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Abstract: Alcoholic liver disease (ALD)—one of the most common liver diseases — involves a wide range of disorders, including 
asymptomatic hepatic steatosis, alcoholic hepatitis (AH), liver fibrosis, and cirrhosis. Alcohol consumption induces a weakened gut 
barrier and changes in the composition of the gut microbiota. The presence of CYP2E1 and its elevated levels in the gastrointestinal 
tract after alcohol exposure lead to elevated levels of ROS and acetaldehyde, inducing inflammation and oxidative damage in the gut. 
At the same time, the influx of harmful molecules such as the bacterial endotoxin LPS and peptidogly from gut dysbiosis can induce 
intestinal inflammation and oxidative damage, further compromising the intestinal mucosal barrier. In this process, various oxidative 
stress-mediated post-translational modifications (PTMs) play an important role in the integrity of the barrier, eg, the presence of 
acetaldehyde will result in the sustained phosphorylation of several paracellular proteins (occludin and zona occludens-1), which can 
lead to intestinal leakage. Eventually, persistent oxidative stress, LPS infiltration and hepatocyte damage through the enterohepatic 
circulation will lead to hepatic stellate cell activation and hepatic fibrosis. In addition, probiotics, prebiotics, synbiotics, fecal microbial 
transplantation (FMT), bioengineered bacteria, gut-restricted FXR agonists and others are promising therapeutic approaches that can 
alter gut microbiota composition to improve ALD. In the future, there will be new challenges to study the interactions between the 
genetics of individuals with ALD and their gut microbiome, to provide personalized interventions targeting the gut-liver axis, and to 
develop better techniques to measure microbial communities and metabolites in the body. 
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Introduction
With socioeconomic development, lifestyle changes, and increased social openness, alcohol abuse, alcohol dependence, 
and alcoholism have become one of the most serious public health problems worldwide. In 2016, it was reported that 
32.5% of the world’s population drinks alcohol, of which 1.5 billion are male drinkers and 900 million are female 
consumers.1 However, alcohol consumption varies from one country to another.2 In the same year, alcohol ranked 
seventh among risk factors for disability or death and was the leading risk factor for dangerous diseases in people aged 
15–49 years.1 Alcoholic liver disease (ALD) is the most widespread type of chronic liver disease globally. ALD can be 
classified as mild alcoholic liver disease, alcoholic hepatic steatosis, alcoholic hepatitis, alcoholic liver fibrosis, and 
alcoholic liver cirrhosis.3 In 2017, alcohol-related liver cirrhosis and cancer accounted for 1% of all deaths, and this is 
expected to increase in the future.1,4 The prevalence of ALD in Asia has increased significantly from 3.82% in 2000– 
2010 to 6.62% in 2011–2020, and ALD is expected to be the leading cause of chronic liver disease in Asia.5 China is 
currently the second largest alcohol consumer worldwide.6,7 Alcohol has also become the second leading cause of liver 
injury after viral hepatitis.8 A Chinese survey has shown that the drinking rate of adult residents in Liaoning Province is 
35.30%, while the drinking rate, hazardous drinking rate, and harmful drinking rate of residents in Tongzhou District of 
Beijing were 45.29, 3.63, and 4.03% respectively.9,10
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The pathogenesis of ALD has not been fully elucidated. Current studies mainly evaluate the direct toxic effects of ethanol and 
its metabolites on the liver, oxidative stress, lipid metabolism, autophagy, genetics, gender, non-coding RNAs, and the gut 
microbiome. Early stages of ALD are not often accompanied by obvious symptoms. Traditional biochemical testing methods are 
less sensitive, and histopathological testing is invasive. Currently, no effective drugs are approved for the treatment of patients 
with ALD.11 Although abstinence from alcohol is the basic treatment for all stages of ALD, patient compliance is poor. When the 
disease progresses to advanced stages, liver transplantation is the only effective treatment. End-stage liver disease not only causes 
physical and mental burdens to patients and their families but also causes great socioeconomic pressure.12

ALD has several unmet clinical needs and challenges, including noninvasive screening methods for disease diagnosis 
and prognostic assessment, development of therapeutic targets, and selection criteria for liver transplant patients. This 
review summarizes the relationship between gut dysbiosis and ALD to provide new strategies for the treatment of ALD.

