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Objective: Cigarette smoke exposure is one of the major risk factors for the development of chronic obstructive pulmonary disease 
(COPD). Ginseng saponin Rb1 (Rb1) is a natural extract from ginseng root with anti-inflammatory and anti-oxidant effects. However, 
the underlying mechanism of the Rb1 in COPD remains unknown. Therefore, we sought to explore the role of Rb1 in cigarette smoke- 
induced damage and to reveal the potential mechanism.
Methods: The cell viability and lactose dehydrogenase (LDH) activity were analyzed using cell counting kit-8 (CCK-8) and LDH 
release assays. We further investigated the inflammation, apoptosis and oxidative stress markers and analyzed the nuclear factor-kappa 
B (NF-κB) and nuclear factor erythroid-2-related factor 2 (Nrf2) pathways in BEAS-2B cells and COPD rat model following cigarette 
smoke extract (CSE) exposure.
Results: Our results showed that CSE promoted inflammation, apoptosis and oxidative stress in BEAS-2B cells. Rb1 suppressed the 
inflammatory response by inhibiting expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 
(IL-6) and IL-1β and inhibiting the NF-κB signaling pathway. Rb1 possessed the ability to hinder cell apoptosis induced by CSE. In 
addition, Rb1 concurrently reduced CSE-induced oxidative reactions and promoted Nrf2 translocation to nucleus. For in vivo study, 
Rb1 treatment alleviated CSE-induced lung injury, apoptosis, reactive oxygen species (ROS) release and inflammatory reactions. Also, 
Rb1 treatment activated Nrf2 signaling and inactivated NF-κB signaling in COPD rats.
Conclusion: Rb1 attenuates CSE-induced inflammation, apoptosis and oxidative stress by suppressing NF-κB and activating Nrf2 
signaling pathways, which provides novel insights into the mechanism underlying CSE-induced COPD.
Keywords: ginseng saponin Rb1, cigarette smoking exposure, inflammation, oxidative stress, NF-κB, Nrf2

Introduction
Chronic obstructive pulmonary disease (COPD) is a progressive chronic lung disease that is characterized by progressive 
and airflow obstruction.1 COPD is a common disease and a major cause of morbidity and mortality worldwide.2 As the 
population increases, the environment deteriorates, and the problem of aging becomes more pronounced, the number of 
people with COPD is also increasing.3 Oxidative stress and inflammation are the crucial hallmarks of COPD develop
ment. Lung inflammatory and structural cells represent sources of endogenous oxidants that enhance inflammatory gene 
expression, which involve in the pathogenesis of COPD.4 Although recent studies have provided insights into the 
pathogenesis of COPD, there are currently no effective treatments that can fully reverse the damage to the lungs caused 
by the disease. Therefore, it is urgent to investigate novel therapeutic targets and develop novel anti-COPD drugs.

Cigarette smoke exposure is widely accepted to be a major reason for the pathogenesis and progression of COPD, 
which contributes to the excessive inflammatory response in airways, alveoli, and microvasculature.5 Patients with 
COPD showed increased levels of pro-inflammatory cytokines such as interleukin-23 (IL-23), interleukin-1β (IL-1β) and 
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interleukin-6 (IL-6).6 Increasing evidence suggested that NF-κB (nuclear factor-kappa B) is closely relevant to COPD 
occurrence.7,8 NF-κB is an important transcription factor, which plays a key role in the regulation of the stress-associated 
immune response and inflammation.9 When a cell receives a stimulus from the outside environment, inhibitor of NF-κB 
(IκBs) would be phosphorylated and degraded, and subsequent the NF-κB translocates to the nucleus, where it regulates 
the expression of inflammatory cytokines.10 Emerging evidence has manifested that tobacco smoke can lead to oxidative 
stress, thereby affecting airway remodeling under certain pathological conditions in COPD.11 Nuclear factor erythroid- 
2-related factor 2 (Nrf2) is one of the critical regulators of the cellular response to defend against oxidative stress.12 

Under oxidative stress conditions, Nrf2 is isolated from Kelch-like ECH-associated protein 1 (Keap1) and translocate 
into the nucleus from the cytoplasm.13 Upon entering the nucleus, Nrf2 regulates the expressions of downstream 
antioxidant enzymes by binding to the antioxidant response element (ARE).14 Sussan et al15 reported that Nrf2-ARE 
pathway related antioxidant system was impaired in tobacco smoke-induced COPD mice model.

