate patients with 
conversion to negative sputum cultures from those with persistently positive sputum cultures and achieve an encouraging 
performance. As shown in Figure 5, the AUCs of the radiomics model was 0.892 (95% CI:0.818–0.956) and 0.839 (95% 
CI:0.749–0.922) in the training and testing cohorts, respectively. The F1 scores were 0.842 and 0.764 for the two cohorts. 

Table 1 (Continued). 

Characteristic Training Cohort (n=250) p Testing Cohort (n=65) p

Persistently 
Positive

Conversion to 
Negative

Persistently 
Positive

Conversion to 
Negative

(n=72) (n=178) (n=30) (n=35)

Enlarged mediastinal lymph nodes, n(%)
Presence 28 (38.89) 83 (46.63) 0.265 10 (33.33) 16 (45.71) 0.310

Absence 44 (61.11) 95 (53.37) 20 (66.67) 19 (54.29)

Pleural effusion, n(%)
Presence 22 (30.56) 43 (24.16) 0.296 8 (26.67) 8 (22.86) 0.722

Absence 50 (69.44) 135 (75.84) 22 (73.33) 27 (77.14)

Calcified nodules, n(%)
Presence 28 (38.89) 85 (47.75) 0.202 19 (63.33) 16 (45.71) 0.155

Absence 44 (61.11) 93 (52.25) 11 (36.67) 19 (54.29)

Bronchiectasis, n(%)
Presence 44 (38.89) 97 (54.49) 0.339 20 (66.67) 24 (68.57) 0.870

Absence 28 (61.11) 81 (45.51) 10 (33.33) 11 (31.43)

Fibrostripe, n(%)
Presence 25 (34.72) 57 (32.02) 0.681 14 (46.67) 16 (45.71) 0.939

Absence 47 (65.28) 121 (67.98) 16 (53.33) 19 (54.29)

Number of cavities, n(%)
1–2 cavity 50 (69.44) 142 (79.78) 0.080 22 (73.33) 23 (65.71) 0.507

≥3 cavity 22 (30.56) 36 (20.22) 8 (26.67) 12 (34.29)

Notes: Differences were assessed by t-test, chi-square test. *p < 0.05. 
Abbreviations: SD, standard deviation; TB, tuberculosis.

Table 2 Wall Thickness of Cavities of Persistently Positive and Conversion to Negative Sputum Cultures Groups in the Training 
Cohort and Testing Cohort

Characteristic Training Cohort (n=487) p Testing Cohort (n=127) p

Persistently 
Positive

Conversion to 
Negative

Persistently 
Positive

Conversion to 
Negative

(n=126) (n=361) (n=54) (n=73)

Wall thickness of cavities, n(%)
≤3mm 25 (19.84) 62 (17.17) 0.501 11 (20.37) 12 (16.44) 0.569

> 3mm 101 (80.16) 299 (82.83) 43 (79.63) 61 (83.56)

Note: Differences were assessed by chi-square test.
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The clinical model yielded AUCs and F1 scores of 0.688 (95% CI:0.603–0.770) and 0.525 (95% CI:0.402–0.654) and 
0.619 and 0.543 in the training and testing cohorts, respectively. The combined model showed excellent performance in 
the training cohort, with an AUC and F1 score of 0.913 (95% CI:0.842–0.970) and 0.846, respectively. This was 
confirmed in the testing cohort, with an AUC and F1 score of 0.815 (95% CI:0.723–0.902) and 0.702, respectively. 
Furthermore, the predictive performances of the radiomics, clinical, and combined models were compared between the 
two cohorts. The radiomics model showed greater discrimination power (0.892 and 0.839) than the clinical model (0.688 
and 0.525), respectively) in the training cohort (p=0.002)) and the testing cohort (p<0.0001). Compared with the 
combined model, there were no significant differences in the AUCs between the training (p=0.102) and testing cohorts 
(p=0.180). In addition, the AUCs of the combined model were significantly higher than those of the clinical model during 
the training (p<0.0001) and testing (p<0.0001) cohorts. DCA curves are shown in Figure 6. Radiomics and the combined 
model would offer net benefits over the “treat-all” or “treat-none” schemes within a certain range of thresholds in the 

Figure 3 The 28 radiomics features based on cavity with the highest normalized importance were selected and included.