Gut Microbiome
The gut microbiota contains numerous bacteria, archaea, fungi, and viruses. The number of bacteria in the gut is similar 
to that of human cells.13,14 Although the human microbiome has a genome of over 3 million genes, it is far more complex 
than the human genome.13,14 Thickobacterium and Bacillus are the two most dominant bacterial phyla in the gut, 
accounting for almost 90% of all bacteria; the former includes over 200 different genera (eg, Lactobacillus, Bacillus, 
Clostridium, and Enterococcus).15 Approximately 85% of bacteria (such as Lactobacillus and Bifidobacterium) are 
commensal organisms, while the rest (such as Clostridium and Clostridium) may be pathogenic.16 Studies have 
confirmed that normal gut microbiota not only participates in the digestion, decomposition, synthesis, and absorption 
of substances in the intestinal lumen, provides nutritional support to intestinal mucosal cells, and maintains normal 
physiological functions of the body but also resists the colonization and growth of foreign bacteria, activates the intestinal 
immune system, and constitutes an intestinal mucosal barrier together with intact intestinal mucosal epithelial cells.

The various biological functions of the liver are related to the normal gut microbiota. Bile acids secreted by the liver can inhibit 
pathogenic bacteria in the gut and regulate the balance of gut microbiota. Additionally, gut microbiota metabolites can participate 
in the metabolism of fats, proteins, sugars, vitamins, and hormones by the liver through enterohepatic circulation. All imbalances 
or alterations in the taxonomic composition and/or function of the gut microbiota are referred to as “dysbiosis”.17 Currently, 
various studies have demonstrated that changes in the gut microbiota are associated with diabetes,18 Alzheimer’s disease,19 

obesity,20 nephropathy,21 autism,22 polycystic ovary syndrome,23 amyotrophic lateral sclerosis,24 childhood malnutrition,25 

premature aging,26 tumors,27 inflammatory bowel disease,28 irritable bowel syndrome,29 and celiac disease.30 Recent studies 
have shown that liver diseases are closely associated with gut dysbiosis, including chronic viral infections, non-alcoholic fatty 
liver disease, ALD, and hepatocellular carcinoma.31,32 The liver receives most of the blood from the gut through the portal vein 
and is, therefore, most exposed to potential bacterial products or metabolites such as lipopolysaccharides, peptidoglycan, short- 
chain fatty acids, and bile acids.33 Bacterial products or metabolites can activate Kupffer cells, neutrophils, hepatocytes, sinusoidal 
endothelial cells, and stellate cells, promoting the release of inflammatory mediators (tumor necrosis factor alpha (TNF-α) and 
interleukin 6 (IL-6)), leading to liver injury and disease.33

The Effect of Alcohol on the Number and Composition of Gut Microbiota
Diets with much fat or sugar can affect the composition of the gut microbiota.34 Excessive alcohol consumption can lead to 
a predominance of pathogenic bacteria. Mutlu et al35 demonstrated that the ileum and colon of rats gavaged with alcohol daily for 
10 weeks showed dysbiosis. It was found that alcohol promoted the growth of Gram-negative bacteria such as the Aspergillus 
phylum in the gut, thereby reducing the number of anaerobic bacteria such as Bifidobacterium.36 Compared with healthy controls, 
alcoholics had more Gram-negative anaerobic and aerobic bacteria in their jejunal fluid.37 In the ALD group, the incidence of 
small intestinal bacterial overgrowth was almost three times higher than that in non-alcoholic controls.38 Alcoholic hepatitis 
patients have an elevated proportion of cytolytic-positive fecal enterococci, which correlates with the severity and mortality of 
liver disease.39 In addition to bacteria, the role of gut fungi has attracted considerable attention. Compared with non-alcoholic 
controls, alcoholics had a lower abundance and diversity of fungal species.40,41 Candida albicans and its exotoxin candidin were 
found to exacerbate ethanol-induced ALD, which is associated with increased mortality.42 Table 1 summarizes the studies that 
observed changes in the gut microbiota of ALD patients.

