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Introduction: Artificial Intelligence (AI) and machine learning (ML) are used extensively in HICs to detect and control antibiotic 
resistance (AMR) in laboratories and clinical institutions. ML is designed to predict outcome variables using an algorithm to enable 
“machines” to learn the “rules” from the data. ML is increasingly being applied in intensive care units to identify AMR and to assist 
empiric antibiotic therapy. This study aimed to evaluate the performance of ML models for predicting AMR bacteria and resistance to 
antibiotics in two Vietnamese hospitals.
Patients and Methods: A cross-sectional study combined with retrospective was conducted from 1st January 2020 to 30th 
June 2022. Five models were developed to predict antibiotic resistance of bacterial infections of ICU patients. Two datasets were 
prepared to predict AMR bacteria and antibiotics with ML models. The performance of the prediction models was evaluated by 
various indicators (sensitivity, specificity, precision, accuracy, F1-score, PRC, AuROC, and NormMCC) to determine the optimal time 
point for data selection. Python version 3.8 was used for statistical analyses.
Results: The accuracy, F1-score, AuROC, and normMMC of LightGBM, XGBoost, and Random Forest models were higher than 
those of other models in both datasets. In both datasets 1 and 2, accuracy, F1-score, AuROC and normMCC of the XGBoost model 
were the highest among five models (from 0.890 to 1.000). Only Random Forest models had specificity scores higher than 0.850. High 
scores of sensitivity, accuracy, precision, F1-score, and normMCC indicated that the models were making accurate predictions for 
datasets 1 and 2.
Conclusion: XGBoost, LightGBM, and Random Forest were the best-performed machine learning models to predict antibiotic 
resistance of bacterial infections of ICUs patients using the patients’ EMRs.
Keywords: antibiotic resistance, machine learning, XGBoost, LightGBM, random forest

Introduction
Antibiotic resistance (AMR) is one of ten major global health challenge facing both high-income countries (HICs) and 
low- and middle-income countries (LMICs).1 Two main factors, included the inappropriate use of antibiotics in the 
community and the misprescription of broad-spectrum antibiotics in health-care settings, are contributing to the devel-
opment of AMR.2,3 In hospitals, intensive care units (ICUs), where the mortality rate of infections could be as high as 
80%, and the overuse of antibiotics is common, are the greatest threat of AMR.4 In previous study conducted in 1265 
ICUs from 75 countries, nearly half of the patients admitted to these units found hospital-acquired infections.5 In 
Vietnam, a high incidence of nosocomial infections and AMR were found among hospitalized patients, especially in 
ICUs.6–8 Antibiotic susceptibility tests in hospitals usually require 36–72 hours for sample cultivation and identification 
of bacteria.9 Therefore, ICU physicians often prescribe antibiotics for prophylaxis based on their experience and the 
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patient’s clinical symptoms rather than laboratory test results as known as empiric therapy.10 However, during empiric 
therapy, two main types of errors might occur, including the prescription of inefficient antibiotics and the prescription of 
antibiotics with coverage that is too broad.

In recent years, artificial Intelligence (AI) and machine learning (ML) are used extensively in HICs to detect and 
control AMR in laboratories and clinical institutions.11 ML is designed to predict outcome variables using an algorithm 
to enable “machines” to learn the “rules” from the data.12–14 The parameters of the models are first customized with 
a training dataset and then applied to the test dataset to evaluate the prediction performance.14 ML is increasingly being 
applied in ICUs to identify AMR and to assist empiric antibiotic therapy. In a review of 60 clinical decision support 
systems using machine learning, 24 systems (or 40%) were applied in ICUs for diagnosing or treating infectious 
diseases.12 However, few studies have been conducted in LMICs using ML to detect AMR and prescribe antibiotics 
in ICUs.11

The present study used electronic medical records (EMR) of ICU patients at Phu Tho Hospital and Military Hospital 
175 (Vietnam). Then, different machine learning algorithms were used to develop AMR prediction models of target 
bacteria for the most frequently used antibiotic families in AST results in two Vietnamese hospitals. This study aimed to 
evaluate the performance of ML models for predicting AMR bacteria and resistance to antibiotics in two Vietnamese 
hospitals. Findings from this study are expected to assist clinicians in making better choices of empiric antibiotic therapy 
for ICU patients in Vietnam and other LMICs.

