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Abstract: Vascular aging represents a collection of structural and functional changes in a blood vessel with advancing age, including 
increased stiffness, vascular wall remodeling, loss of angiogenic ability, and endothelium-dependent vasodilation dysfunction. These 
age-related alterations may occur earlier in those who are at risk for or have cardiovascular diseases, therefore, are defined as early or 
premature vascular aging. Vascular aging contributes independently to cardio-cerebral vascular diseases (CCVDs). Thus, early 
diagnosis and interventions targeting vascular aging are of paramount importance in the delay or prevention of CCVDs. Here, we 
review the direct assessment of vascular aging by examining parameters that reflect changes in structure, function, or their compliance 
with age including arterial wall thickness and lumen diameter, endothelium-dependent vasodilation, arterial stiffness as well as indirect 
assessment through pathological studies of biomarkers including endothelial progenitor cell, lymphocytic telomeres, advanced 
glycation end-products, and C-reactive protein. Further, we evaluate how different types of interventions including lifestyle mediation, 
such as caloric restriction and salt intake, and treatments for hypertension, diabetes, and hyperlipidemia affect age-related vascular 
changes. As a single parameter or intervention targets only a certain vascular physiological change, it is recommended to use multiple 
parameters to evaluate and design intervention approaches accordingly to prevent systemic vascular aging in clinical practices or 
population-based studies. 
Keywords: vascular aging, arterial stiffness, endothelial function, arterial wall thickness, therapeutic intervention

Introduction
Our world is turning into an aging society with medical advances and improved social care. The growing elderly 
population is susceptible to diversified stresses, particularly diseases, and death. With advanced age, vessels degenerate 
morphologically and physiologically, referred to as vascular aging, contributing to the common cardio-cerebral vascular 
diseases (CCVDs) in the elderly, such as hypertension, coronary artery disease, aneurysm, and stroke.1,2 Compared to 
individuals aged 65–74, the mortality rate of CCVDs increase from 40% to 60% of all deaths in individuals aged ≥80 
years.3 These facts demonstrate the significance of vascular aging to the health of an aging society.

Vascular aging is a developing process characterized by age-related deterioration in both structure and function of 
blood vessels. It may occur early in individuals with cardiovascular risk factors or diseases, such as abnormal blood 
chemicals, unhealthy life habits, or hypertension, resulting in early or premature vascular aging that promotes or 
exacerbates CCVDs.4 Therefore, early diagnosis and timely therapeutic interventions are key to success in delaying or 
preventing CCVDs.5 For this purpose, a few methods have been developed or proposed to detect or intervene in the 
deleterious changes in vascular structures and functions with age, but their availabilities, including sensitivity and 
specificity in detection as well as efficacies in the prevention of age-related vascular changes, remain to be evaluated.4

In this review, we examine how to assess vascular aging in clinical practices as well as possible interventions 
available in the literature, providing general guidelines on how to improve the evaluation and prevention of vascular 
aging in the future.
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Clinical Assessment of Vascular Aging
Vascular Structural Changes with Age
Arterial Wall Thickness
Vascular autopsies show that the arterial wall thickness increases significantly with age due to an increased intima layer, 
while the load-bearing medial layer has a minor contribution.6 Other morphological changes have been summarized 
previously.7 Despite that many vascular phenotypes are associated with age, the intimal-medial thickness (IMT) is often 
used to assess vascular aging in clinical practice, as it can be performed non-invasively through ultrasonography.8–10

For convenience in practice, the most used artery is the carotid artery. It has been shown that the carotid arterial wall 
thickness (carotid intimal-medial thickness) in the segment free of plagues increases linearly about 2.5-fold from 30 to 90 
years in man.11,12 The carotid IMT increased about 0.04 mm per decade from ages 40 to 80,13,14 similar to that in young 
subjects aged 20–40.15,16 Other arteries, such as common femoral arteries, superficial femoral arteries, popliteal arteries, 
and brachial arteries, are also used to measure age-dependent wall thickening.17,18

Unlike other parameters used to evaluate vascular aging, the wall thickening of vessel segments free of atherosclerotic 
plaques, represented as IMT (or carotid IMT), appears very consistent with the chronological ages,19 thus, it potentially 
represents the physiological vascular aging.11,18

Histomorphological and ultrasonographic observations of IMT in arteries are presented in Figure 1.

Arterial Lumen Diameter
An increase in arterial lumen diameter is reported in aged vessels, likely due to the repeated stretch of the elastic arteries 
through an entire lifetime, causing elastin fatigue, and thus leading to elastin fracture and fragmentation.20,21 Loss of 
elastin contributes to the enlarged lumen diameter mostly in the proximal aorta.21 Transthoracic echocardiography is 
commonly used to measure the diameter of the aortic root at multiple locations, for instance, the aortic annulus, sinuses 
of Valsalva, sinotubular junction, and ascending aorta, to obtain reliable results.22

Previously, the Framingham Heart Study established a reference value for aortic root diameter by using M-mode 
echocardiography, based on a large healthy population. They observed that aortic root diameter constantly increased 
(from 28–33 mm to 33–37 mm) with age from 25 to 75 years, although the age-dependent dilation varies in the subjects 
with different body surface areas (BSA).23 In a B-mode echocardiography-based study, however, BSA is the most 
important determinant of aortic root diameter at the aortic annulus and sinuses of Valsalva, while age is mainly associated 
with the aortic root diameter at ascending aorta.24 Other B-mode echocardiography-based studies showed that the 
association between diameter at the aortic annulus and age was weak,25 while the diameter of the ascending aorta is 
more closely related to age.26 Methodologically, the aortic root diameter measured by B-mode echocardiography is larger 
than that measured by M-mode echocardiography.24 Therefore, when comparing the results from different studies, it is 
critical to consider the influence of different imaging techniques and measurement positions on the value of aortic root 
diameter.