Ginsenoside Rb1 is the major bioactive component in ginseng, which exhibited potential pharmacologic and 
immunologic effects.16,17 Increasing evidence suggested that Rb1 has the potential anti-inflammatory and antioxidative 
effects.18 Zhou et al reported that Rb1 pretreatment alleviated TNF-α-induced inflammatory injury in endothelial cells by 
inhibiting NF-κB, JNK and p38 Signaling Pathways.19 Apoptosis and mitochondrial dysfunction of muscle stem cells can 
be attenuated by Rb1 through the activation of NF-κB signaling pathway.20 In addition, Rb1 effectively alleviates 
triptolide-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.21 Based 
on this, it is speculated that Rb1 might possess anti-inflammatory and antioxidative effect which might be mediated by 
NF-κB and Nrf2 pathways. To further confirm this hypothesis, we investigated the effect of Rb1 against cigarette smoke 
extract (CSE)-induced cytotoxicity in BEAS-2B cells. We also examined the inflammation, oxidative stress, and 
apoptosis markers in BEAS-2B cells. Additionally, we assessed the Nrf2 and NF-κB pathways to better understand 
the mechanism behind the anti-inflammatory and antioxidative effect of Rb1 on CSE-induced BEAS-2B cells. 
Furthermore, in vivo experiments were conducted to demonstrate the effects of Rb1 on CSE-induced inflammation, 
oxidative stress, and apoptosis as well as Nrf2/and NF-κB signaling pathways in COPD rats.

Materials and Methods
Preparation of Cigarette Smoke Extracts (CSE)
Two unfiltered commercial cigarettes (Beidaihe filter-tipped cigarettes; Zhangjiakou Cigarette Factory, Zhangjiakou, 
China), each containing 0.8 mg of nicotine and 10 mg of tar per cigarette, were burned and used to collect smoke into 
10 mL Dulbecco’s modified Eagle’s medium (DMEM; Gibco, USA) at a speed of 2 min per cigarette. The medium was 
sterilized using a 0.22 μm filter. This solution was considered as a 100% CSE solution and stored at −80°C for 
subsequent experiments. This CSE was diluted with medium to different concentration for study.

Cell Culture
Human bronchial epithelial cells (BEAS-2B) were purchased from ATCC and cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) with 10% fetal bovine serum (Gibco; USA) and supplement with 1% penicillin/streptomycin. Cells 
were maintained at 37°C in a humidified atmosphere with 5% CO2 at 37°C. The cells were grown to approximately 90% 
confluence before experiments.

Drug Administration
The Rb1 was purchased from Shanghai Ye Yuan Biotechnology Co. Ltd. (Shanghai, China) and the chemical structures 
of the compounds are shown in Figure 1A. To assess the toxicity effects of Rb1 on cells, cells were exposed to different 
concentrations (1μM, 5μM, 10μM, 20μM) of Rb1 for 6h. According to the results of the cytotoxicity assay, BEAS-2B 
cells were pretreated with the non-cytotoxic Rb1 doses for 6h, and then performed CSE treatment. Once the optimal 
treatment concentration had been determined of Rb1, cells were divided into the following four groups for the 
experiment: control group, Rb1 group, CSE group and CSE+Rb1 group.
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Animals
Twenty-eight male Sprague-Dawley rats (weighted 160 ± 10 g) were purchased from Beijing Weitong Lihua 
Experimental Animals Co. LTD (Beijing, China) and used in the controlled condition at 22±2°C with 50–60% humidity 
under 12-h light/dark cycle. Animals were acclimated for 7 days with free access to food and water. The rats were 
randomly divided into control, Rb1, COPD, and COPD+Rb1 groups (n = 7 in each group).