Materials and Methods
Study Area
The study was implemented at Phu Tho Hospital (Phu Tho province) and 175 Hospital (Ho Chi Minh City) in Vietnam. 
These two hospitals were selected based on purposive sampling. Phu Tho Hospital is a provincial-level hospital, whereas 
175 Hospital is a central level hospital. The first one is in a rural, mountainous, and midland province; the second is in an 
urban, populated, and delta city in Vietnam.

Study Design
This study applied the retrospective cross-sectional design. The data were extracted from the EMRs of patients admitted 
to the ICUs of Phu Tho Hospital and 175 Hospital in Vietnam between January 1st, 2020, and June 30th, 2022. The 
criteria for selection were the medical records of all patients who were 18 years of age or older on admission (in 175 
Hospital) or at the time of taking the AST test (in Phu Tho Hospital) and had positive bacterial cultures.

Data Collection
We retrieved EMRs of patients who had positive bacterial culture results from the ICUs in Phu Tho Hospital (Phu Tho 
province) and Military Hospital 175 (Ho Chi Minh City) in Vietnam between January 1st, 2020, and June 30th, 2022. 
The total of 3326 specimens were positive for bacteria in the two hospitals (1121 in Phu Tho Hospital and 2205 in 
Military Hospital 175). After checking for duplicates, 2432 specimens, of which 856 were from Phu Tho Hospital, and 
1576 were from Military Hospital 175, were included in the final data analysis of the present study. 1625 medical records 
were collected, of which 643 were from Phu Tho Hospital and 982 from Military Hospital 175. The patients from both 
hospitals were 1296 people, including 600 patients in Phu Tho Hospital and 696 in Military Hospital 175.

The demographic and clinical information (age, gender, place of residence (province and town/district), occupation, 
having insurance or not, diagnosis at admission by the International Code of Diseases (ICD-10), dates of admission and 
discharge, treatment results, and complication) were collected from the patient’s medical history.

Antimicrobial Resistance Patterns of Isolated Bacteria
Different types of specimens, such as blood, cerebrospinal fluid (CSF), tracheobronchial/bronchoalveolar fluid, urine, 
skin/wound/tissue specimens, catheters, pleural and peritoneal fluid, were collected and used for the Antimicrobial 
Susceptibility Testing (AST). The antibiotic susceptibility of isolated bacteria was detected by VITEK 2 Compact System 
(bioMérieux) at the Testing Center in Phu Tho Hospital and BD Phoenix 100 system (Becton Dickinson, USA) at the 
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Department of Microbiology in the Military Hospital 175. All tests were standardized and performed following the 
criteria of the Clinical and Laboratory Standards Institute (CLSI).15

Development and Evaluation of ML Models
At first, all input data were preprocessed to be compatible with machine learning models by addressing issues of 
variations in data format and high dimensionality. The data, then, were split into a training set (80% of the data) to fit the 
model to the data and a testing set (20% of the data) to evaluate the model’s ability to predict new data accurately, using 
k-fold cross-validation.16 The training set was used to fit the model to the data, while the test set was used to evaluate the 
model’s ability to predict new data accurately. This process helps to prevent overfitting, where the model is overly 
tailored to the training data and may not generalize extensively to new data. In the present study, we developed five 
models using five supervised ML algorithms, including regularized logistic regression (Ridge logistic regression), 
adaptive boosting decision trees (AdaBoost), random forest, XGBoost, and LightGBM.

Development and evaluation of a predictive model were performed on a three-phase process. The initial phase 
determined the presence of five targeted bacterial strains. The second phase predicted the top six antibiotic families most 
used in AST tests and prescriptions in the hospital, specifically, aminoglycosides, fluoroquinolones, polymyxins, 
carbapenem, fourth-generation cephalosporin, and trimethoprim derivatives. Finally, the combination of bacterial strains 
and the corresponding antibiotic resistance profiles were identified.