Figure 4 The clustering heatmap of selected radiomics features in the training dataset. 
Notes: Patients in the training cohort were arrayed on the horizontal axis which included conversion to negative and persistently positive sputum cultures groups. The 28 
radiomics features were arrayed on the vertical axis which included first-order and textural features.
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training and testing cohorts. We also calculated the accuracy, precision, and recall of these models for the two cohorts as 
shown in Table 3). The thresholds for binary classification of the radiomics, clinical, and combined models were 0.650, 
0.514, and 0.638, respectively.

Discussion
Sputum culture results at 6 months of longer MDR-TB regimens are important for subsequent treatment. In the present 
study, we developed a radiomics model based on a cavity and compared it with a clinical model and a combined model. 
Finally, we found that the radiomics model and the combined model could effectively predict sputum status and perform 
much better than the clinical model.

Figure 5 ROC curves of the clinical, radiomics and combined model. 
Notes: (a) Training cohort. (b) Testing cohort.

Figure 6 DCA curves of the clinical, radiomics and combined model. 
Notes: (a) Training cohort. (b) Testing cohort. The net benefit versus the threshold probability is plotted which included black line (all patients with sputum cultures persistently 
positive) and dotted line (all patients with sputum cultures convert to negative). The x-axis and y-axis showed threshold probability and net benefit separately. Only when the model 
has a higher net benefit than the default treat-all (all patients with sputum cultures persistently positive) and treat-none (all patients with sputum cultures convert to negative), it is 
clinically useful. The radiomics and combined model are superior to either treat-all or none strategy within certain ranges of risk threshold.
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This study enrolled and analyzed the clinical characteristics and primary CT signs to build a clinical model. The 
analysis of clinical characteristics revealed that age and previous TB treatment duration were significantly different 
between the persistently positive and conversion to negative sputum culture groups, whereas other features such as sex, 
smoking, and surgical history were not statistically significant. This result is in line with a previous report that MDR-TB 
patients older than 65 years with a history of TB treatment are more likely to experience treatment failure.13 Furthermore, 
some common CT findings, such as consolidation, TIB, and emphysema, were significantly different between the two 
groups. TIB and consolidation are the frequent signs of active TB.14 A previous study suggested that emphysema 
increases the risk of delayed time-to-culture conversion in TB.15 In addition, basic visual assessments of cavities, such as 
the number and wall thickness, were analyzed in this study. However, these factors cannot differentiate patients with 
persistently positive sputum cultures from those with conversion to negative cultures.

The response of MDR-TB patients to treatment was monitored based on monthly sputum cultures, which is the most 
sensitive detection method. The results from cultured isolates are generally available only after 4–8 weeks. Accordingly, at the 
sixth month of treatment, the culture results from the specimens taken at months 4 and 5 were available. For most patients, the 
sputum status is expected to be negative within the first few months of treatment initiation. Persistently positive within 4–6 
months indicates a high risk of treatment failure. More importantly, a review of the regimen and performance of the DST will 
be triggered if the culture remains positive beyond or close to that point.3 Additionally, when the regimens included injectable 
agents such as amikacin, the intensive phase was defined as the initial part of the treatment. Generally, the intensive phase is 
suggested for 6–8 months, whereas extending the duration to 8 months depends on sputum status at the end of the intensive 
phase.16 In addition, the standardized duration of bedaquiline (a Group A anti-tuberculosis agent) was recommended to be 24 
weeks, according to the WHO guidelines.17 Recent reports have revealed that appropriate extension of the duration of 
bedaquiline administration may reduce the rate of sputum culture, reversing to positive.6,18 However, considering the safety 
and drug resistance, the use of bedaquiline for longer than 24 weeks should be specifically addressed.6 Patients with 
persistently positive sputum cultures within the first 6 months should be given priority to prolong bedaquiline use. Finally, 
evidence on the safety and effectiveness of several drugs beyond 6 months, such as delamanid, is insufficient for review, and 
toxicity may increase with the duration of use.3 Therefore, it is necessary to evaluate the therapeutic effects of these drugs 
before deciding whether to prolong their use. In summary, early identification of patients whose sputum culture continuously 
remains positive until sixth months after starting treatment, thus strengthening clinical, drug safety, and microbiology 
monitoring, is helpful in adjusting new treatment regimens when there are early signs of treatment failure or drug intolerance 
and simultaneously reducing adverse events and emergence of drug resistance.