A study reported that aortic root diameter steadily increases with age from 15 to 64 years after the adjustment for 
BSA.27 This finding is consistent with another Caucasian population-based study, which reported an increase of 1.1mm 
and 0.9mm in the diameter of the sinuses of Valsalva and ascending aorta per decade in people 15 years and older.28 The 
correlation between age and aortic root diameter is non-linear. The age-dependent dilation of aortic root was faster in 
children under age 15 than adults, with a rate of nearly 10 mm per decade (age, 1–15) versus 1.1 mm per decade 
(age>15). Importantly, BSA, rather than age, was the most decisive factor in aortic root dilation in those under 15 
years.24,28 These studies pointed out that the diameter of ascending aorta assessed by echocardiography is more closely 
related to aging.26 Age-related aortic root dilation usually occurs in the adult population, as the aortic dimensions in those 
younger than 15 are mainly affected by body size.24,28

In addition to the aorta, the positive association between arterial lumen diameter and age was also shown in peripheral 
arteries such as brachial arteries,29 popliteal arteries,18,30 femoral arteries18,31 as well as carotid arteries.32,33 These 
suggest that an increased arterial lumen diameter is a good indicator for vascular aging. Vascular structural changes with 
ages are summarized in Table 1.
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Vascular Functional Changes with Age
Endothelium-Dependent Vasodilation
Endothelium-dependent vasodilation loses sensitivity with advancing age in response to dilators, such as acetylcholine; 
therefore, it can be considered as a functional parameter for the degree of vascular aging. Age-related endothelial 
dysfunction has been documented in coronary arteries,34 peripheral arteries,35 and microcirculation.36 The underlying 
mechanisms are multifactorial, including increased oxidative stress, inflammation response, and unbalanced release of 
vasoconstrictors and vasodilators.35,37,38

Acetylcholine-Induced Vasodilation
Intracoronary infusion of acetylcholine induces dilation of healthy coronary arteries by stimulating endothelial cells to 
release nitric oxide (NO).39 Therefore, quantitative angiographic analysis of acetylcholine-induced coronary atrial 

Figure 1 IMT in young and old arteries. The hematoxylin-eosin staining of tissue sections from digital artery (DA, 21-year old, (A1)) and anterior tibial artery (ATA, 70-year 
old, (A2)). Tissues were obtained from male patients who had radical surgeries for polydactyly and malignant melanoma of lower extremity, respectively, sectioned at 4 
micrometers, and fixed with 4% polyformaldehyde for 24 hour prior to staining. The IMT was only measured and pointed in ATA and the tunica media layers were labeled 
with dash lines as IMT was too thin to be measured accurately. (B1 and B2) are B-mode ultrasound images of carotid arteries from two male patients at the ages of 33 (IMT 
= 0.09 cm) and 74 year (IMT = 0.13 cm). The intimal-medial layers were labeled with dash lines. The positions for measuring IMT were pointed with yellow crosses.
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dilation is used as the “gold standard” to detect coronary endothelial function. Existing studies demonstrate a positive 
correlation between aging and declined coronary blood flows upon acetylcholine infusion into the left main coronary 
artery. The ratio of acetylcholine-induced and papaverine-induced percentage change of blood flow declined by nearly 
80% from ages 20 to 80.34,40–42 The acetylcholine-induced vasodilation is dependent on dosages, particularly low 
dosages. It has been reported that vasodilation was decreased by 2.5, 2.6, and 4.1mm per decade at the dosages of 1, 
3, and 10 μg/min, respectively.34 A general illustration of acetylcholine induces dilation is shown in Figure 2A.

The disadvantages of using the intracoronary infusion of acetylcholine to assess vascular dilation are its invasive 
nature and high cost, therefore, it is only used in patients undergoing angiography. Under this consideration, peripheral 
arteries, such as the brachial arteries and cutaneous microcirculation are examined instead of the coronary artery.35,43 For 

Figure 2 Functional shift with increased ages. (A) Endothelium-dependent vascular relaxation induced by acetylcholine for the artery rings from young and old man. The 
cumulative concentration response curves were recorded, and statistical significance was indicated with asterisks (*). (B) brachial-ankle pulse wave velocity (baPWV) was 
measured in men (red) and women (blue) at ages from 60 to 95 years. The baPWV is increased with ages but not different between genders.

Table 1 Aging-Related Vascular Structural Changes on Clinical Assessment

Aging-Related 
Vascular 
Indicators

Arteries Major Findings Ref

Arterial wall 

thickness (IMT)
Carotid arteries The IMT of carotid arteries increased about 2.5-fold from 30–90 years old, with 

a rate at 0.04 mm per decade

[11–16]

Superficial arteries The IMT of superficial arteries increased about 1.5-fold from 30–60 years old. [17]
Femoral arteries The IMT of femoral arteries increased about 1.25-fold from 20–70 years old. [18]

Popliteal arteries The IMT of popliteal arteries increased 0.2 mm from 20–70 years old. [18]

Brachial arteries The IMT of brachial arteries increased 0.15 mm from 20–70 years old. [18]
Arterial lumen 

diameter
Aorta The diameter of aorta increased 10 mm per decade from 1–15 years old. Then, 

the rate decrease to 1.1 mm per decade in the sinuses of Valsalva after 15 years 

old.

[24,27,28]

Brachial arteries The diameter of brachial arteries increased 1.25-fold from 30–50 years old at the 

proximal site.

[29]

Popliteal arteries The diameter of popliteal arteries increased 25% from 25–70 years old. [30]
Femoral arteries The diameter of femoral arteries increased 12% and 21% in male and femoral 

from 25–67 years old, respectively.

[31]

Carotid arteries The diameter of carotid arteries increased 24% from 20–80 years old and the 
age-dependent dilation is faster after the fifth decade.