COPD Model Establishment
The COPD rat model was established by cigarette smoke exposure combined with endotracheal injection of lipopoly
saccharide (LPS) as described previously.22 Briefly, on day 1 and day 14, rat was instilled 200μg LPS (0.4 μg/μL, 50 μL) 
through the throat of rats after anesthesia with 5% isoflurane. To ensure uniform distribution of LPS in the lungs, the rats 
were gently swayed on a board for 20 seconds after each instillation. Subsequently, on days 2 to 13 and 29 to 30, the rats 
were confined in a covered box (70 cm × 60 cm × 60 cm) and exposed to the smoke of eight continuously burning 
commercial cigarettes (Beidaihe filter-tipped cigarettes; Zhangjiakou Cigarette Factory, Zhangjiakou, China) for 
a duration of 30 minutes each time. The rats in the control group and Rb1 group were intratracheally injected with an 
equal amount of sterile water at the same time point, and they were also exposed to air using a similar procedure. In the 

Figure 1 Rb1 ameliorated CSE-induced cell viability and LDH leakage. (A) Structures of Rb1. (B) Cell viability of BEAS-2B cells treated with different concentration of CSE. 
(C) Cell viability of BEAS-2B cells treated with different concentration Rb1. (D) Rb1 attenuated the CSE-induced decrease in cellular viability in BEAS-2B cells. (E) Rb1 
attenuated the release of LDH induced by CSE. *P<0.05, **P<0.01. 
Abbreviation: ns, not significant.
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Rb1 group and COPD+Rb1 group, Rb1 (20 mg/kg) was intraperitoneally injected from the 15th day and up to day 28.23 

Rats in the Control and COPD group were intraperitoneally given an equal volume of saline. At the end of experiments, 
rats were sacrificed by dislocation and lung tissues were immediately collected for further experiments.

Pathological Examination
Pathological examination was performed by haematoxylin eosin (HE) staining in lung tissues. Lung tissues were 
immerged in 4% paraformaldehyde (Beyotime, China) for fixation and embedded in paraffin. Slides with 5-μm thickness 
were cut, then deparaffinated with xylene and rehydrated with descending concentration of ethanol (100%, 95%, 80%, 
and 70% for 2 min, respectively). Next, slides were stained with haematoxylin solution for 5 min and with 0.5% eosin 
(Beyotime, China) for 1 min. Pathological changes of lung tissues were evaluated under a microscope (Nikon, Japan).

Cell Viability Assay
Cell viability assay was conducted using the Cell Counting Kit-8 (CCK-8). Briefly, Beas-2B cells were seeded into 96- 
well plates and placed in an incubator at temperature of 37°C with 5% CO2 and later incubated with CSE and at different 
concentrations. Then, 10 μL CCK-8 solutions was added to the cells and incubated for 1 h in the dark. Finally, the 
absorbance values were measured at 450 nm by a microplate reader (Thermo Fisher).

Lactate Dehydrogenase (LDH) Assay
BEAS-2B cells were plated onto a 96-well plate and then exposed to varying concentrations of Rb1. The LDH 
cytotoxicity assay kit (Dojindo Laboratories, Japan) was employed to examine the levels of LDH in accordance with 
the manufacturer’s instructions. Immediately afterward, the optical densities at 490 nm were measured by means of 
a microplate reader in order to gauge absorbance.

Quantitative Real-Time PCR (qRT-PCR)
TRIzol (Tiangen, China) was used to extract total RNA from the cells or lung tissues. Next, the total RNA was reverse 
transcribed using a reverse transcription kit (Tiangen, China) following the manufacturer’s instructions. qRT-PCR was 
carried out in a CFX96 instrument (Biorad, USA) using the SuperReal PreMix (SYBR Green) qRT-PCR kit (Tiangen, 
China). The expression levels were analyzed using the 2-ΔΔCt method after normalization to β-actin. The qRT-PCR 
primers can be found in Table 1.

Western Blot
Total protein was extracted from cells or lung tissues using RIPA lysis, and concentration was determined via BCA assay 
kit. Equal amounts of protein were then separated via SDS-PAGE and transferred to a PVDF membrane. Blots were 
incubated with primary antibodies overnight. The primary antibodies are as follows: anti-Cleaved Caspase-3 (1:500; 
ab2302; Abcam), anti-Bax (1:500; ab32503; Abcam), anti-Bcl-2 (1:500; ab182858; Abcam), anti-β actin (1:500; ab8226; 
Abcam), anti-Nrf2 (1:500; ab137550; Abcam), anti-Histone H3 (1:500; ab1791; Abcam), p-IκBα (1:500; sc-8404 Santa 
Cruze), IκBα (1:500; ab32518; Abcam), and NF-κB (1:500; 10,745-1-AP; Proteintech). HRP-conjugated goat anti-rabbit 