Eleven combinations were selected based on the prevalence of antibiotics used in AST and the resistance level of each 
kind of bacteria, including (i) four bacteria against aminoglycosides (Klebsiella spp, Pseudomonas aeruginosa, 
Escherichia, Staphylococcus aureus), (ii) one bacterium against polymyxins (Klebsiella spp), (iii) one bacterium against 
fluoroquinolones (Staphylococcus aureus), (iv) one bacterium against carbapenems (Escherichia coli), (v) two bacteria 
against fourth-generation cephalosporin (Escherichia coli and Pseudomonas aeruginosa), and (vi) two bacteria against 
trimethoprim derivatives (Staphylococcus aureus and Escherichia coli). Each dataset was run and evaluated for 22 
targeted variables (including five bacteria, six antibiotics, and eleven combinations).

The performance of the various machine learning models was evaluated using a range of metrics, including 
sensitivity, specificity, precision, accuracy, the area under the receiver operating characteristic curve (AuROC), the 
harmonic mean of precision and recall (F1-score), normalized Matthew Correlation Coefficient (normMCC), Precision– 
Recall Curve (PRC). For binary classification and imbalanced datasets, norm MCC and PRC are more informative and 
valuable besides the indicators of accuracy, F1-score, and AuROC Plot. SHAP (SHApley Additive Explanations) 
package was also used to assess the impact of each feature on the final prediction of the machine learning models. 
This allowed the contribution of each variable to the model’s output to be determined.

Two datasets were prepared to predict AMR bacteria and antibiotics with ML models. The first dataset (dataset 1) 
included demographic information, clinical diagnoses, treatment results, and AST results, and complete blood count data. 
The second dataset (dataset 2) included demographic information, clinical diagnoses, treatment results, and AST results, 
complete blood count and biochemical data. The performance of the prediction models was evaluated by various 
indicators (sensitivity, specificity, precision, accuracy, F1-score, PRC, AuROC, and NormMCC) to determine the optimal 
time point for data selection.17–20 A reference dataset was created by combining the data from Military Hospital 175 and 
Phu Tho Hospital based on available standard variables.

Statistical Analysis
The data were cleaned and checked for missing values, then reshaped and analyzed using Python 3.8 with various 
packages, including Pandas, Numpy, Statsmodels, Matplotlib, and Seaborn.

Results
The Performance of the Predictive Model of the Five Targeted Bacteria in the Dataset 
1 and Dataset 2
Table 1 presents summary statistics of the datasets used for machine learning predictive models. In the dataset 1 (without 
biochemical test results), 684 patients were selected. A total of 953 health records, 1537 AST results, and 7538 complete 
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Table 1 Description of Datasets Used for Machine Learning Predictive Models

Characteristics Dataset 1 (Demographic, 
Clinical, AST, and Complete 

Blood Count Data)

Dataset 2 (Demographic, 
Clinical, AST, Complete Blood 
Count, and Biochemical Data)

Number (n)

Patients 684 560

Health records 953 755

AST tests 1537 1182

Complete blood count tests 7358 5924

Biochemical tests – 4058

Entries 10,658 61,273

n % n %

Men 440 64.4 352 63.8

Year of admission

2020 363 25.6 288 26.1

2021 649 45.7 551 49.9

2022 408 28.7 265 24.0

Primary diagnosis at admission by ICD-10

Respiratory (J00-J99) 379 26.7 273 24.7

COVID-19 (U07) 330 23.2 269 24.4

Circulatory system (I00-I99) 225 15.8 178 16.1

Infection (A00-B99) 193 13.6 155 14.0

Abnormal and not classified (R00-R99) 101 7.1 78 7.1

Other diseases* 192 13.5 151 13.7

Number of non-duplicated bacterial isolates

Klebsiella spp 418 29.4 322 29.2

Acinetobacter spp 387 27.3 308 27.9

Pseudomonas aeruginosa 206 14.5 151 13.7
Escherichia coli 71 5.0 60 5.4

Staphylococcus aureus 70 4.9 55 5.0

Other 268 18.9 208 18.8

Median [IQR]