[32]
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example, studies show that the endothelium function of the brachial artery in response to acetylcholine, represented as 
forearm blood flow, similar to the coronary artery.35,44 The infusion of acetylcholine into the brachial artery led to 
a decrease of nearly 40% in maximum dilation of healthy subjects aged 20–80.35

Reactive Hyperemia-Induced Vasodilation
During reactive hyperemia, a dramatic increase in arterial blood flow results in vasodilation.45 This process also depends 
on the increased release of NO from endothelial cells.46 Flow-mediated dilation (FMD), an endothelial-dependent 
(primarily NO-mediated) dilation of conduit arteries in response to an abrupt rise in blood flow and shear stress, is the 
widely used method to measure conduit artery endothelial function. Reactive hyperemia-induced vasodilation can also be 
presented as reactive hyperemia index measured by reactive hyperemia-peripheral arterial tonometry. Both FMD and 
reactive hyperemia index are noninvasive assessments of endothelial functions and vascular aging.47

FMD is largely attenuated in the elderly.48–51 Studies have shown that the FMD of the elderly (age>70) is nearly 50% 
lower than that of the young (age<30).48–51 Different from IMT or diameter discussed above, the age-related decrease of 
FMD is not linear. The decline in FMD is not much changed in the group with ages 24 to 39 years15 but becomes 
pronounced in men above 40 years and women above 45 years of age.52,53 The decrease rate is reported to be 0.21% and 
0.49% per year in men and women, respectively.53 The sexual dimorphism in FMD is likely due to the vasoprotective 
effects of estrogen. Therefore, it is better to use FMD as a predictor of vascular aging in men over 40 and women 
over 50.

Arterial Stiffness
Arteries become rigid with aging, attributed to both structural and functional alterations.54 Arterial elasticity is strongly 
affected by the intimal layer and medial layer of the vascular wall.55 First, the stress-bearing elastin fibers fracture and 
collagen fibers deposit in the medial layer, and the ratio of elastin to collagen decreases.56 Then, the increase in vascular 
wall pressure leads to a phenotypic switch of smooth muscle cells, resulting in excessive proliferation and migration of 
smooth muscle cells, as well as the production of more extracellular matrix.57 Finally, endothelial dysfunction causes 
a diminished synthesis and release of vasodilators, and endothelial cells become super sensitive to vasoconstrictors while 
insensitive to vasodilators.37,38 Together, arterial elasticity decreases with ages that impairs the cushion function of 
arteries. The stiffened arteries is not able to buffer cardiac output, which causes quicker propagation and reflection of 
pulse waves.21

Pulse Wave Velocity
Pulse wave velocity (PWV) measures the velocity of a pulse wave traveling between two arterial sites, based on the 
principles of applanation tonometry. When arterial elasticity decreases, the pulse wave propagates rapidly along the 
vasculature, which is manifested as increased PWV.58 It can be performed in various arterial segments, such as carotid- 
brachial arteries, brachial-ankle arteries, and carotid-femoral arteries. Among these, the carotid-femoral PWV (cfPWV) is 
often used as it is easy to measure, closely correlated with central arterial stiffness, and has the most clinical 
relevance.59–61

The cfPWV was reported to increase by about 2.5-folds from the age of 21 to 96 years in subjects from the Baltimore 
Longitudinal Study of Aging.62 Another study in a Chinese-population showed that the cfPWV was increased by 83% 
from 2-month-old infants to 90-year-old elderly.63 The association between increased cfPWV and age is not linear, as 
cfPWV increases more rapidly after the fifth decade.54,64,65 Similar findings were reported in the different cohorts.66

It is noteworthy that age-related arterial stiffness is regionally heterogeneous and is influenced by blood 
pressure.63,64,67 It has also been reported that the carotid-brachial PWV is weakly correlated with age,64 but another 
arterial stiffness index, brachial-ankle PWV (baPWV) shows a strong correlation with ages, similar to the cfPWV.66,68,69

To better understand the age-related changes of PWV, a baPWV in Chinese men and women from ages 60–90 is 
presented (Figure 2B).70
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Augmentation Index
The augmentation index (AIx) is determined by pulse wave reflection and represented as a surrogate parameter for 
arterial stiffness.71 As the conduit artery loses its elasticity, the reflected wave from the impedance mismatch returns 
earlier, which reaches to the central aorta in the late systolic period and merges with the systolic blood pressure. This 
process leads to an increment in aortic systolic blood pressure.72 Accordingly, aortic AIx, which measures the contribu-
tion of the early reflected waveform to the late increased systolic blood pressure in ascending aorta, is considered to be 
another indicator of systemic arterial stiffness.

Although PWV and AIx are both used to measure arterial stiffness, they provide different information about arterial 
properties and are not interchangeable.73,74 AIx is primarily affected by two factors, the wave propagation velocity 
(PWV) and the distance between the aortic root and major impedance mismatch sites. Thus, AIx is not only an indicator 
that reflects arterial stiffness.73 For this reason, the age-related changes of AIx are not fully consistent with changes 
in PWV.

As we mentioned earlier, cfPWV persistently increases with ages (from 2 months to 90 years old).63 However, studies 
have shown that AIx is markedly higher in young children, and gradually declines with ages until adolescence (15–18 
years) while the cfPWV increases slowly.75,76 Therefore, the higher AIx in children is likely attributed to the short length of 
the aorta rather than the accelerated wave reflection. After puberty, AIx is reported to be positively associated with age. In 
a large, healthy cohort, it was shown that AIx increases nearly 5-fold from adolescents aged 20 to the elderly aged 96.73 

Like the cfPWV, the increase of AIx with age is non-linear.
Previous studies demonstrated that cfPWV increases more significantly in subjects aged 50 and above, while AIx 

increases more prominently in subjects under 50 years old.54,64 The increase of AIx in the elderly is likely attenuated due 
to the reversal of the central-to-peripheral arterial stiffness gradient.64 Central arterial stiffness consistently increases with 
age, and ultimately exceeds peripheral arterial stiffness in the elderly.64 This change shifts the reflecting point distally, 
thereby reducing AIx increments. There are two turning points for age-related changes in AIx. It first occurs in 
adolescence when the age-related decrease in AIx stops and turns into an age-related increase, then during middle age 
when the increment rate of AIx diminishes.66,77

Thus, AIx is more likely to be an indicator of age-related arterial stiffness in people aged over 18, whereas cfPWV 
reflects the course of age-related arterial stiffness across lifespan.