https://doi.org/10.2147/IJGM.S420195                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2023:16 3736

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Numerous animal experiments have confirmed the importance of gut microbiota and their metabolites in ALD. 
Visapää et al52 used ciprofloxacin in a rat model of ALD and found that the concentration of acetaldehyde in the gut 
lumen and portal blood was greatly reduced, confirming the role of the gut microbiota in alcohol metabolism. Llopis 

Table 1 Studies That Assessed Changes in the Gut Microbiota in ALD Patients

Study Participant (n) Methodology Overgrown Microbes and Depleted 
Microbes in the ALD Group

ALD without cirrhosis
Bode et al37 Alcoholic patients (27) vs 

Healthy control (13)

Aerobic and anaerobic 

bacterial culture of jejunal 
juice aspirated in the 

fasting state

↑Gram-negative anaerobic bacteria, 

↑Endospore-forming rods, ↑Coliform 
microorganisms

Kirpich et al43 Alcoholic patients (66) vs 
Healthy control (24)

Quantitative culturing of 
stool samples

↓Bifidobacteria, ↓Enterococci, ↓Lactobacilli

Mutlu et al44 Alcoholics with and without 

ALD (47) vs Healthy control 
(18)

PCR and multi-tag 

pyrosequencing of 
sigmoid mucosa biopsies

↓Bacteroidetes, ↑Proteobacteria

Leclercq et al45 Alcohol dependent patients 

(60) vs Healthy control (15)

16S rRNA and qPCR of 

stool samples

↑Bifidobacterium spp., ↑Lactobacillus spp., 

↓Holdemania spp.
Chu et al42 Healthy control (11) vs 

patients with AUD (42) vs 
patients with AH (91)

ITS sequencing and qPCR ↑Candidalysin-positive Candida albicans

Duan et al39 Healthy controls (14) vs 

patients with AUD (43) vs AH 
(75)

16S rRNA and PCR of 

stool samples

↑Enterococcus faecalis

Alcoholic liver cirrhosis (ALC)
Chen et al46 ALC (12) vs Hepatitis 

B cirrhosis (24) vs Healthy 

control (24)

16S rRNA and PCR of 
stool samples

↑Prevotellaceae, ↓Bacteroidetes, 
↑Proteobacteria, ↑Fusobacteria, 

↓Lachnospiraceae

Bajaj et al47 ALC (43) and non-ALC (170) 
vs Healthy control (25)

16s rRNA of stool 
samples

↑Enterobacteriaceae, ↑Halomonadaceae, 
↓Lachnospiraceae, ↓Ruminococcaceae, 

↓Clostridiales XIV

Tuomisto et al48 ALC (13) vs Alcoholics 
without cirrhosis (15) vs Non- 

alcoholic control (14)

PCR of stool samples ↑Gram-negative Bacteroides spp., ↑gram- 
negative Enterobacteriaceae, ↑gram-negative 

Enterobacter spp.

