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Abstract: Atrial fibrillation (AF) poses a serious healthcare burden on society due to its high morbidity and the resulting serious 
complications such as thrombosis and heart failure. The principle of catheter ablation is to achieve electrical isolation by linear 
destruction of cardiac tissue, which makes AF a curable disease. Currently, catheter ablation does not have a high long-term success 
rate. The current academic consensus is that inflammation and fibrosis are central mechanisms in the progression of AF. However, 
artificially caused inflammatory cell death by catheter ablation may have a significant impact on structural and electrical remodeling, 
which may affect the long-term prognosis. This review first focused on the inflammatory response induced by apoptosis, necrosis, 
necroptosis, pyroptosis, ferroptosis and their interaction with arrhythmia. Then, we compared the differences in cell death induced by 
radiofrequency ablation, cryoballoon ablation and pulsed-field ablation. Finally, we discussed the structural and electrical remodeling 
caused by inflammation and the association between inflammation and the recurrence of AF after catheter ablation. Collectively, 
pulsed-field ablation will be a revolutionary innovation with faster, safer, better tissue selectivity and less inflammatory response 
induced by apoptosis-dominated cell death. 
Keywords: atrial fibrillation, inflammatory cell death, radiofrequency ablation, cryoballoon ablation, electroporation

Introduction
Atrial fibrillation (AF) is a common arrhythmia with high morbidity and mortality.1 Without proper intervention, this 
arrhythmia may develop into a permanent condition. Current therapeutic regimens include catheter ablation and drug 
therapy. Although antiarrhythmic drugs can help maintain sinus rhythm, most of them are ineffective and associated with 
intolerable side effects. AF and heart failure are closely related and mutually reinforcing. Evidence supported that 
catheter ablation reduces all-cause mortality in patients with AF combined with heart failure compared with drug 
therapy.2

Since Haissaguerre identified the pulmonary veins as the main trigger of AF,3 isolation of the electrical activity of the 
pulmonary veins by utilizing various form of energy (radiofrequency, cryoballoon, laser, ultrasound, pulsed-field) has 
become the cornerstone of catheter ablation. The primary goal of catheter ablation is to eliminate the symptoms 
associated with AF and improve quality of life. However, numerous clinical evidences have shown that the success 
rate of catheter ablation is not very high. After weighing complications such as atrioesophageal fistula, cardiac 
tamponade, phrenic nerve injury, esophageal injury, and pulmonary vein contracture, catheter ablation is not a routine 
choice as a first-line option.4 This awkward positioning of catheter ablation suggests that there is much room for 
improvement and optimization.

Catheter ablation leads to the membrane-breaking cell death of localized cardiomyocytes, releasing diverse bioactive 
substances. Undoubtedly, the local pro-inflammatory microenvironment may create a substrate for structural and 
electrical remodeling. This review will focus on the possible inflammatory response induced by cell death as well as 
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arrhythmias, and attempt to clarify the differences in catheter ablation induced cell death at a microscopic level, with 
a view to translate the available evidence into clinical guides.

Cell Death and AF
Excessive cardiomyocytes death with limited regenerative capacity leads to a variety of cardiac diseases, including 
myocardial infarction, malignant arrhythmia, heart failure, and sudden cardiac death. Currently, known modes of cell 
death include, but are not limited to, apoptosis, necrosis, necroptosis, pyroptosis, and ferroptosis, which occur indepen-
dently and interact with each other. Dead cells can exhibit features of autophagy, apoptosis, pyroptosis, and necrosis 
simultaneously.5 Except for apoptosis, all other membrane-breaking cell deaths (necrosis, necroptosis, pyroptosis, and 
ferroptosis) all occur in conjunction with an inflammatory response. More importantly, the loss of cardiomyocytes may 
not only imply diminished systolic function, but also activate the cascade of inflammatory responses, which may further 
contribute to the development of arrhythmia (Figure 1). Additionally, arrhythmia can exist as a single or cardiomyopathy- 
related disorder, and myocardial injury associated with arrhythmia is usually accompanied by a temporary or permanent 
inflammatory response.6