Age at admission 61 [50–70] 61 [50–70]

Length of stay in hospital (days) 14 [9–23] 14 [9–23]

Length of stay in ICU (days) 12 [7–21] 13 [8–20]

Notes: *Other diseases included: diseases of the musculoskeletal system, endocrine, neoplasms, skin, blood, and immune mechanism, 
mental disorders, and external causes of morbidity. 
Abbreviations: AST, Antimicrobial Susceptibility Test; COVID-19, Coronavirus disease 2019; ICD-10, International Code of Disease – 10th 
version.
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blood tests were included (Table 1). In dataset 2 (with biochemical test results), 560 patients with 755 health records were 
selected. A total of 1182 AST test, 5924 complete blood count test and 4058 biochemical test results were analyzed 
(Table 1). In the reference dataset, all patients and health records of two hospitals were included in the predictive models.

The sensitivity, specificity, precision, accuracy, F1-score, AuROC, PRC, and normMCC were compared among the 
five machine learning models in the dataset 1 and dataset 2 and shown in Table 2 and Table 3, respectively. The accuracy, 
F1-score, AuROC, and normMMC of LightGBM, XGBoost, and Random Forest models were higher than those of other 
models in both datasets. In both datasets 1 and 2, accuracy, F1-score, AuROC and normMCC of the XGBoost model 
were the highest among five models (from 0.890 to 1.000). For database 1, XGBoost was the most accurate model in 
predicting all five targeted bacteria except Pseudomonas aeruginosa (Table 2). Random Forest models gave the highest 

Table 2 Comparing the Performance of Different Machine Learning Algorithms on the Dataset 1

Performance 
Indicators

LightGBM Random 
Forest

XGBoost AdaBoost Ridge Logistic 
Regression

Acinetobacter spp Sensitivity 0.849 0.609 0.897 0.582 0.544

Specificity 0.759 0.754 0.769 0.655 0.583

Precision 0.899 0.783 0.949 0.716 0.630

Accuracy 0.898 0.795 0.949 0.737 0.727

F1-score 0.894 0.783 0.948 0.648 0.620

AuROC 0.958 0.865 0.982 0.725 0.615

PRC 0.713 0.461 0.853 0.295 0.272

NormMCC 0.866 0.719 0.934 0.570 0.509

Klebsiella spp Sensitivity 0.802 0.643 0.816 0.588 0.535

Specificity 0.780 0.738 0.818 0.591 0.613

Precision 0.875 0.776 0.927 0.722 0.629

Accuracy 0.873 0.790 0.928 0.735 0.731

F1-score 0.864 0.777 0.926 0.629 0.621

AuROC 0.946 0.857 0.977 0.682 0.622

PRC 0.642 0.445 0.789 0.276 0.269

NormMCC 0.830 0.710 0.905 0.540 0.506

Pseudomonas 
aeruginosa

Sensitivity 0.801 0.623 0.871 0.591 0.513

Specificity 0.808 0.755 0.734 0.609 0.618

Precision 0.933 0.846 0.957 0.780 0.792

Accuracy 0.935 0.875 0.958 0.883 0.883

F1-score 0.927 0.855 0.955 0.828 0.828

AuROC 0.966 0.899 0.977 0.723 0.641

PRC 0.509 0.180 0.677 0.117 0.117

NormMCC 0.821 0.616 0.890 0.499 0.501

(Continued)
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specificity score for predicting Escherichia coli (0.941) and Staphylococcus aureus (0.932). In dataset 2, the high 
sensitivity and precision were determined for all the models, but the specificity was still low, particularly for predicting 
Escherichia coli and Staphylococcus aureus (Table 3). Only Random Forest models had specificity scores higher than 
0.850 (Table 3).