Other Methods to Detect Arterial Stiffness
Recent studies have proposed a novel A-mode ultrasonic technique named ARTerial Stiffness Evaluation for Non-invasive 
Screening (ARTSENS). It is an image-free device for measuring arterial wall thickness based on Gaussian-mixture 
modeling.78,79 More than a dozen of published articles have claimed the advantages of ARTSENS in clinical applications, 
including its portability, high-throughput, and efficiency in evaluating vascular wall and stiffness, but a large cohort-based 
clinical trial has yet to yield any conclusive results.80–83 Vascular functional changes are listed in Table 2.

Laboratory Tests and Indirect Measurements of Vascular Aging
In addition to an assessment of age-associated vascular structural and functional alterations by using complex and 
expensive devices, the measurement of blood biomarkers is another way to indirectly evaluate vascular aging. In the 
following section, we will highlight several frequently used biomarkers.

Endothelial Progenitor Cells
Endothelial progenitor cell (EPC), the precursor of endothelial cell, is thought to be originated from bone marrow.86 

EPCs are recruited to the site of injury where they differentiate into endothelial cells, thereby regenerating damaged 
endothelium.87–90

The number of EPC colonies has been identified as an independent predictor of FMD. The EPC colonies were approximately 
3-fold higher in subjects with a higher FMD than those with a low FMD.91 Moreover, EPCs are correlated with arterial stiffness 
and arterial elasticity.92 In addition to counting the number of EPCs, the changes of EPCs in their functions are associated with 
vascular aging as well. The proliferative and migratory capacity of EPCs is linearly reduced with the increases of baPWV.93 The 
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age-dependent increase in carotid IMT is negatively associated with EPC function, and the survival rate of EPCs from the elderly 
who have high carotid IMT is decreased significantly in a healthy population-based study.94 Accordingly, EPCs appear to be 
a surrogate biomarker for predicting vascular aging.95

Telomere Length
Telomere is located at the end of each eukaryotic chromosome to maintain genetic integrity. When the telomere length 
shortens to critical region, the cell permanently loses its ability to divide and enters senescence.96 Thus, telomere attrition 
is considered a hallmark of replicative senescence or chronological aging, and it is also involved in some premature or 
accelerated aging.97,98

Table 2 Aging-Related Vascular Functional Changes on Clinical Assessment

Aging-Related Vascular 
Indicators

Arteries Major Findings Ref

Acetylcholine-induced 

vasodilation

Coronary arteries The vasodilation of coronary arteries decreased about 80% from 
20–80 years old.

[34,40–42]

Cutaneous 

microcircula-tion

The vasodilation of cutaneous microcirculation is 75% lower in 

old people (aged 61) compared with young group (aged 27).

[43]

Brachial arteries The vasodilation of brachial arteries decreased about 40% from 

20–80 years old.

[35]

Flow-mediated vasodilation 
(FMD)

Brachial arteries The FMD of brachial arteries decreased about 50% from 20–80 
years old.

[49–51]

The FMD of brachial arteries remain steady from 24–39 years 

old.

[15]

The FMD of brachial arteries decreased 2.1% and 4.9% per 

decade in men above 40 years old and women above 45 years 

old, respectively.

[52,53]

Popliteal arteries The FMD of popliteal arteries is 50% lower in old people (aged 

60–79) compared with young people (aged 20–30).

[84]

Femoral arteries The FMD of femoral arteries is 38% lower in old people (aged 69) 
compared with young people (aged 22).

[85]

Pulse-wave velocity (PWV)

Carotid-femoral 
arteries

The PWV of carotid-femoral arteries increased 2.5-fold from 21– 
96 years old.

[62]

The PWV of carotid-femoral arteries increased 83% from 

2-month-old infants to 90 years old elderly.

[63]

The PWV of carotid-femoral arteries increased more rapidly after 

the fifth decade.

[54,64–66]

Carotid-brachial 
arteries

The PWV of carotid-brachial arteries is weakly associated with 
age.

[64]

Brachial-ankle arteries The PWV of brachial-ankle arteries increased 25% from 20–70 

years old and it shows a strong correlation with age.

[66,68,69]

Augmentation Index (AIx)

Aorta The AIx decreased with age from young children to adolescence 

(15–18 years)

[75,76]

The AIx increased with age after puberty. It increased about 

5-fold from 20–96 years old.

[73]

The increasing rate of AIx slows down after the fifth decade. [54,64]
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Blood leukocyte telomere lengths (LTL) are closely related to carotid IMT and cfPWV, therefore, LTL serves as an 
indirect marker of vascular aging. The correlation of LTL with carotid IMT has been tested in healthy elderly populations 
free of cardiovascular diseases99 as well as in hypertensive and diabetic patients.100–102 LTL is negatively correlated with 
cfPWV after excluding known confounding factors such as gender, menopausal status, blood pressure, blood glucose, and 
lipid level,103,104 therefore, considered as a better indicator of biological aging in vasculature than chronologic age in 
patients with cardiovascular damage.105

Advanced Glucagon End Products
Advanced glycation end-products (AGEs) are heterogeneous compounds formed by the non-enzymatic glycosylation reac-
tions between reducing sugars and the amino group of proteins.106 They are accumulated in the vascular wall during aging and 
contribute to arterial stiffness by cross-linking with collagen fibers.107 Endothelial cells, on the other hand, express receptors 
for AGEs (RAGEs). Activation of AGEs-RAGEs signaling elicits vascular inflammation and oxidative stress, which 
ultimately leads to endothelial dysfunction.108 RAGEs can be cleaved into a soluble form, soluble RAGEs, which lack 
a membrane-anchoring domain; therefore, it circulates in the blood.109 Binding of soluble RAGEs to AGEs acts dominant- 
negatively, neutralizing the deleterious effects of AGEs on vessels.110,111 Elevated circulating levels of AGEs were indepen-
dently associated with increased arterial stiffness in healthy individuals as well as in diabetic and hypertensive patients.112–114

An accelerated age-dependent increase in cfPWV has been reported in subjects with low circulating soluble 
RAGEs.115 Based on these findings, the combination of the AGE-soluble RAGE should provide more enriched 
information than a single parameter in evaluating vascular aging.110,116 Supportively, the ratio of skin-deposited AGEs 
to soluble RAGEs is a better predictor of arterial stiffness than that in blood.116–118

C-Reactive Protein
C-reactive protein (CRP) is an inflammation biomarker that is linearly correlated with cfPWV, forearm blood flow, and 
AIx.119–121 Serum CRP levels of elderly populations without overt CCVDs are increased with cfPWV,122,123 and AIx is 
increased by about 35% from 0.6 mg/L to 3.6 mg/L of CRP.124–126

It is important to know that a single assessment of CRP concentration is unlikely to provide credible information as 
CRP levels are susceptible to other factors such as age, gender, and infection.127 However, the cumulative CRP is shown 
to be a reliable marker in the prediction of arterial stiffness.127,128 To sum up, those cellular and molecular markers that 
associated with age-related vascular structural and functional changes are presented in Table 3.