Apoptosis and AF
Apoptosis is required for the clearance of damaged or senescent cells. Since 1972, the ultra-structural features of 
apoptosis have been characterized as the integrity of the cell membrane structure and the absence of a significant 
inflammatory response.7 Apoptosis has been shown to be associated with ischemia/reperfusion (I/R) injury, heart failure, 
and atherosclerosis. In 1994, evidence of apoptosis in the I/R myocardial tissue of rabbits was obtained by transmission 
electron microscopy and DNA gel electrophoresis.8 Apoptosis was present in the sinoatrial node, atrioventricular node, 
and conduction tissues during embryonic development and the postnatal weeks of development. Excessive, insufficient, 
or delayed apoptosis can cause arrhythmia.9 James et al observed typical apoptosis in surgically resected sinus nodes in 
patients who were recurrent ventricular arrhythmia combined with syncopal long Q-T syndrome, suggesting that 

Figure 1 The association between inflammatory cell death and AF. This figure briefly recapitulates the association between inflammatory cell death and AF induce 
inflammatory cell death. Inflammatory cell death caused by artificial therapeutic regimens releases inflammatory factors that lead to structural and electrical remodeling, 
thereby contributing to the permanent progression of the arrhythmia. The cross-link between AF and inflammatory cell death creates a vicious loop. 
Abbreviation: AF, atrial fibrillation.
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arrhythmia is implicated in apoptosis, with limited, non-inflammatory degeneration in the sinus node.10 Thus, an 
imbalance of apoptosis may underlie the pathogenesis of some arrhythmia.

Sustained tachycardia and rapid pacing promote cardiomyocytes apoptosis, which have been corroborated by 
extensive clinical data.11–13 Knocking down caspase-3 in a porcine AF model could prevent intra-atrial conduction 
delay and inhibit the development of sustained AF.14 Additionally, ATG5 and M30, which are associated with autophagy 
and apoptosis, were elevated in the serum of patients with paroxysmal AF.15 Besides, epicardial isolation of pulmonary 
veins also reduced the apoptosis indicators in AF.16

Apoptosis may be the ultimate culmination of various unfavorable stimuli. However, how apoptosis without 
inflammatory response contributes to the progression of AF has not been investigated clearly. A possible explanation 
is that widespread apoptosis of cardiomyocytes or conduction system implies a weakening of atria contractile function 
which causes the atria to enlarge, ultimately leading to structural remodeling and electrical remodeling.

Necrosis and AF
Necrosis is usually considered a non-programmed, unregulated cell death process resulting from exposure to external 
violent stimuli or severe imbalance in the homeostasis of the internal environment. Necrosis is characterized by cell 
swelling, rupture, and spillage of cell contents, which triggers an inflammatory response.

Necrotic myocardium can trigger innate and adaptive immunity.17 Damage-associated molecular patterns (DAMP) 
bind to pattern recognition receptors to induce activation of downstream signaling pathways on cardiomyocytes or 
resident immune cells (Figure 2). Many DAMPs have been identified, including high-mobility group box 1 (HMGB1), 
uric acid, double-stranded DNA, amyloid-β-peptide, heat shock proteins (HSP), interleukin-1α (IL-1α), and IL-33. 
Ultimately, the cascade leads to the upregulation of chemokines and cytokines.18 The inflammatory response is also 

Figure 2 Overview of the inflammatory pathways induced by inflammatory cell death. Release of inflammatory factors, mainly DAMPs, following cardiomyocytes death 
promotes polarization and chemotaxis of inflammatory cells. In turn, inflammatory cells secrete inflammatory factors which alter the structure and electrical conduction 
activity of the local microenvironment. 
Abbreviations: AA, arachidonic acid; TF, tissue factor; AP, activating protein; NF, nuclear factor; IFN, interferon; IL, interleukin; PG, prostaglandin; LT, leukotriene; LX, 
lipoxin; CYP450, cytochrome P450; MyD, myeloid differentiation factor; LOX, lipoxygenase; COX, cyclooxygenase; TNF, tumor necrosis factor; IKK, inhibitor of kappa 
B kinase; TLR, toll-like receptors; LPO, lipid hydroperoxide; DAMP, damage-associated molecular patterns; RAGE, the receptor of advanced glycation end products; HETE, 
hydroxyeicosatetraenoic acid; MAPK, mitogen-activated protein kinase; TRIF, TIR-domain-containing adaptor inducing interferon β.
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exacerbated because of elevated fibrinogen, fibronectin, bilirubin, metallopeptidase 2 (MMP-2), tissue inhibitors of 
metalloproteinase 2 (TIMP-2), and thrombospondin 2 in neutrophils or polarized macrophages.19–21