The Performance of the Predictive Model of the Resistance to Antibiotic Families and 
Its Combinations of Bacteria
The predictive model of the resistance to antibiotic families was performed with the isolated bacterial species. Overall, 
high scores of sensitivity, accuracy, precision, F1-score, and normMCC indicated that the models were making accurate 
predictions for datasets 1 and 2. Tables 4–6 showed the sensitivity, specificity, precision, accuracy, F1-score, AuROC, 
PRC, and normMCC of the performance of LightGBM model to predict resistance to antibiotic families and the 
combinations between selected bacteria and antibiotic families in the dataset 1, 2, and reference, respectively.

Discussion
In the present study, we used five machine learning models across three datasets with more than 110 variables to predict 
the AMR of bacteria and antibiotic families. Although no single model showed superiority for all bacteria or performance 
metric, the study yielded highly reliable results with AUROC scores of over 0.850 in 3 algorithms LightGBM, XGBoost, 
and Random Forest, which were higher than the results of the recent studies in Greece and Israel on the prediction of 
AMR of bacteria, antibiotics, or bloodstream infection.4,21–23 The normMCC value reached above 0.750 for the 
LightGBM algorithm in predicting bacteria and AMR and predicting combinations of bacteria against antibiotic families. 
All machine learning models in this study were evaluated using this indicator, which is more reliable and informative 

Table 2 (Continued). 

Performance 
Indicators

LightGBM Random 
Forest

XGBoost AdaBoost Ridge Logistic 
Regression

Escherichia coli Sensitivity 0.969 0.641 0.981 0.844 0.619

Specificity 0.457 0.941 0.471 0.579 0.681

Precision 0.992 0.973 0.992 0.961 0.954

Accuracy 0.992 0.976 0.992 0.969 0.968

F1-score 0.991 0.972 0.992 0.959 0.955

AuROC 0.992 0.983 0.993 0.947 0.834

PRC 0.755 0.308 0.775 0.111 0.062

NormMCC 0.930 0.762 0.936 0.636 0.581

Staphylococcus 
aureus

Sensitivity 0.937 0.539 0.975 0.867 0.545

Specificity 0.527 0.932 0.517 0.543 0.780

Precision 0.987 0.966 0.988 0.955 0.938

Accuracy 0.988 0.971 0.988 0.965 0.964

F1-score 0.987 0.965 0.987 0.950 0.947

AuROC 0.982 0.972 0.991 0.916 0.768

PRC 0.671 0.246 0.683 0.061 0.038

NormMCC 0.903 0.726 0.907 0.577 0.510
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Table 3 Comparing the Performance of Different Machine Learning Algorithms on the Dataset 2