Table 1 The Primer Sequences Used for qPCR Analysis

Gene Forward Primers Reverse Primers

TNF-α GTGCTTGTTCCTCAGCCTCT ATGGGCTACAGGCTTGTCAC

IL-6 AGACAGCCACTCACCTCTTCAG TTCTGCCAGTGCCTCTTTGCTG

IL-1β CCACCTCCAGGGACAGGATA TCAACACGCAGGACAGGTAC

HO-1 GTGCCACCAAGTTCAAGCAG CAGCTCCTGCAACTCCTCAA

Nqo1 CCTGCCATTCTGAAAGGCTGGT GTGGTGATGGAAAGCACTGCCT

Gclc TCCAGGTGACATTCCAAGCC GAAATCACTCCCCAGCGACA
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IgG (1:1000; 7074; Cell signaling) was used as secondary antibody. β-actin and Histone H3 was used as the internal 
reference and quantification of the band densities was obtained using the ImageJ software.

Measurement of Intracellular Reactive Oxygen Species (ROS) Levels
The level of intracellular ROS was measured using the fluorescent probe DCFH-DA and Dihydroethidium (DHE) 
staining. For DCFH-DA testing, cells were seeded onto a 6-well plate for 24 h. Following drug treatment, cells were 
incubated with 2 μM DCFH-DA in the absence of light at a temperature of 37°C for 20 min. Further, cells were washed 
twice using cold PBS. For DHE staining, cells were rinsed twice using PBS, incubated with 2µM DHE at 37°C for 30 
min, and then washed with PBS and mounted with DAPI. In lung tissues, oxidative stress was assessed by measuring the 
intracellular ROS via staining with DHE as previously reported.24 Lastly, fluorescence images of cells were observed 
using fluorescence microscopy (Olympus, Japan).

Biochemical Analysis
The level of malondialdehyde (MDA) content was determined through employment of the thiobarbituric acid reactive 
substances (TBARS) assay. Additionally, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) were 
appraised using colorimetric kits, respectively (Nanjing Jiancheng Bioengineering Institute, China). The specific pro
cesses entailed in each assay were performed in conformance with the instructions in the corresponding assay kits.

Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick-End Labeling (TUNEL) 
Staining
TUNEL staining was used to detect the cell apoptosis. In brief, cells were fixed via utilization of a 4% formaldehyde 
solution and permitted to remain so for duration of 30 min following culture. For lung tissue, slides were digested using 
proteinase K (20 µg/mL, Sigma) at 37°C for 1 h after dewaxing with xylene and rehydration with descending 
concentrations of ethanol. Subsequently, cells and slides were added with TUNEL reagent (Roche, Shanghai, China) 
and incubated at a temperature of 37°C for 1 h. After that, the nuclei were counterstained employing DAPI (Beyotime, 
Shanghai, China) and cells were washed utilizing PBS solution. Lastly, apoptotic cells were observed with a fluorescent 
microscope (Olympus, Japan).

Statistical Analysis
The data were presented as mean ± SEM, and the statistical analyses were conducted using SPSS 23.0 software (IBM 
Corporation, Armonk, NY, USA). To determine the intergroup differences, one-way ANOVA followed by Duncan’s 
multiple range tests was performed. Significance was set at P<0.05.

Results
Effects of CSE and Ginseng Saponin Rb1 on Cell Viability
To verify the effect of different CSE or Rb1 doses on the viability of BEAS-2B cells, and CCK-8 assay was performed. 
CCK-8 assay revealed that BEAS-2B cell viability was decreased markedly by CSE treatment in a concentration- 
dependent manner and reduced to ~58% at 6% concentration (Figure 1B). We next sought to validate the cytotoxic of 
Rb1 on BEAS-2B cells. Administration of Rb1 at concentrations of 1, 5, and 10 µM exhibited no cytotoxicity, whereas 
a higher concentration at 20 µM significantly increased cell viability (Figure 1C). In addition, we found that Rb1 (1, 5 
and 10 μM) significantly enhanced CSE-induced BEAS-2B cell viabilities, partly in a dose-specific manner (Figure 1D). 
Moreover, in the LDH release assays, there was a markedly suppressed of Rb1 treatment (Figure 1E). Based on the 
results, Rb1 treatment at 10 μM was used for further assays.