There are few direct studies of necrosis on arrhythmia, but we can draw an analogy to myocardial infarction as a more 
severe form of myocardial necrosis. Studies have found that larger infarct sizes in the heart are more prone to 
arrhythmia.22–24 The cumulative morbidity of AF over 5 years after acute myocardial infarction is 6%-21%, compared 
to 3% in the general population.25 Recent studies have shown that the morbidity of supraventricular tachycardia in atrial 
infarction patients is 27%.26 A prospective cohort study has shown that artificial atrial coronary occlusion causes atrial 
arrhythmias and delayed intra-atrial conduction.27 Moreover, the more atrial branches are blocked, the higher morbidity 
of AF.28,29 It has been verified that atrial infarction is associated with slower atrial conduction velocity, increased 
conduction heterogeneity, increased susceptibility to AF, and a longer duration of AF.30 Coincidentally, in the canine 
model of chronic atrial infarction, researchers found an approximately 50-fold increase in spontaneous atrial ectopic 
activity and conduction abnormalities, and significant fibrosis at the border of the atrial infarct region. Patch-clamp 
implied that the initiating activity of atrial myocytes in infarct boundary areas was enhanced, with faster decay of 
caffeine-induced Ca2+ transients and enhanced Na+-Ca2+ exchange currents.31 A refined study by Uma et al reported that 
ligation of the atrial branch of the left anterior descending coronary artery resulted in spontaneous AF. Optical mapping 
observed focal spontaneous discharges and conduction delays at the border of the ischemic/normal zone, which provided 
substrates for reentry. The possible mechanism involved is that the physiological binding of calmodulin to ryanodine 
receptor type 2 (RyR) is altered by hypoxic and inflammatory responses.32 Taken together, these results suggest that local 
myocardial tissue necrosis has profound effects on electrophysiology. However, little is known about whether catheter 
ablation of the pulmonary veins and extensive linear ablation in the atria could cause atrial infarction by damaging the 
corresponding arteries and whether it has any effect on the recurrence of AF after the procedure.

Of course, researchers have also conducted a series of mechanistic explorations to find interventions. Previous 
research prompted that C1q/TNF-related protein 9 may reduce atrial inflammation and fibrosis effectively and reduce 
the incidence of concomitant AF after myocardial infarction through its inhibitory effects on TLR4/NF-κB and Smad2/3 
signaling pathways.33 Relaxin exerts beneficial anti-fibrotic and anti-inflammatory effects and reduces the susceptibility 
of AF after myocardial infarction.34

Necroptosis and AF
Necroptosis is a newly discovered mechanism of cell death that combines the features of necrosis and apoptosis.35 

A cascade of physicochemical factors stimulates the activation of autophosphorylation of receptor-interacting serine/ 
threonine protein kinase. It leads to the release of DAMPs, which promote the inflammatory response (Figure 2).

Several studies have shown that necroptosis plays an accelerating role in myocardial infarction, I/R injury, and heart 
failure.36–38 Inhibition of necroptosis was found to reduce the susceptibility to CaCl2-acetylcholine or high lipid-induced 
AF and reverse structural remodeling of the atria.39 TGF-β activated kinase 1 acts as a key survival factor by 
antagonizing necroptosis directly, which is essential for maintaining myocardial homeostasis and preventing unfavorable 
myocardial remodeling.40 A recent study demonstrated that tumor necrosis factor receptor-associated factor 2-mediated 
NF-κB independent pro-survival pathway inhibited necrotic signaling, and it could be used as a therapeutic target for 
ventricular remodeling and heart failure.37 More studies are needed to gain a better understanding of the relationship 
between necroptosis and arrhythmia.