Dubinkina et al49 ALC (27) vs ADS (72) “Shotgun” metagenome 
analysis of stool samples

↑Two genera (Klebsiella, Lactococcus), ↑four 
species (K. pneumoniae, Lactobacillus salivarius, 
Citrobacter koseri, Lactococcus lactis subsp. 

cremoris)
Bajaj et al50 ALC with active alcohol 

misuse (37) vs abstinent 

cirrhotic patients (68) vs 
Healthy control (34)

16s rRNA of duodenal, 

ileal, and colonic mucosal 

and fecal microbiota

↑Proteobacteria (Enterobacteriaceae), 

↓Lachnospiraceae, ↓Bacteroidaceae, 

↓Prevotellaceae

Yang et al41 Healthy controls (8) vs ALD 

(AH (6), ALC (4))

ITS sequencing ↑Candida, ↓Epicoccum, ↓unclassified fungi, 

↓Galactomyces, ↓Debaryomyces
Zhong et al51 AFL patients (21) vs ALC 

patients (17) vs healthy 

controls (27)

16S rRNA of fecal 

microbiota

↓Opitutales, ↓Helotiales, ↓Ophiostomatales, 

↑Proteobacteria, ↓Ruminococcaceae, 

↑Fusobacteria, ↓Faecalibacterium, 
↑Fusobacteriaceae, ↓Lachnospira, 

↑Enterobacteriaceae, ↓Agathobacter, 
↑Burkholderiaceae, ↓Ruminococcus, 
↑Fusobacterium, ↑Escherichia-Shigella

Abbreviations: ALD, Alcoholic liver disease; PCR, polymerase chain reaction; AUD, alcohol use disorder; ITS, Internal Transcribed Spacer; AH, Alcoholic Hepatitis; ALC, 
Alcoholic liver cirrhosis; ADS, alcohol dependence syndrome; AFL, alcoholic fatty liver.
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et al53 used humanized mice and found that the gut microbiota modified the susceptibility of individuals to ALD. In 
another study, fecal microbes from alcohol-tolerant mice were transplanted into alcohol-sensitive mice, which showed 
tolerance to alcohol.54

However, the mechanisms by which ethanol alters microbial composition are not known. During alcohol consump-
tion, alcohol is rapidly absorbed by diffusion, mainly in the upper gastrointestinal tract. The effects of alcohol on the 
distal small intestine and colon arise mainly from the circulation balance between the lumen of the gastrointestinal tract 
and the vascular space. Little is known about how relatively small concentrations of ethanol in the large intestine cause 
profound changes in the fecal microbiota.55 Recent studies have shown that ethanol is not directly metabolized by the gut 
microbiota and that ethanol-related changes in the gut microbiota are a side effect of elevated acetate levels in humans.56

Mechanisms of Alcohol-Induced Intestinal Damage Through Oxidative 
Stress, Leading to Leaky Gut and Endotoxemia
Typically, intestinal monolayers form tightly connected barriers with various proteins, forming intestinal tight junctions 
(TJ), adherens junctions (AJ), and bridging particles.57 This barrier keeps microorganisms in the intestinal lumen away 
from blood flow, while also allowing luminal nutrients to enter the portal vein, thus ensuring a useful, nontoxic blood 
supply to the recipient organ.58 Disruption of the gut barrier is an important factor in the pathogenesis of ALD, and the 
main mechanisms are related to alcohol and its metabolite acetaldehyde, impaired small bowel motility,59 changes in 
gastric acid secretion,60 dysfunction of gut mucosal epithelial cells,61 and increased lipopolysaccharides from entero-
bacteria. This paragraph will place special emphasis on the mechanisms and effects of gut ecological dysbiosis and 
alcohol exposure on the intestinal barrier, particularly on increased intestinal permeability. Alcohol and acetaldehyde can 
cause mucus erosion and ulceration, alter the glycosylation of the protective mucus layer, and increase intestinal 
permeability.62 Alcohol can be absorbed in the duodenum and jejunum.63 After entering the monolayer by simple 
diffusion from the mucus layer, ethanol is either metabolized in the barrier or continues to diffuse into the circulation for 
delivery to various body sites.63 Importantly, ADH is more highly expressed and active in both the small and large 
intestine compared to ALDH, suggesting a greater accumulation of reactive acetaldehyde than acetate in the monolayer 
following alcohol metabolism.64 In addition, the presence of CYP2E1 and its elevated levels in the gastrointestinal tract 
after alcohol exposure due to low levels of ALDH2 expression in the gut65–67 lead to elevated levels of ROS and 
acetaldehyde, inducing inflammation and oxidative damage in the gut and liver.68,69 Alcohol and acetaldehyde activate 
the expression of toll-like receptor 4 (TLR4) on gut mucosal cell membranes and protein kinase C activity, thereby 
inhibiting the expression of cell tight junction-related connexins such as occludin and zona occludens-1.70,71 Studies have 
reported that alcohol can reduce the secretion of regenerating insulin lectin (REG3) in gut epithelial cells, leading to the 
parasitization of harmful bacteria in the intestinal mucosa.72–74 At the same time, the resulting dysbiosis of the intestinal 
ecology alters intestinal metabolism and the influx of harmful molecules such as the bacterial endotoxin LPS and 
peptidoglycan can induce intestinal inflammation and oxidative damage, further compromising the intestinal mucosal 
barrier.58 In this process, various oxidative stress-mediated post-translational modifications (PTMs) play an important 
role in the integrity of the barrier, eg, the presence of acetaldehyde will result in the sustained phosphorylation of several 
paracellular proteins.75 Continued damage to the barrier can lead to leaky gut, which subsequently leads to a localized 
immune response in the gut, increased levels of harmful gut-derived compounds (eg, lipopolysaccharides (LPS), 
peptidoglycans, exosomes, etc.) entering the circulation, resulting in endotoxemia, and more.