Table 3 Cellular and Molecular Markers of Vascular Aging

Markers Association with Aging-Related Vascular Indicators Ref

EPC
EPC numbers EPC numbers is positively associated with FMD [91,92]

EPC numbers is negatively associated with radial PWV
EPC function EPC function is negatively associated with baPWV, carotid IMT [93,94]

Telomere length

LTL The LTL is negatively associated with carotid IMT, cfPWV [99–101,103,104]
AGEs

Circulating AGEs The circulating AGEs is positively associated with cfPWV [113,114]

Soluble receptors for AGEs The soluble receptors for AGEs is negatively associated with cfPWV [115]
Skin AGEs/Soluble receptors for 

AGEs

The Skin AGEs/Soluble receptors for AGEs is positively associated with cfPWV [116]

CRP
Single CRP concentration The single CRP concentration is positively associated with cfPWV, AIx [121–126]

The single CRP concentration is negatively associated with acetylcholine-induced 

vasodilation
Cumulative CRP exposure The cumulative CRP exposure is positively associated with cfPWV, baPWV [127,128]
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Interventions for Vascular Aging
Pharmacologic Interventions
Anti-Hypertensive Agents
Hypertension is prevalent in the elderly and bring a huge burden for the society. It is a predominant risk factor that 
facilitates age-related changes in vascular function and structure.129 The cfPWV is accelerated in hypertensive patients 
with 0.93m/s per decade, compared with 0.44 m/s per decade in normotensive patients.130 The maximum forearm blood 
flow in response to acetylcholine decreased by nearly 42% in hypertensive patients.131 Furthermore, elevated blood 
pressure increases tension on the vascular wall, exacerbating vascular wall remodeling.20

Anti-hypertensive drugs are effective treatments to halt the progression of vascular aging. Here, we discuss five of the 
most commonly used antihypertensive drugs, including renin–angiotensin II-aldosterone system inhibitors (ACEI: 
angiotensin-converting enzyme inhibitors; ARB: angiotensin receptor blockers, AdRB: aldosterone receptor blockers), 
calcium channel blockers (CCB), β-receptor blockers, and diuretics on vascular aging.

It has been reported that all anti-hypertensive treatments, including ACEI, CCBs, β-blockers, and diuretics effectively 
reduced blood pressure; however, only ACEI improved endothelium-dependent vasodilation in randomly selected hyper-
tensive patients treated with monotherapy.132 Supportively, in a meta-analysis, ACEI was reported to be more effective in 
enhancing endothelial function against all other drugs administered as a monotherapy in hypertensive patients.133 Another 
study reported that both ACEI and ARB improved FMD in hypertensive patients compared to β-blockers and CCB.134 

These suggest that inhibition of the renin–angiotensin system is better for the improvement of endothelium-dependent 
vasodilation.

On the other hand, it was found that ACEI, CCB, β-blocker, and diuretics alleviate arterial stiffness in the long-term 
treatment compared with the control group. There was no significant difference in therapeutic effects among these 
groups.135 Other studies also reported that ACEI and ARB do not exhibit superiority in alleviating arterial stiffness 
compared with other types of antihypertensive treatments.136–140 ACEI effectively improved arterial elasticity in 
hypertensive patients compared with control groups but found no significant extra benefit compared with other types 
of anti-hypertensive drugs.141

Unlike ARB, AdRB, or CCB, diuretics exhibit only a moderate effect on vascular stiffness.142,143 Studies showed that 
ARB (losartan) and diuretics (chlorothiazide) both reduced blood pressure to normal levels in hypertensive patients after 
4 weeks of treatment, while only losartan led to a significant decrease in cfPWV and AIx,144 while both AdRB 
(eplerenone) and CCB (amlodipine) were effective in reducing cfPWV with no significant difference between the two 
groups.139 It was further reported in the EXPLOR trial that ARB (valsartan), not β-blocker (atenolol), significantly 
decreased cfPWV after adjusting for blood pressure and heart rate.145 Atenolol improves arterial elasticity, however, it 
increases AIx attributed to the lower heart rate.146 The third generation of β-blockers, such as nebivolol and carvedilol, 
showed better results in the prevention of vascular aging. For example, nebivolol significantly reduces AIx.147 Further, 
with the infusion of nebivolol into the iliac artery, arterial elasticity was reported to improve only using nebivolol.148 

Even if β-blockers reduce cfPWV to the same extent as ACEI or ARB does, the latter causes a long-lasting reduction in 
cfPWV.149,150

Treatment for Diabetes
Hyperglycemia, a feature of patients with diabetes or impaired glucose metabolism, contributes to vascular aging.151 

Hyperglycemia can facilitate AGEs formation and endothelial cell senescence,152,153 which in turn aggravate arterial 
stiffness and endothelial dysfunction.112 Compared with age-matched healthy subjects, FMD is reduced by approxi-
mately 14% in newly diagnosed diabetic patients.154 The endothelium function is inversely correlated with the severity of 
diabetes and blood glucose levels.155 In addition, the age-dependent increase of arterial stiffness and arterial wall 
thickness is accelerated in diabetic patients.156–158 Therefore, anti-hyperglycemic treatment should be considered in 
the prevention of vascular aging.