Ferroptosis and AF
Ferroptosis is a regulated cell death characterized by iron-dependent lipid peroxidation (LPO) accumulation.41 

Ferroptosis has been shown to release mitochondrial and intranuclear material,42 but the study of inflammation in 
ferroptosis is still in the early stage.43

Ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through chemokine 
ligand 2.44 Ferroptotic cells release HMGB145 and anti-HMGB1-neutralizing antibodies mitigated the inflammatory 
response of macrophages.46 Inhibition of ferroptosis has been reported to inhibit leukocyte extravasation.47 The 
activation of the toll-like receptors (TLR) inflammatory response led to neutrophil accumulation and myocardial 
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injury in cardiac transplantation, and Ferrostatin (selective ferroptosis inhibitor) reversed this alteration.48 4-hydro-
xynonenal, which is the LPO product, is a ligand for the TLR4 receptor and triggers an inflammatory response.49 In 
addition, LPO drives an increase in modified low-density lipoprotein, which promotes inflammation through macro-
phage polarization.50 Reducing glutathione peroxidase 4 (GPX4) expression up-regulates the expression of 12- 
lipoxygenase (ALOX12) and cyclooxygenase 1 (COX-1).51,52 (Figure 2) In contrast, GPX4 activation inhibits 
ferroptosis and inflammatory responses by attenuating arachidonic acid oxidation and NF-κB pathway activation.53 

Arachidonic acid is an unsaturated fatty acid that is metabolized by COX, LOX, cytochrome P450, and monoox-
ygenases to synthesize biologically active inflammatory mediators such as prostaglandins, leukotrienes, epoxyeicosa-
trienoic acid, and hydroxyeicosatetraenoic acid.54 Excessive reactive oxygen species (ROS) and iron overload are 
strongly associated with arrhythmia.55,56 A recent study reported that SARS-CoV-2 induced ferroptosis, leading to the 
dysfunction of human embryonic stem cell-derived sinoatrial node-like pacemaker cells.57 AF is a common cause of 
death in β-thalassemia patients, and it can be hypothesized that the presence of ferroptosis in β-thalassemia patients 
promotes the development of AF.58 Basic research hinted that rapid pacing cardiac fibroblast-derived exosomes 
exacerbated cardiomyocytes ferroptosis, and AF could be prevented by intervening in exosomal miRNAs.59 In 
addition, LPS-induced endotoxemia,60 excessive alcohol consumption,61 and obesity-related gut flora dysbiosis62 

could increase AF susceptibility through ferroptosis.

Pyroptosis and AF
Pyroptosis is an inflammatory form of programmed cell death involving the activation of caspase-1 by the inflamma-
some. Pyroptosis exhibits a plasma membrane blistering morphology and therefore is usually considered a monocyte- 
specific form of apoptosis. However, the recent discovery of Gasdermin-D of pore-forming activity, which is a key 
executor of pyroptosis, has redefined pyroptosis as a necrotic form of cell death.

Pyroptosis is a type of pro-inflammatory cell death that is closely associated with the activation of NOD-like receptor 
thermal protein domain associated protein 3 (NLRP3) inflammasome and is intensively involved in AF.63 A previous 
report claimed the NLRP3 inhibitor glibenclamide reversed atrial remodeling partially and prevented AF in diabetic 
rabbits.64 Yao et al found that NLRP3 inflammasome activity was enhanced significantly in atrial myocytes from AF 
patients and dogs with atrial tachycardia pacing.63 Over activation of the NLRP3 signaling pathway promotes the 
expression of apoptotic mechanisms mediated by RyR2 and caspase-1, resulting in increased Ca2+ release from the 
sarcoplasmic reticulum and increased secretion of inflammatory cytokines.63,65 At the same time, enhanced transcription 
of Kcna5 leads to an increase of Kv1.5-current, shortening the effective refractory period and forming a reentry 
substrate.63 Cold exposure increased trimethylamine N-oxide by enhancing gut-derived trimethylamine production, 
which promoted M1 macrophage infiltration, induced the pyroptosis of cardiomyocytes in rats, exacerbates atrial 
structural remodeling, and ultimately led to AF.66 LncRNA x–inactive specific transcript (XIST) may promote Arl2 
expression through the uptake of miR-214-3p to blunt the pyroptosis of cardiomyocytes, providing encouraging insights 
for XIST-based AF-targeted therapy.67