Interaction Among Gut Dysbiosis, Intestinal Barrier Dysfunction, and ALD
Alcohol may act as the initiator of liver damage. After the impairment of the intestinal mucosal barrier, translocation of 
harmful components such as bacteria, bacterial DNA, bacterial peptidoglycan, bacterial flagellin, and endotoxin further 
contributes to the development and progression of ALD.

Intrinsic immune cells of the liver, Kupffer cell, activation through specific receptors such as toll-like receptors 
(TLRs) mediated by LPS and oxidative stress driven by metabolism of the ethanol by hepatic CYP2E1 and from 
activated NOXs, increases large amounts of the pro-inflammatory effect of cytokines such as IL-1, IL-6, TNFα, 
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leukotrienes, platelet-activating factor, oxygen radicals, nitric oxide, nitrous oxide, etc., causing multi-organ failure 
and secondary liver injury, cirrhosis, hepatocellular carcinoma, or liver failure.52,76–78 Eventually, sustained 
oxidative stress, LPS infiltration, and hepatocyte damage will lead to hepatic stellate cell activation, resulting in 
hepatic fibrosis and sustained liver injury.79–81 The pathophysiology of ALD is shown in Figure 1.

Intervention of the Gut Microbiota
Recently, there has been a surge in research on whether patients with ALD can be treated with probiotics, prebiotics, 
synbiotics, fecal microbial transplantation (FMT), bioengineered bacteria, gut-restricted FXR agonists and others by 
modulating gut microbiota via different mechanisms (Figure 1, Table 2).

Probiotics, Prebiotics, and Synbiotics
The World Health Organization defines probiotics as “living microorganisms that are beneficial to the health of the host”.62 

Lactobacillus and Bifidobacterium can fight pathogenic bacteria by promoting the growth of the intestinal epithelium and 
modulating the host immune system.93–95 In 1994, it was found that feeding Lactobacillus strains that survived in the 
gastrointestinal tract reduced endotoxemia and liver damage in a rat model of ALD.96 Lactobacillus rhamnosus (LGG) was 
the first probiotic to be tested in a rodent model of ALD and was effective in leaky gut and liver inflammation.97,98 