The imaging signs of MDR-TB are diverse and exhibit large individual differences. Therefore, in this study, we 
analyzed a common CT sign of MDR-TB to improve predictive accuracy. Cavitary lesions are an important sign of TB 
and are the biological foundation of MDR-TB.19 Wang et al found that thick-walled multiple cavities were the most 
promising imaging signs for identifying MDR-TB.9 Cavity is a key method of TB transmission and is strongly associated 
with high mycobacterial load.20 Assessing the size and variation of the cavity is of great significance for measuring the 
response to TB treatment.11 However, the analysis of conventional CT signs may be influenced by the subjectivity of 
readers. Radiomics is a method that can reveal deeply and qualify cavity lesion characteristics in sufficient detail. Recent 
studies have built and validated radiomics models based on frequent CT signs such as cavity, TIB, or nodules to 
differentiate MDR-TB from drug-sensitive TB, and have achieved excellent performance.10,21 Yan et al22 showed that 

Table 3 Predictive Performance of Three Models in the Training and Testing Cohorts

Index Training Cohort Testing Cohort

Clinical Model Radiomics Model Combined Model Clinical Model Radiomics Model Combined Model

AUC 0.688 0.892 0.913 0.525 0.839 0.815

Accuracy 0.661 0.836 0.836 0.508 0.800 0.738
Precision 0.652 0.821 0.805 0.475 0.840 0.741

Recall 0.588 0.865 0.892 0.633 0.700 0.667

F1 score 0.619 0.842 0.846 0.543 0.764 0.702
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radiomics features extracted from cavities based on CT images can effectively distinguish nontuberculous 
Mycobacterium pulmonary disease from pulmonary TB. These studies have effectively demonstrated the association 
between cavitary radiomic features and the pathophysiology. In addition, a previous study used machine learning to 
identify patients at a high risk of TB treatment failure.23 They found that forward stepwise selection achieved the best 
performance, and yielded an AUC of 0.74.23 Nevertheless, there is a lack of radiomics research based on cavitary TB to 
predict treatment efficacy at the sixth month after longer MDR-TB regimens.

In our study, we established three predictive models (radiomics, clinical, and radiomics-clinical combined models). 
The results showed that the performance of the clinical model was unsatisfactory, whereas the other two models 
performed well in both training and testing cohorts. In the training cohort, the combined model was slightly better 
than the radiomics model, with an AUC of 0.892, which was lower than that of the testing cohort. However, no 
significant differences between the two models. This implies that the radiomic features extracted from the cavity played 
a more important role in the combined model than the basic clinical characteristics and subjective CT findings. The F1- 
score of the two models were similar in the training cohort. For the testing cohort, the F1-score of the radiomics model 
was higher than that of the combined model, which indicated that the radiomics model may be more stable in clinical 
practice, especially when the sample set is imbalanced. In addition, the DCA curves showed that the radiomics and 
combined model added a greater net benefit than the assumption of “all patients persistently positive sputum cultures” or 
“all converse to negative sputum cultures” across the majority of reasonable threshold probabilities, which could warrant 
high-risk patients with prolonged duration of therapy or other modifications to the treatment regimen.

Our study had some limitations. First, it was a retrospective study with a relatively small sample size. The generalizability 
and reproducibility of the models are uncertain owing to the different characteristics of the patients and CT machines. 
Therefore, it is necessary to increase the amount of data and conduct a prospective study to validate this model in the future. 
Another shortcoming of this research is that we only analyzed a single sign of the cavity and ignored other CT findings, such as 
TIB, nodules, and consolidation. Finally, the study focused on the therapeutic effect in the first sixth month, the ultimate 
treatment outcome of the longer MDR-TB regimens has not been assessed, and it will be our future research target.

In conclusion, this study analyzed and compared the ability of three models (radiomics, clinical, and combined 
models) to predict the therapeutic effect at the sixth month after longer MDR-TB regimens. It found that the radiomics 
model and combined model have excellently predictive potential, especially the radiomics features based on CT imaging 
of cavitary TB have great value in predicting the sputum culture result at the sixth month for patients receiving longer 
MDR-TB regimens, which could guide follow-up treatment.
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