Rb1 Abolished CSE-Induced Inflammation Responses in BEAS-2B Cells
Inflammation plays an important role in the progression of COPD. In the present study, we evaluated the effect of Rb1 on CSE- 
induced inflammation. As shown in Figure 2A–C, CSE significantly increased the gene expression, including TNF-α, IL-6, and 
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IL-1β compared with control group, while its increasing effect attenuated significantly by Rb1 treatment. Then, the secretion 
levels of inflammatory factors were measured via ELISA. The content of TNF-α, IL-6, and IL-1β were rapidly increased in 
response to the CSE treatment compared with the levels found in the control group. Interestingly, Rb1 treatment significantly 
attenuated the CSE-induced elevation of inflammation factors level in BEAS-2B cells (Figure 2D–F).

Rb1 Reduced CSE-Induced Cell Apoptosis in BEAS-2B Cells
We further focused on the apoptotic to understand the possible mechanisms of BEAS-2B cells apoptosis after Rb1 
treatment. The protein expressions of cleaved-Caspase-3, Bcl2 and Bax were first performed by Western blot. As shown 
in Figure 3A–C, CSE significantly increased Cleaved-Caspase-3 protein expression and decreased the ratio of Bcl2/Bax 
compared with control group, whereas Rb1 pre-treatment decreased the expression of Cleaved-Caspase-3 and increased the 
ratio expression of Bcl2/Bax compared with CSE-treated cells. To further investigate the impact of Rb1 on the apoptosis of 
CSE-induced BEAS-2B cells, we performed flow cytometry analysis using Annexin V-FITC. In comparison with the 
control group, the rate of apoptosis was significantly increased in the CSE group, however, treatment with Rb1, the rate of 
apoptosis induced by CSE was reduced from 12% to 7% (Figure 3D and E). Additionally, our results indicated that the 
apoptotic BEAS-2B cells were markedly increased after CSE, whereas this increase in CSE-induced TUNEL-positive was 
attenuated by Rb1 administration (Figure 3F and G).

Figure 2 Rb1 ameliorated CSE-induced inflammation in BEAS-2B cells. (A) Relative mRNA expression level of TNF-α. (B) Relative mRNA expression level of IL-6. (C) 
Relative mRNA expression level of IL-1β. (D) The concentration of TNF-α in BEAS-2B cells detected via ELISA. (E) The concentration of IL-6 in BEAS-2B cells detected via 
ELISA. (F) The concentration of IL-1β in BEAS-2B cells detected via ELISA. **P<0.01. 
Abbreviation: ns, not significant.
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Rb1 Inhibited CSE-Induced Oxidative Stress in BEAS-2B Cells
To investigate the effects of Rb1 against oxidative stress induced by CSE in BEAS-2B cells, the ROS levels were first 
measured by DCFH-DA staining. We found that the cells treated with CSE exhibited brighter green fluorescence than 
control cells, implying that CSE treatment led to an increase in intracellular ROS levels. However, Rb1 significantly 

Figure 3 Rb1 ameliorated CSE-induced apoptosis in BEAS-2B cells. (A) Western blot was used to detect the effects of Rb1 on cleaved caspase-3, Bax and Bcl-2 protein 
expression. (B) Histogram of cleaved caspase-3 protein expression. (C) Histogram of Bcl-2 / Bax protein ratio. (D) Flow cytometry analysis of apoptosis. (E) Apoptosis rate 
of BEAS-2B cells. (F) TUNEL staining was used to assess the effects of Rb1 on the apoptosis of BEAS-2B cells. (G) Percentage of TUNEL positive cells. **P<0.01. 
Abbreviation: ns, not significant.
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reduced the fluorescence intensity of ROS induced by CSE (Figure 4A and B). In addition, DHE staining was further 
used to determine the levels of ROS in BEAS-2B cells. As shown in the Figure 4C and D, Rb1 also reduced the CSE- 
induced ROS production as evidenced by the DHE immunofluorescence. Next, we determined MDA content as well as 
SOD and CAT activities in BEAS-2B cells. We found that CSE stimulation significantly enhanced MDA levels in BEAS- 
2B cells compared with control group (P<0.01), and this effect was reversed by Rb1 treatment (Figure 4E). Meanwhile, 
CSE stimulation reduced SOD and CAT expression in BEAS-2B cells compared with control group and these treads were 
similar reversed by Rb1 exposure (Figure 4F and G).