Metformin is the first line of treatment for diabetes, as it re-sensitizes patients to insulin. It also improves age-related 
vascular function significantly.159 It has been reported in the REMOVAL trial that the age-related carotid IMT increase 
was reversed with a 0.012mm/year reduction in diabetic patients treated with metformin for 5 years.160 The percentage 
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changes in coronary blood flow in response to acetylcholine were increased by 75% after 6 weeks of metformin treatment 
in pre-diabetic patients compared with the non-treated group.161 Moreover, FMD and reactive hyperemia index were 
increased by 1.8-fold and 1.3-fold, respectively, after 12-week treatment with metformin in type-2 diabetic patients.162 

Metformin also improves AIx, cfPWV, and endothelial-dependent vasodilation in polycystic ovary syndrome patients 
treated with metformin for 8 weeks.163

Other anti-diabetic agents, such as peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist 
(Thiazolidinediones), such as pioglitazone, troglitazone, and rosiglitazone, and sodium-glucose co-transporter-2 inhibitor, 
such as dapagliflozin, empagliflozin, and pioglitazone, similar to Metformin, can improve age-related vascular pheno-
types. A study reported that carotid IMT was decreased by 0.08 mm in diabetic patients treated with troglitazone for 3 
months, whereas increased by 0.016 mm in placebo-treated subjects.164 Notably, the carotid IMT increased by 0.031 mm 
after 48 weeks of placebo treatment, and decreased by 0.012 mm after 48 weeks of rosiglitazone treatment in those with 
normoglycemia, although there was no significant change in fasting blood glucose level after treatment.165,166 Thus, the 
effect of thiazolidinediones in delaying vascular aging is at least in part independent of its hypoglycemic ability.167

Sodium-glucose co-transporter-2 inhibitor block glucose re-absorption in the proximal renal tubes and accelerate 
glucose excretion.168 Empagliflozin improves endothelial function to the same extent as metformin does, however, it 
showed superior benefits in reducing cfPWV in type 1 diabetic patients.162 Dapagliflozin improves FDM even when the 
treatment lasts as short as two days in type-2 diabetic patients169 and is more efficient than hydrochlorothiazide.170

Similar to thiazolidinediones, sodium-glucose co-transporter-2 inhibitor mediated restoration of vascular function is 
not fully dependent on their abilities to reduce glycemia and blood pressure.

Sulfonylureas appear to have little effect on improving vascular function in diabetic patients.171–178

Glucagon-like peptide-1 seems to ameliorate endothelial function through its indirect mechanism in improving 
glucose and lipid metabolisms.179 Exenatide, a glucagon-like peptide-1 analog, has been proven to improve brachial 
FMD in diabetic patients after long-term administration.180,181 Besides, even single dose of exenatide had favorable 
effects on endothelial function over two sequential meals in diabetic patients.182,183 Moreover, chronic administration of 
exenatide can also improve cfPWV,184,185 AIx179 and carotid IMT in people with type 2 diabetes mellitus.186

Intensive insulin therapy has been reported to improve acetylcholine-induced vasodilation in patients with type 1 
diabetes.187 In addition, it has been shown that endothelial function is better in type 2 diabetes patients with insulin 
therapy combined with metformin, compared with metformin monotherapy.188,189 However, there are debated results 
which demonstrate that FMD in diabetic patients is not increased after 14 weeks of insulin glargine therapy.179

Lipid-Lowering Agents
Hyperlipidemia directly damages endothelial cells and EPCs impeding their abilities to repair the injured endothelium.190 

Both carotid IMT and cfPWV are increased in patients with familial hypercholesterolemia than in normal people,191–193 

suggesting that patients with hyperlipidemia suffer from premature vascular aging.
3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) inhibitors, also known as statins are widely used in the 

treatment of hyperlipidemia. Statins improve blood profile and restore vascular structure and function.194–196 However, 
it is still under heat discussion that whether the improvement of endothelial function is due to its lipid lowering effects or 
through its arterial pleiotropic effect. Some studies raise that statin therapy has pleiotropic effects because it can improve 
endothelial function in such a short time when the lipid-lowering effect of statins is incomplete,194 while recent studies 
that combine simvastatin treatment with ezetimibe to reach a lower LDL-C level suggest that the improvement of 
endothelial function is more correlated with the reduction of lipid level.197,198 Besides, researches focusing on the effects 
of statin therapy in ameliorating arterial stiffness have produced mixed results.199–202 It is also discovered that the 
improvement of arterial stiffness index may be transient under statin therapy.203 Patients with chronic kidney diseases 
possess lots of cardiovascular risk factors, and manifested as premature vascular aging.204 One study investigating the 
effects of statin in restoring arterial stiffness in patients with chronic kidney diseases has found that statin may retard the 
progression of arterial stiffness.205

It was found in a longitudinal study that the aortic root diameter was decreased in hypercholesterolemia patients 
treated with atorvastatin for two years.206 Other studies revealed that a low dose of simvastatin only moderately reduced 
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the LDL-cholesterol level (25%) but did not reduce carotid IMT values, while high doses of atorvastatin largely reduced 
the LDL-cholesterol (45%) concentration, and reversed the age-related progression of carotid IMT.195,196 These indicate 
that structural improvements of arteries require more intensive and longer statin treatments.

Non-Pharmacologic Interventions
Physical Activity
It has been reported in a Spanish cross-sectional study that vascular aging was positively correlated with sedentary time 
but inversely related to physical activity.207 The arterial stiffness index cfPWV in sedentary people was 26% higher than 
the age-matched senior athletes.62 Additionally, sedentary men exhibited a more prominent age-related decline in 
endothelial function than their peers who exercised regularly.208

Physical exercise that lasts 12 weeks can effectively restore impaired endothelial-dependent vasodilation in both 
hypertensive patients and the normotensive elderly,209 possibly attributed to the enhancement of NO release as well as 
the reduction of oxidative stress and inflammatory responses.210,211 A longitudinal study showed that the age-related 
increase in baPWV was delayed in exercise-training people. After 10 years of follow-up, there was a 5.0% increase in 
baPWV among men who regularly exercised and a 13% increase in their inactive peers.212 With aerobic exercise for 3 
months, central artery elasticity was effectively restored in sedentary subjects in a cross-sectional study.213 Notably, 
endurance exercise seems to have different effects on the structure of the carotid and peripheral arteries, therefore, 
producing debated results on whether endurance exercise can reduce the age-related increase in carotid IMT.214–218 More 
likely, endurance training changes the local arterial shear stress of the femoral artery and has little effect on the carotid 
artery.