Muciniphila can also reduce ethanol-induced liver injury.99 While probiotics are safe in healthy individuals, caution is needed 
in certain patients, including premature infants, the elderly, and patients with low immune function, short bowel syndrome, 
central venous catheters, or heart diseases.100 Clinical trials have shown that probiotics are associated with bacteremia, 
endocarditis, gastrointestinal toxicity, and the transfer of antibiotic resistance in the gastrointestinal flora.100

Figure 1 Pathogenesis and treatment of alcoholic liver disease. Alcohol consumption induces a weakened gut barrier and changes in the composition of the gut microbiota. 
The elevated CYP2E1 levels in the gastrointestinal tract after alcohol exposure lead to elevated levels of ROS and acetaldehyde, inducing intestinal inflammation and 
oxidative damage in the gut. The influx of harmful molecules such as the bacterial endotoxin LPS and peptidogly from gut dysbiosis can also induce inflammation and 
oxidative damage, further compromising the intestinal mucosal barrier. In this process, various oxidative stress-mediated post-translational modifications (PTMs) play an 
important role in the integrity of the barrier, eg, the presence of acetaldehyde will result in the sustained phosphorylation of several paracellular proteins (occludin and zona 
occludens-1), which can lead to intestinal leakage. Eventually, persistent oxidative stress, LPS infiltration and hepatocyte damage through the enterohepatic circulation will 
lead to hepatic stellate cell activation, hepatic fibrosis and hepatic cirrhosis.
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Table 2 Clinical Trials Targeting the Intestinal Microbiome in ALD Disease

Type of 
Intervention

Cohort Allocation 
Model

Intervention Details Main Effects Reference

Probiotics 66 patients with ALD (32 received probiotics 

with standard therapy, 34 received standard 

therapy only)

RCT 5 days probiotics of Bifidobacterium bifidum and 

Lactobacillus plantarum 8PA3

ALD patients had significantly lower AST 

and ALT levels after probiotic treatment

Kirpich et al43

20 ALC patients were treated with 

probiotics and compared with 36 HCV- 

positive patients

Clinical trial Probiotic VSL#3 VSL #3 resulted in lower levels of MDA 

and 4-HNE, improved cytokine levels 

(TNF-α, IL-6, and IL-10), and improved 
liver function in patients with ALC

Loguercio et al82

89 patients with AH (44 received probiotics 

and 45 received the placebo)

RCT The probiotics group received L. rhamnosus 
R0011/L and helveticus R0052 at 120 mg/day 
for 7 days

Probiotics ameliorated the Child-Pugh 

scores, declined the levels of ALT and γ- 
GGT, and changed the gut microbial 

composition

Gupta et al83

12 patients with ALC vs 13 healthy controls 
vs 8 cirrhotic patients

Clinical trial Patients with ALC received Lactobacillus casei 
Shirota

Probiotics restored neutrophil 
phagocytic capacity in ALC

Stadlbauer et al84

Prebiotics 50 AUD patients including early ALD RCT Prebiotic (inulin) versus placebo for 17 days Prebiotics did not alleviate liver damage Amadieu et al85

Synbiotics 10 patients with ALC and 10 patients with 
NASH received synbiotics

Clinical trial Synbiotic treatment Synbiotic improved ALT and GGT levels 
in both groups

Loguercio et al86

Antibiotics 50 patients with ALD Clinical trial 24 patients received paromomycin sulfate 1 

g three times daily over 3–4 weeks

Paromomycin did not improve ALD Bode et al87

13 patients with ALC and ascites Clinical trial 4 weeks of treatment with rifaximin Rifaximin increased the glomerular 

filtration rate and natriuresis while 

reducing levels of IL-6 and TNF-α

Kalambokis et al88

FMT 26 patients with SAH (8 patients received 

FMT and 18 were matched historical 

controls)

Clinical trial Daily nasoduodenal infusion of 30 grams of 

donor stool for 7 days

Indices of liver disease severity improved 

significantly after FMT compared with 

the control group

Philips et al89

51 patients with SAH (16 receiving FMT, 

others got current therapies only)