Performance 
Indicators

LightGBM Random 
Forest

XGBoost AdaBoost Ridge Logistic 
Regression

Acinetobacter spp Sensitivity 0.882 0.885 0.900 0.684 0.554

Specificity 0.649 0.867 0.583 0.642 0.640

Precision 0.967 0.971 0.988 0.730 0.662

Accuracy 0.967 0.971 0.988 0.747 0.713

F1-score 0.966 0.971 0.988 0.702 0.631

AuROC 0.996 0.990 0.999 0.812 0.685

PRC 0.914 0.920 0.968 0.379 0.307

NormMCC 0.959 0.965 0.985 0.643 0.555

Klebsiella spp Sensitivity 0.891 0.869 0.946 0.691 0.562

Specificity 0.619 0.901 0.548 0.605 0.634

Precision 0.968 0.976 0.988 0.788 0.717

Accuracy 0.968 0.976 0.988 0.771 0.747

F1-score 0.967 0.976 0.988 0.703 0.652

AuROC 0.997 0.996 0.998 0.798 0.676

PRC 0.902 0.923 0.901 0.335 0.270

NormMCC 0.957 0.969 0.969 0.639 0.551

Pseudomonas 
aeruginosa

Sensitivity 0.938 0.844 0.884 0.802 0.520

Specificity 0.542 0.939 0.578 0.567 0.650

Precision 0.982 0.977 0.990 0.908 0.807

Accuracy 0.982 0.977 0.990 0.898 0.895

F1-score 0.981 0.977 0.990 0.852 0.845

AuROC 0.997 0.990 0.999 0.854 0.641

PRC 0.846 0.802 0.969 0.129 0.105

NormMCC 0.951 0.937 0.987 0.578 0.499

Escherichia coli Sensitivity 0.992 0.817 0.996 0.970 0.656

Specificity 0.448 0.984 0.427 0.525 0.791

Precision 0.999 0.999 1.000 0.982 0.973

Accuracy 0.999 0.999 1.000 0.984 0.979

F1-score 0.999 0.999 1.000 0.980 0.972

AuROC 1.000 1.000 1.000 0.991 0.895

PRC 0.975 0.933 0.993 0.275 0.082

NormMCC 0.993 0.982 0.998 0.752 0.620

(Continued)
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Table 3 (Continued). 

Performance 
Indicators

LightGBM Random 
Forest

XGBoost AdaBoost Ridge Logistic 
Regression

Staphylococcus 
aureus

Sensitivity 0.981 0.807 0.993 0.951 0.563

Specificity 0.451 0.980 0.451 0.528 0.760

Precision 0.998 0.997 0.999 0.978 0.948

Accuracy 0.998 0.997 0.999 0.980 0.971

F1-score 0.998 0.997 0.999 0.976 0.958

AuROC 1.000 0.999 1.000 0.981 0.827

PRC 0.917 0.908 0.961 0.315 0.029

NormMCC 0.978 0.975 0.990 0.768 0.510

Notes: Values of accuracy, F1-score, and normalized Matthews correlation coefficient range from 0 to 1, where 1 is the best possible classification, 
and 0 is random classification. 
Abbreviations: AuROC, Area Under the Receiver Operating Characteristic curve; F1-score, harmonic mean of precision and recall; PRC, 
Precision–Recall curve; Norm MCC, Normalized Matthew’s Correlation Coefficient; LightGBM, gradient-boosting-based machine learning package 
developed by Microsoft; XGBoost, Extreme Gradient Boosting Decision Tree; AdaBoost, Adaptive Boosting Decision Tree.

Table 4 Performance of LightGBM Model (5-Fold Cross-Validation) to Predict Resistance to Antibiotic Families and Between Bacteria 
and Antibiotic Families in Dataset 1

Sensitivity Specificity Precision Accuracy F1-Score AuROC PRC normMCC

Aminoglycoside 0.794 0.827 0.908 0.907 0.903 0.969 0.902 0.873

Klebsiella spp 0.818 0.795 0.929 0.930 0.925 0.973 0.660 0.869

Pseudomonas aeruginosa 0.803 0.796 0.955 0.957 0.954 0.975 0.564 0.853

Escherichia coli 0.985 0.417 0.996 0.996 0.996 1.000 0.801 0.945

Staphylococcus aureus 0.978 0.376 0.995 0.996 0.995 0.994 0.699 0.916

Polymyxins 0.848 0.781 0.947 0.948 0.946 0.985 0.811 0.923

Klebsiella spp 0.859 0.765 0.957 0.958 0.956 0.982 0.675 0.890

Fluoroquinolones 0.707 0.898 0.966 0.967 0.966 0.986 0.968 0.929

Staphylococcus aureus 0.978 0.351 0.996 0.996 0.996 0.998 0.704 0.915

Carbapenems 0.742 0.862 0.952 0.953 0.951 0.984 0.957 0.902

Escherichia coli 0.920 0.443 0.998 0.998 0.997 0.978 0.771 0.937

Trimethoprim derivatives 0.733 0.888 0.932 0.932 0.93 0.981 0.926 0.914

Escherichia coli 0.985 0.405 0.996 0.996 0.996 0.998 0.826 0.952

Staphylococcus aureus 0.976 0.431 0.995 0.995 0.995 0.998 0.628 0.894

Fourth generation cephalosporin 0.791 0.879 0.958 0.959 0.957 0.986 0.961 0.910

Pseudomonas aeruginosa 0.879 0.816 0.962 0.963 0.961 0.981 0.665 0.889

Escherichia coli 0.985 0.357 0.995 0.995 0.994 0.998 0.808 0.946
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than accuracy or F1-score for the binary classification.20 LightGBM model was fast and gave high-performance 
results,21,24 but its specificity score was not as high as those of other algorithms like Random Forest and XGBoost.