Nevertheless, in healthy older adults, a decrease of nearly 11% in IMT and 9% in femoral arterial lumen diameter 
were detected 3 months after aerobic exercise intervention.218 Interestingly, it was found that racquet players had lower 
carotid IMT values than inactive peers. Their study suggested that more vigorous and intensive exercise is required to 
reduce carotid IMT.219 In contrast to endurance training, chronic resistance training has negative effects on arterial 
elasticity.220 The resistance-trained subjects showed a prominent age-dependent reduction in arterial elasticity compared 
with the sedentary-control subjects.220

Dietary Control
Diet habits influence vascular function profoundly. For example, the Mediterranean diet improves vascular function, 
while high-fat diets can acutely impair endothelial-dependent vasodilation.221,222 Thus, dietary control provides a cost- 
effective way to prevent vascular aging.

Several studies reported that Mediterranean diet consumption significantly improved FMD in healthy older adults, 
obese individuals, and patients with metabolic syndrome.223–225 It has been shown that the six-week low-fat diets (30% 
of total calories from fat) restored endothelial function in obese individuals, and increased FMD by 34%.226,227 An eight- 
week of low-fat diet reduced cfPWV in hypercholesterolemic patients, and the decreased cfPWV was significantly 
correlated with the reduction of plasma CRP levels.228

A high-fiber diet was associated with a low risk of CCVDs,229 decreased carotid IMT,230 restored endothelial 
dysfunction in patients with metabolic syndrome,231 and prevented endothelial dysfunction caused by high-fat 
meals.232,233

Excessive salt intake is another life habit that impairs vascular function.234–237 The arterial elasticity in untreated 
hypertensive patients was significantly improved after 2 weeks of salt restriction,238 and the age-dependent growth of 
cfPWV was effectively delayed during 2 years of salt restriction in normotensive people although the salt restriction did 
not decrease blood pressure, compared with the normal diet group.239 These findings suggest that the beneficial effects of 
a low-salt diet do not depend solely on blood pressure reduction.

Caloric restriction is considered to be an effective nutritional intervention to delay vascular aging.240,241 In hyperten-
sive obese individuals, baseline forearm blood flow did not change after 2 weeks of a low-calorie diet (800 kcal/day), but 
endothelium-dependent vasodilation improved.242 The study in overweight young adults also revealed a 10% weight loss 
and a 3.3% increase in FMD after 6 weeks of a very-low-calorie diet (580 kcal/day).243 In a longitudinal study, the FMD 
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of obese diabetic patients increased from 5.64% to 10.16% after 8 weeks of caloric restriction (1000 kcal/day) and 
continued to increase to 12.46% over the next 44 weeks.226 Another trial showed no difference in FMD changes between 
the caloric restriction group and the control group, however, PWV was decreased by 1.2m/s in the caloric restriction 
group after 3 months of a low-calorie diet (<1400 kcal/day).244

Intermittent fasting, time-restricted food intake, is another way to control energy intake.245 Current knowledge about 
its effect on our blood vessels is very limited. In a comparative study, circulating markers of endothelial function (total 
nitrate, asymmetrical dimethylarginine, vascular cell adhesion molecule-1) were improved in patients with metabolic 
syndrome after 8 weeks of a 2-day fasting dietary schedule.246 Furthermore, a recent animal study reported an increase in 
FMD in obese rats undergoing 6 weeks of intermittent fasting.247 More studies are required to delineate the effects of 
intermittent fasting on vascular aging. It is important to understand that both, the strength and timing, present a large 
effect on the outcome, and may explain the conflicts which are not discussed here.248–251 The interventions of vascular 
aging and their outcomes are outlined in Table 4.

Anti-Aging Therapy
The above strategies mainly focus on controlling risk factors of vascular aging to delay this process and have far-reaching 
significance. However, these measures alone seem to be insufficient in solving the problem. Currently, the most 
promising therapeutic approach in delaying vascular aging is anti-aging therapy, which relies on compounds that 
straightforwardly target molecular mechanisms underlying cellular senescence.

Senolytic is a kind of chemotherapeutics, which refers to the group of drugs that can selectively eliminate senescent 
cells. The common combination is dasatinib and quercetin. Recent studies have confirmed that senolytics can improve 
many age-related diseases and extend life span in aged mice.252–254 Besides, senolytics can significantly reduce senescent 
cells in the medial layer of the aorta in the atherosclerotic model mice (ApoE−/−) and improve the vasomotor response to 
NO.255 Moreover, eliminating senescent cells can increase atherosclerotic plaque stability and prevent the development 
of atherosclerotic lesions.256

Table 4 Interventions for Vascular Aging and the Beneficial Effects

Interventions Influence on Aging-Related Vascular 
Indicators

Ref

Anti-hypertensive agents
ACEI FMD⬆, cfPWV⬇ [132,135]

CCB cfPWV⬇ [135,139]

β-blocker cfPWV⬇, AIx⬇ [135,147]
Diuretics cfPWV⬇ [135]

ARB cfPWV⬇, AIx⬇ [144,145]

AdRB cfPWV⬇ [139]
Diabetes treatment agents

Metformin FMD⬆, carotid IMT⬇, AIx⬇, cfPWV⬇ [160,162,163]

Thiazolidinediones Carotid IMT⬇ [164–166]
Sodium-glucose co-transporter-2 

inhibitor

FMD⬆, cfPWV⬇ [162,169]

Lipid-lowering agents
Statins Aortic root diameter⬇, carotid IMT⬇ [195,196,206]