Clinical trial Daily nasoduodenal infusion of 30 g of donor 

stool for 7 days in the FMT group

FMT improved survival beyond current 

therapies

Philips et al90

1 patient with SAH Case report Daily nasoduodenal infusion of 30 g of donor 
stool for 7 days

FMT modulated microbiota beneficially, 
and improved clinical outcomes

Philips et al91

33 patients with SAH-ACLF (13 in the FMT 

arm and 20 in the SOC)

Clinical trial 30 grams of stool homogenized with 100 mL of 

normal saline administered a single time via the 
nasojejunal tube. SOC: Nutritional 

supplementation, supportive management.

FMT is safe, improves survival, and leads 

to improvement in clinical severity 
scores

Sharma et al92

Abbreviations: ALD, Alcoholic liver disease; ALC, Alcoholic liver cirrhosis; HCV, hepatitis virus C; RCT, randomized clinical trial; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; MDA, Malondialdehyde; 4-HNE, 
4-Hydroxynonenal; TNF-α, tumor necrosis factor-α; IL, Interleukin; AH, Alcoholic Hepatitis; γ-GGT, γ-Glutamyl Transferase; AUD, alcohol use disorder; NASH, Nonalcoholic Steatohepatitis; FMT, fecal microbial transplantation; ACLF, 
Acute-on-chronic failure; SOC, standard of care.
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Prebiotics can promote the growth and activity of specific or minority microbiota in the host’s gut.101 In alcohol-fed 
mice, pectin restored intestinal cupped cell function, increased the growth of anthropoid genera, and prevented liver 
injury.54,102

Synbiotics, a combination of probiotics and prebiotics, are complex carbohydrates in the gastrointestinal tract that are 
not digested and metabolized by the pancreas and intestinal enzymes, and show advantages in the treatment of 
ALD.103–105

Probiotics, prebiotics, and synbiotics may slow the progression of ALD; however, the dose, form, and regimen 
warrant further exploration. In addition, modulation of the gut microbiome may be transient, with recovery observed for 
only a few weeks to months. Nonetheless, longitudinal and long-term studies are still needed to determine better 
regimens.

FMT
Maintenance of normal gut flora is not the responsibility of one or two dominant gut bacteria.43 FMT in healthy 
individuals may play a better role in ALD. FMT can be traced back to the Eastern Jin Dynasty when Ge Hong 
documented the use of fecal fluid to treat patients with food poisoning and diarrhea in “Post-Elbow Prescription”.106 

In 1958, Eiseman et al107 completed effective treatment of FMT in patients with severe pseudomembranous colitis. The 
potential role of FMT in regulating the gut microbiota in ulcerative colitis and gastrointestinal and non-gastrointestinal 
diseases is strongly emphasized.108–111 Bajaj et al112 used FMT and broad-spectrum antibiotics to treat recurrent hepatic 
encephalopathy. Xu et al113 treated a patient with cirrhosis and spontaneous bacterial peritonitis using FMT based on 
conventional therapy, which showed significant improvement in the general condition. A few studies have investigated 
the effect of FMT in ALD patients. Patients with severe AH who were not eligible for glucocorticoid therapy received 
FMT for 7 days and showed significant improvement in liver disease severity and survival.89 It was reported that liver 
function, hepatic encephalopathy, and Model for End-Stage Liver Disease (MELD) scores of a 38-year-old patient with 
corticosteroid-refractory severe AH who consecutively received FMT for 1 week had improved.91 Washed microbiota 
transplantation (WMT) — a full process technique based on an intelligent fecal bacteria isolation system and strict 
quality control of the associated rinsing and transplantation routes — is a new stage in the development of FMT with 
greater safety. A prospective study showed that complete enteral nutrition combined with WMT improved the nutritional 
status and induced clinical remission in malnourished Crohn’s disease patients.114 Currently, personalized and precise 
WMT that matches the patient and preserves autologous flora has been proposed.