Figure 4 Rb1 ameliorated CSE-induced oxidative stress in BEAS-2B cells. (A) ROS was measured using DCFH-DA fluorescence probe in BEAS-2B cells after Rb1 treatment. 
(B) Quantification of intensity of the DCFH-DA fluorescence. (C) Representative images of DHE staining. (D) Quantitative analysis of DHE-positive cells. (E–G) The levels 
of MDA, SOD and CAT. *P<0.05, **P<0.01. 
Abbreviation: ns, not significant.
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Rb1 Activated Nrf2 and Inhibited NF-κb Signaling Pathways in BEAS-2B Cells
To explore the potential anti-inflammatory mechanisms of Rb1, we used Western blot analysis to determinate the levels of IκB 
phosphorylation and nuclear translocation of NF-κB in BEAS-2B cells. CSE significantly induced the phosphorylation of IκB 
compared with control group, resulting in the degradation of total IκB and the increased phosphorylation of NF-κB, while 
treatment with Rb1 inhibited the phosphorylation of IκB (Figure 5A) and NF-κB nuclear translocation induced by CSE 
(Figure 5B and C). In order to investigate the antioxidant mechanism of Rb1, we measured the levels of Nrf2 nucleus transport 

Figure 5 Rb1 abolished the effects of CSE on NF-κB/Nrf2 signaling pathways in BEAS-2B cells. (A) Representative blots and statistical graphs of relative protein expression 
of p-IκBα and IκBα. (B and C) Representative blots and statistical graphs of relative protein expression of NF-κB in cytoplasm and nucleus. (D), Representative blots of 
Western blot for cytoplasmic and nuclear Nrf2. (E and F) Statistical graphs of cytoplasmic and nuclear Nrf2 protein. (G–I), Relative mRNA expression levels of HO-1. Nqo1 
and Gclc. **P<0.01. 
Abbreviation: ns, not significant.
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in the BEAS-2B cells. As shown in Figure 5D–F, compared with the control group, the levels of Nrf2 in cytoplasm and nucleus 
from the Rb1 group were no significantly difference. However, CSE led to a significant reduction in the expression of Nrf2 in 
the nucleus than that of control group, while treatment with Rb1 increased the nuclear translocation of Nrf2 compared with 
CSE-treated cells. Then, the mRNA levels of Nrf2 target genes NADPH quinone dehydrogenase 1 (Nqo1), heme oxygenase 1 
(HO1) and glutamate-cysteine ligase catalytic subunit (Gclc) were evaluated by qPCR. Consist with the expression levels of 
Nrf2 in the nucleus, a significantly decreased trend of HO-1, NQO-1 and Gclc expression was observed in the CSE group 
compared with control group (P<0.01), whereas the expression of these genes was significantly increased in the Rb1 treatment 
group compared with CSE group (P<0.01) (Figure 5G–I).

Rb1 Alleviated CSE-Induced Lung Injury, Apoptosis, Oxidative Stress and Inflammation 
in Rats
To investigate the effect of Rb1 on CSE-induced COPD, the rat COPD model was established and pathological changes 
of lung tissues were evaluated by HE staining. As shown in Figure 6A, rats in COPD group exhibited significant enlarged 
alveolar air spaces and lung parenchyma destruction compared with rats in control group and Rb1 group; while Rb1 
treatment remarkably alleviated lung injury in COPD rats. The results from TUNEL deciphered that CSE promoted cell 
apoptosis, whereas treatment of Rb1 reduced apoptotic cells (Figure 6B). Also, the treatment of Rb1 significantly 
abolished CSE-induced ROS release (Figure 6C). Additionally, injection of CSE extremely enhanced the accumulation of 
TNF-α, IL-6, and IL-1β compared with control group; application of Rb1 reversed the pro-inflammatory effects of CSE 
by inhibiting the production of TNF-α, IL-6, and IL-1β (Figure 6D–F).