In the two datasets, Random Forest showed the highest specificity results for minority bacterial incidences 
(Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus). In dataset 2, XGBoost and LightGBM 
generated results with high sensitivity (0.950) but average specificity (0.650), whereas Random Forest produced high 
sensitivity and specificity results (0.840 to 0.990). Although no studies on AMR prediction showed the excel of Random 
Forest in specificity index, the application of k-fold validation when preparing data may have significantly increased 
accuracy, reliability, and specificity compared to ordinary Random Forest alone.25 The limitations and advantages of the 
LightGBM, XGBoost, and Random Forest algorithms should be considered in clinical applications and specific cases. 
The selection of models should depend on whether clinicians prioritize detecting more positive cases or limiting false 
positives.

Clinical patient evaluation indicators such as Acute Physiology and Chronic Health Evaluation (APACHE II), 
Simplified Acute Physiology Score (SAP) 3, or indicators of catheter transmission use, surgical, or comorbidities,4,24 

were not used in our study. However, the performance of predictive models was still high with dataset 2, which contained 
complete blood tests and biochemical tests results. This result suggests other hospitals to determine the most appropriate 
model and indicators for their facilities. In addition, several potentially important predictors for resistance, such as 
residency location,26 antibiotic use outside the hospital,27–29 microbiome composition, diet, and exercise,30–33 which 
were not included in the present study, should be consider in future studies.

Table 5 Performance of LightGBM Model (5-Fold Cross-Validation) to Predict Resistance to Antibiotic Families and Between Bacteria 
and Antibiotic Families in Dataset 2