Healthy lifestyles

Physical exercise FMD⬆, baPWV⬇, femoral arterial diameter⬇, 
carotid IMT⬇

[209,212,213,218,219]

Dietary control FMD⬆, cfPWV⬇, carotid IMT⬇ [223–225,228,230–233,239,242–244,247]

Abbreviations: AIx⬇, AIx value decrease; Aortic root diameter⬇, aortic root diameter decrease; BaPWV⬇, baPWV value decrease; Carotid IMT⬇, carotid IMT decrease; 
CfPWV⬇, cfPWV value decrease; Femoral arterial diameter⬇, Femoral arterial diameter decrease; FMD⬆, FMD value increase.
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Metformin is not only a commonly used drug for diabetes, it also has direct cardiovascular protective effects.257 Age- 
related vascular indicators such as IMT, FMD, AIx and PWV were improved in diabetic patients with 
metformin.160,162,163 Furthermore, studies demonstrated that metformin can delay cellular senescence.252 The underlying 
mechanisms are complex and not fully understood.258 There was a mass of papers investigated the anti-aging actions of 
metformin with data obtained from various species include C. elegans, Drosophila melanogaster, rodents and humans. 
Nonetheless, their conclusions are controversial, with some reviews being supportive of the anti-aging effect of 
metformin,259–261 whereas others hold different opinions.257,262–264

Rapamycin is mTOR inhibitor. It has been reported to increase life span in many species,265–267 and also it can inhibit 
the senescence-associated secretory phenotype of senescent cells.268 Besides, plenty of evidences demonstrate that 
rapamycin has cardiovascular protective benefits. In old mice, after treatment of rapamycin, the endothelial-dependent 
dilation and NO bioavailability were largely improved, potentially due to its action in mediating redox balance or 
inflammation in advanced age.269 In addition, structural changes of aged vasculature may be ameliorated, contributing to 
attenuated age-related vascular stiffening.269 More importantly, these cardiovascular protective benefits were also 
confirmed in human. Studies have reported that those who received rapamycin therapy after kidney transplantation 
have significantly greater FMD, PWV and AIx.270,271

Nicotinamide adenine dinucleotide (NAD+) is a coenzyme that catalyzes cell metabolism and can enhance Sirtuins 1 
activation.272 Its concentration is decreased in senescent cells. Many studies have demonstrated that supplementation of 
NAD+ precursor can retard cellular senescence and prolong lifespan.273,274 Moreover, supplying NAD+ to old mice can 
reverse their age-related endothelial dysfunction and arterial stiffness.275 Nevertheless, when translated to humans, only 
vascular elasticity, no endothelial function, was found to improve after providing people with NAD+ precursor for 6 
weeks.276 These evidences proved that Sirtuins 1 activation may be effective in ameliorating vascular aging.

Anti-aging therapy has now become a promising weapon in age-related diseases. However, there is still a long way to 
go “from bench to bedside”.

Summary and Discussion
Blood vessels change their structures, functions, and compliance along the aging process. These changes can be detected 
and visualized to assess the degree of vascular aging directly; 1) Structure: both arterial wall thickness and lumen 
diameter are increased. 2) Function: the endothelium-dependent vasodilation induced by acetylcholine or reactive 
hyperemia becomes desensitized. 3) The vascular compliance: stiffness, which is measured by PWV or AIx, is increased. 
In addition to these direct measurements, the laboratory tests can provide many other indirect biomarkers or indicators 
for vascular aging, for example, endothelial progenitor cells, lymphocytic telomere, advanced glycation end-products, 
and C-reactive protein, as these biomarkers are well correlated with direct measurements.

However, it should be noted that these parameters reflect different information about arterial properties and may not 
be interchangeable even in the same category. For example, PWV and AIx are not fully consistent at all ages. 
Importantly, most of these parameters are influenced by not only age but also other factors, such as health status, gender, 
and lifestyle, and not all parameters are linearly correlated with age, while, some of them are only altered in the elderly 
population. Therefore, it is essential to measure multiple parameters to get a broader assessment of vascular aging.

Many diseases, particularly cardiovascular and metabolic diseases including their risk factors, significantly affect 
vascular aging. Thus, treating these diseases and avoiding the relevant risk factors prove to be effective in the prevention 
of vascular aging. Notably, only a few approaches can improve all parameters for vascular aging, since the outcome of 
the intervention is affected by many factors, such as strength, frequency, and age. This again points to the importance of 
measuring multiple parameters to evaluate the results of applied approaches to evaluate their abilities in preventing 
vascular aging.

It is worthy of being mentioned that there also exist controversies in both vascular phenotypic alterations and the 
outcomes of interventions. For example, whether aortic root dilation is a reasonable marker for vascular aging, as it is 
influenced by many factors, including body surface area, and how the listed indirect laboratory tests reflect vascular aging 
specifically. We also leave some questions that need more investigations to clarify. For instance, which clinical 
assessment(s) cover(s) more vascular changes with ages and can be used as a representative indicator(s) to quantify 
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vascular aging and which intervention gives best outcome, and so on. Answers to these questions not only provide an 
update in knowledge but also make a step forward to clinical translation in vascular aging.

In summary, vascular aging is a multi-dimensional process that requires a comprehensive set of parameters to be 
measured in clinical practices and it can be prevented to maintain healthy vasculature by avoiding modifiable risk factors 
and adhering to a healthy lifestyle.

Abbreviations
ACERI, angiotensin-converting enzyme inhibitors; AdRB, aldosterone receptor blockers; AGEs, advanced glycation 
end-products; ARB, angiotensin receptor blockers; AIx, augmentation index; baPWV, brachial-ankle PWV; BSA, body 
surface areas; CCB, calcium channel blockers; CCVDs, cardio-cerebral vascular diseases; cfPWV, carotid-femoral PWV; 
CRP, C-reactive protein; EPC, endothelial progenitor cell; FMD, flow-mediated dilation; IMT, intimal-medial thickness; 
LTL, leukocyte telomere lengths; NAD+, nicotinamide adenine dinucleotide; NO, nitric oxide; PWV, pulse wave 
velocity; RAGE, receptors for AGE.
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