Rb1 Activated Nrf2 and Inactivated NF-κb Signaling Pathways in COPD Rats
Subsequently, the effect of Rb1 on NF-κb signaling pathway in COPD rats was evaluated using Western blot analysis. 
Application of CSE remarkably promoted the phosphorylation of IκB and nuclear translocation of NF-κB compared with 
control group, whereas Rb1 treatment significantly decreased the phosphorylation of IκB and NF-κB nuclear transloca
tion (Figure 7A–C). Additionally, we investigated the anti-oxidative effect of Rb1 by measuring the levels of Nrf2 
nucleus transport in COPD rats. As displayed in Figure 7E and F, the expression of nuclear Nrf2 was inhibited by CSE 
compared with control group, whereas Rb1 treatment enhanced the nuclear translocation of Nrf2 in CSE-induced COPD 
rats. Meanwhile, CSE significantly decreased the production of HO-1, NQO-1 and Gclc compared with control group 
(P<0.01), while Rb1 treatment reversed the effects of CSE on HO-1, NQO-1 and Gclc in COPD rats (Figure 7G–I).

Discussion
Reactive oxygen species (ROS) plays a pivotal role in promoting inflammatory response via activating and phosphor
ylating mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors including NF-κB and 
activator protein-1, which lead to harmful events such as increase in apoptotic alveolar epithelial and endothelial cells, 
hypersecretion of mucus and enhanced epithelial permeability during the development of COPD.25,26 Over the last few 
years, many studies have displayed that Rb1 has various pharmacological effects including antioxidant, anti- 
inflammation and anti-apoptosis.27,28 Herein, our study exhibited that Rb1 could improve CSE-induced oxidative stress, 
inflammation and apoptosis in the BEAS-2B cells and rats. Additionally, our study showed that the potential anti- 
inflammation and antioxidant effects of Rb1 might be related to its ability to regulate the NF-κB and Nrf2 signaling 
pathways.

The adverse effects of CSE on human health and the environment are gotten increasing public attention.29 CSE have 
increased risk of developing diseases such as lung and other cancers, COPD, cardiovascular disease, stroke as well as 
periodontitis.30 In addition, CSE is a major contributor to chronic diseases, largely due to the inflammation response.31 It 
was mentioned that. CSE also induced upregulation of TNF-α and IL-1β in the lungs and macrophages.32 Jin et al 
reported that lung tissues are continuously exposed to CSE could result in serum concentrations of TNF-α.33 Compelling 
evidence has reported that CSE could induce death or apoptosis. Exposure to CSE (in vitro and in vivo) triggers a strong 
inflammatory and pro-apoptotic response in the epithelium,34 In additional, CSE-induced apoptosis and inflammation in 
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BEAS-2B cells.35 Rb1 has anti-inflammatory effects in Staphylococcus aureus (S. aureus)-induced acute lung injury both 
in vivo and in RAW 264.7 macrophage cells.36 Moreover, Piao et al reported that Rb1 has a significant protective effect 
against PM2.5-induced skin cell apoptosis.37 Given the repeatedly documented anti-inflammatory and anti-apoptosis 
effects of Rb1, we presume that Rb1 might inhibit CSE-induced inflammation and apoptosis. Our results were in 
agreement with the previous findings, which demonstrated that CSE induced inflammatory cytokine release and cell 
apoptosis in BEAS-2B cells after exposure to CSE, including TNF-α, IL-6, and IL-1β, whereas Rb1 treatment suppressed 
CSE-induced inflammatory factors and inhibited cell apoptosis.

Figure 6 Rb1 alleviated CSE-induced lung injury, apoptosis, oxidative stress and inflammation in rats. (A) Pathological changes of lung tissues after injection of CSE and 
treatment of Rb1 using HE staining. (B) TUNEL staining detecting cell apoptosis after injection of CSE and Rb1 treatment using HE staining. (C) DHE staining measuring 
intracellular ROS in COPD and Rb1 treatment rats. (D–F) Relative mRNA expression levels pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β. **P<0.01. 
Abbreviation: ns, not significant.
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NF-κB is composed of P50/P65 heterodimer and plays a critical role in inflammation.38 Under normal physiological 
condition, NF-κB is located in the cytoplasm where it is present inactive state by bounding to the protein IκB.39 In response to 
stimulation, IκB kinase complex (IKK) is activated and phosphorylates IκBα which causes ubiquitination and degradation of 
IκBα. Subsequently, p65-p50 subunit is released from the p65-p50/IκBα complex and translocased into the nucleus, thereby 