Sensitivity Specificity Precision Accuracy F1-Score AuROC PRC normMCC

Aminoglycoside 0.616 0.890 0.983 0.983 0.983 0.999 0.982 0.976

Klebsiella spp 0.942 0.493 0.987 0.987 0.986 0.999 0.934 0.976

Pseudomonas aeruginosa 0.948 0.538 0.986 0.986 0.985 0.997 0.827 0.948

Escherichia coli 0.990 0.688 1.000 1.000 1.000 1.000 0.995 0.999

Staphylococcus aureus 0.992 0.670 0.998 0.998 0.998 1.000 0.889 0.971

Polymyxins 0.882 0.546 0.991 0.991 0.991 1.000 0.959 0.985

Klebsiella spp 0.921 0.482 0.991 0.991 0.991 1.000 0.923 0.977

Fluoroquinolones 0.556 0.917 0.989 0.989 0.988 0.999 0.987 0.978

Staphylococcus aureus 0.985 0.672 0.999 0.999 0.999 1.000 0.940 0.984

Carbapenems 0.494 0.961 0.993 0.993 0.993 1.000 0.995 0.985

Escherichia coli 0.998 0.550 0.999 0.999 0.999 1.000 0.878 0.968

Trimethoprim derivatives 0.568 0.856 0.990 0.990 0.990 0.999 0.989 0.988

Escherichia coli 0.983 0.688 1.000 1.000 1.000 1.000 0.992 0.998

Staphylococcus aureus 0.996 0.538 0.999 0.999 0.999 1.000 0.913 0.977

Fourth generation cephalosporin 0.519 0.963 0.986 0.986 0.985 0.999 0.991 0.958

Pseudomonas aeruginosa 0.958 0.502 0.992 0.992 0.992 0.999 0.926 0.978

Escherichia coli 0.997 0.396 0.999 0.999 0.999 1.000 0.962 0.990
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Limitations
Although the study obtained high-performing machine learning models, some limitations must be addressed. The first 
limitation was related to the data availability and the period when data were selected. In this study, there was only one 
hospital with enough data on blood tests and biochemical tests. The extrapolation to other hospitals or other departments 
should be done with caution. Because the data were collected during the COVID-19 pandemic in Vietnam (from 2020 to 
2022), they could be analyzed and interpreted with bias when extrapolated to other periods or hospitals. Furthermore, this 
study did not distinguish bacterial infections based on the time they occurred after admission, so it was impossible to 
determine whether the infections were nosocomial. The second limitation was that no algorithm was better than another, 
and every algorithm had its trade-offs. The results from machine learning will not be optimal and effective without the 
coordination among clinicians, hematology and biology technicians, and information technology staff. The interdisci-
plinary collaboration will ensure that professional requirements are evaluated and fully reflected in the choice of 
algorithms. Lastly, many recommended features in the previous study were not considered, which may influence current 
output values if included. Machine learning is driven by data; therefore, it is crucial to be cautious and prepare sufficient 
data for different objects. Data cannot be arbitrarily applied from one department to another, from one hospital to another, 
or from one group of patients to another without considering scientific evidence and comprehensive protocols.

Conclusion
In the present study, we present machine learning models to predict antibiotic resistance of bacterial infections of ICUs 
patients using the patients’ EMRs. The best-performed machine learning models were achieved using XGBoost, 
LightGBM, and Random Forest, and the dataset included complete blood count and biochemical test results (accuracy, 

Table 6 Performance of LightGBM Model (5-Fold Cross-Validation) to Predict Resistance to Antibiotic Families and Between Bacteria 
and Antibiotic Families in Reference Dataset

Sensitivity Specificity Precision Accuracy F1-Score AuROC PRC normMCC

Aminoglycoside 0.566 0.553 0.620 0.659 0.633 0.569 0.727 0.530

Klebsiella spp 0.456 0.550 0.711 0.778 0.741 0.469 0.161 0.472

Pseudomonas aeruginosa 0.431 0.615 0.787 0.829 0.806 0.557 0.123 0.504

Escherichia coli 0.371 0.819 0.935 0.960 0.947 0.669 0.033 0.492

Staphylococcus aureus 0.101 0.855 0.972 0.980 0.976 0.546 0.014 0.496

Fluoroquinolones 0.582 0.544 0.718 0.763 0.733 0.633 0.811 0.563

Staphylococcus aureus 0.160 0.815 0.974 0.984 0.979 0.537 0.013 0.498

Carbapenems 0.614 0.540 0.712 0.746 0.722 0.639 0.798 0.587

Escherichia coli 0.085 0.820 0.972 0.984 0.978 0.571 0.014 0.497

Trimethoprim derivatives 0.534 0.481 0.584 0.620 0.595 0.539 0.684 0.526

Escherichia coli 0.397 0.831 0.899 0.938 0.918 0.767 0.052 0.489

Staphylococcus aureus 0.173 0.847 0.968 0.981 0.975 0.547 0.016 0.497

Fourth generation cephalosporin 0.595 0.525 0.741 0.788 0.757 0.616 0.831 0.562

Pseudomonas aeruginosa 0.476 0.579 0.759 0.812 0.783 0.557 0.135 0.486

Escherichia coli 0.518 0.799 0.911 0.943 0.926 0.738 0.047 0.497

Abbreviations: TP Rate, True positive rate; FP Rate, False positive rate; normMCC, Normalized Matthew’s Correlation Coefficient; AuROC, Area Under the Receiver 
Operating Characteristic curve; PRC, Precision–Recall curve; F-measure, harmonic mean of precision and recall.
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F1-score, AUROC, normMCC ≥ 0.90). The performance of machine learning models varied depending on the data set, 
selected variables, and algorithms.
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Health (approval number 022-357 DD/YTCC on August 2nd, 2022). The study was conducted based on data on 
electronic medical records, so the Institutional Research Board of Ethics Committee of the Hanoi University of Public 
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