Bioengineered Bacteria and Bacteriophages
Bioengineered bacteria that secrete beneficial metabolites is a new approach to precision medicine. Lactobacillus 
producing indole-3-acetic acid (IAA) reduced the severity of ALD.61 Precise editing of cytolytic fecal enterobacteria 
in fecal colonized sterile mice from patients with AH using phages reduced the severity of ethanol-induced liver in 
mice.39 Bioengineered bacteria or phages have not been tested in clinical settings and large multicenter clinical trials are 
needed to determine their beneficial effects in humans.

Precision Medicine Approaches Targeting the Intestinal Microbiome
A recent study115 showed that blocking bile acid excretion into the intestine or silencing the bile acid receptor, farnesoid 
X receptor (FXR), promoted bacterial overgrowth in the small intestine and increased intestinal wall permeability and 
bacterial translocation, as well as systemic and local inflammation in the liver. Therapeutic targets should be devoted to 
the study of anti-lipopolysaccharide antibodies or TLR4 inhibitors to block liver damage from intestinal inflammatory 
factors in the future. Another new area of interest may be miR155 inhibitors. Intestinal permeability and endotoxin and 
inflammatory factor levels were alleviated in miR155-deficient ALD mice.116

Other Treatments for Modulation of the Gut Microbiota
Natural products and phytochemicals act through various pathways, such as modulating the intestinal microbiota, 
improving redox responses, and being anti-inflammatory. Supplementation with lychee pulp extract upregulated the 
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expression of intestinal tight junction proteins, antimicrobial proteins, and mucin in ALD mice and increased the relative 
abundance of Lactobacillus spp., Acetobacter spp., Actinobacteria phylum, and Corynebacterium spp. while decreasing 
serum endotoxin levels.117 Tang et al reported that oatmeal supplementation for 12 weeks maintained tight junctions and 
colonic mucosal integrity by preventing alcohol-induced leaky gut in rats.118 Natural products and related phytochem-
icals are ideal candidates against ALD, which warrants validation using clinical trials.

Modern studies have found that herbal medicines also exert therapeutic effects by adjusting the intestinal flora. Liu et al119 

found that Lycium barbarum extract restored the growth of bifidobacteria and lactobacilli and adjusted the imbalance of the 
intestinal flora. Research has shown that the alcoholic extract of Ocimum sanctum can regulate the intestinal flora, protect the 
intestinal mucosa, and reduce the level of endotoxin leakage and the degree of alcoholic liver damage in rats.120,121

Conclusions
Alcohol causes changes in the gut microbiota and weakens the gut barrier. Persistent oxidative stress, LPS infiltration and 
hepatocyte damage through the enterohepatic circulation will lead to hepatic stellate cell activation and hepatic fibrosis 
leading to the development and exacerbation of ALD. Probiotics, prebiotics, synbiotics, FMT, bioengineered bacteria, 
gut-restricted FXR agonists and others are promising therapeutic approaches that can alter gut microbiota composition to 
improve ALD. In the future, there will be new challenges to study the interactions between the genetics of individuals 
with ALD and their gut microbiome, to provide personalized interventions targeting the gut-liver axis, and to develop 
better techniques to measure microbial communities and metabolites in the body.

Main Concepts and Learning Points
● Alcohol causes changes in the gut microbiota and weakens the gut barrier.
● Persistent oxidative stress, LPS infiltration and hepatocyte damage through the enterohepatic circulation will lead to 

hepatic stellate cell activation and hepatic fibrosis leading to the development and exacerbation of ALD.
● Probiotics, prebiotics, synbiotics, FMT, bioengineered bacteria, gut-restricted FXR agonists and others can improve ALD.
● This will be a new challenge to study the interactions between the genetics of individuals with ALD and their gut 

microbiome, to provide personalized interventions targeting the gut-liver axis, and to develop better techniques to 
measure microbial communities and metabolites in the body.
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