Figure 7 Rb1 activated Nrf2 and inactivated NF-κb signaling pathways in COPD rats. (A) Representative blots and statistical graphs of relative protein expression of p-IκBα 
and IκBα. (B and C) Representative blots and statistical graphs of relative protein expression of cytoplasmic and nuclear NF-κB. (D) Representative blots of Western blot 
analysis for cytoplasmic and nuclear Nrf2. (E and F) Statistical graphs of cytoplasmic and nuclear Nrf2 protein. (G–I) Relative mRNA expression levels of HO-1, Nqo1 and 
Gclc determined by qRT-PCR. **P<0.01, *P<0.05. 
Abbreviation: ns, not significant.
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promoting the production of pro-inflammatory cytokines. Therefore, we examined the level of IκB and p65 in BEAS-2B cells 
in order to evaluate the impact of Rb1 on the NF-κB signaling pathway after CSE. The result indicated that Rb1 inhibit NF-κB 
activation by decreasing the levels of p-IκB and preventing nuclear translocation of NF-κB p65, which suggests that Rb1 
exhibits anti-inflammatory effects in COPD by modulating the NF-κB signaling pathway.

Oxidative stress is a result of an imbalance between ROS production and consumption, and maintaining cell redox 
balance is crucial for cell survival and tissue homeostasis.40 The study found that CSE induces activation of oxidative 
stress, which can be assessed by increased production of ROS.41 In the present study, we also found that ROS production 
was increased. 4-HNE is a product of lipid peroxidation, which is considered as indicator of oxidative stress.42 Our data 
revealed that 4-HNE levels were significantly reduced after Rb1 treatment. In addition, our results showed an increase in 
MDA a decrease in SOD and CAT enzymes, and a decrease in SOD and CAT enzymes, implying oxidative stress 
activation. However, the administration of Rb1 was found to have an antioxidant stress effect, suppressing the increase in 
MDA and the reduction of both CAT and SOD in BEAS-2B cells induced by CSE. These observations suggested that 
oxidative stress is involved in COPD pathogenesis and Rb1 has an excellent antioxidant stress effect.

It has been demonstrated that Nrf2 is a crucial transcription factor to protect the cells from oxidative stress.43 Upon 
being triggered by oxidative stress, Nrf2 will journey to the nucleus where it will attach to the antioxidant element known 
as ARE to enhance the expression of antioxidant genes.44 Hence, we evaluated the activation of Nrf2 by measuring its 
levels in both the nucleus and cytoplasm following CSE exposure. Our results demonstrated that Rb1 activates the Nrf2 
signaling pathway, which protects against oxidative stress in BEAS-2B cells. Furthermore, we assessed the levels of 
Nrf2-mediated downstream antioxidant products, like HO-1 and NQO-1, to verify the activation state of Nrf2 signaling. 
Our data suggest that the mRNA levels of HO-1, NQO-1 and Gclc also increased with Nrf2 activation after Rb1 
treatment. These results illustrate well the fact that Rb1 could decrease CSE-induced oxidative damage through 
activation of the Nrf2 signaling pathway.

In conclusion, our present study demonstrated that administration of Rb1 is effective in preventing CSE-induced 
COPD. Rb1 can reduce CSE-induced inflammatory response by inhibiting NF-κB signaling pathway and abolish 
oxidative stress response by stimulating Nrf2 signaling pathway. Our results provide more insights into the pathogenesis 
of COPD and the protective effects of Rb1.

Limitations
There are some limitations to our study that need to be addressed in future studies. First, although we have demonstrated 
that treatment with Rb1 could alleviate CSE-induced inflammation, apoptosis, and oxidative stress via activating Nrf2 
and inhibiting NF-κB signaling pathway, the effect of Rb1 on the upstream and downstream key regulatory genes or 
proteins of Nrf2/NF-κB signaling pathway remains unclarified; hence, it is essential to investigate the upstream and 
downstream regulatory targets of Nrf2/NF-κB signaling pathways. Second, we only demonstrated the effect of Rb1 using 
in vivo and in vitro experiments; further studies should be conducted to validate our results in clinical trials.

Data Sharing Statement
All data can be accessed upon reasonable inquiry to the corresponding author.

Disclosure
There is no conflict of interest.
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