Pulsed-Field Ablation (PFA) versus Conventional Catheter Ablation
Catheter ablation has formed a scenario in which radiofrequency ablation (RFA) is the mainstay, supplemented by 
cryoballoon, laser, and ultrasound ablation during the past decades. The success rates of RFA, cryoballoon ablation 
(CBA), and PFA for paroxysmal AF within 1 year are 61.1%–92%, 51.7%–88% and 66.2%–90% respectively 
(Table 1). Although a shoulder-to-shoulder comparison of the effectiveness of RFA and PFA is not yet available, 
the published data from small samples of PFA is worth envisioning. Unlike RFA and CBA, which use extreme 
temperatures to destroy myocardial tissue, PFA utilizes strong electric fields to disrupt the phospholipid bilayer 
integrity of cell membranes or organelles to induce cell death.68 Cardiomyocytes have the lowest electroporation 
threshold of all tissues, which makes this technique particularly appropriate for cardiac ablation.69 This difference in 
sensitivity between cardiomyocytes and other non-target tissues may reduce the risk of collateral damage to the 
esophagus and phrenic nerve.
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Table 1 Summary of Success Rate After Different Ablation Procedures of Atrial Fibrillation

Reference Total 
Number

Age (Year) LVEF% Type of AF Treatment 
Method

1-Year Success  
Rate

Follow-Up Time  
(Success Rate)

[70] 150 63.4±9.9 60.3±4.8 Par PFA 66.2% –

[71] 121 57.4±10.3 62.5±5.7 Par PFA 78.5% –

[72] 186 59.4±10.2 60.8±5.8 Par PFA 78.9% –
[73] 1568 64.5±11.5 60 Par/Per PFA 78.1% –

[74] 52 65±10 56±11 Par/Per PFA – 0.5 years (85%)

[75] 200 71 (62–77) – Par/Per PFA 80.3%(Par)/66.8%(Per) –
[76] 191 69±12 60±10 Par/Per PFA – 0.5 years (94.2%)

[77] 138 67±12 52±10 Par/Per PFA 90%(Par)/60%(Per) –
[70] 150 66.0±9.0 57.6±6.4 Per PFA 55.1% –

[78] 45 67.1±10 56.5±11.2 Per PFA – 0.3 years (80%)

[79] 253 61±9 65.8±4.4 Par RFA 82.7% 2.1 years (79.6%)
[80] 25 59±9 58±6 Par RFA 92% –

[81] 100 60.0±10.1 58.9±8.0 Par RFA 61.1% –

[82] 260 58.3±8.7 – Par RFA – 1.9 years (57.3%)
[83] 66 54.3±1.3 60.8±7 Par RFA – 2 years (45.5%)

[84] 146 56±9 – Par RFA 82.2% 2 years (84.9%)

[85] 159 60 (54–67) – Par RFA 70.7% –
[86] 121 59.8±9.7 – Par RFA – 4.8 years (46.6%)

[87] 210 56.6±10 61.8±6.1 Par/Per RFA 80.6% –

[88] 61 63.4±10.5 67.1±6.6 Par/Per RFA 96.7% 3 years (88.5%)
[89] 136 58.2±10.8 – Par/Per RFA 57.4% –

[90] 63 56.0±7.2 55.5±8.2 Par/Per RFA 38.1% 7 years (13%)

[91] 150 58.2±10 57.±10.8 Par/Per RFA 84% –
[92] 356 59 (51–65) 60 (57–62) Par/Per RFA ~67.5% 5 years (45%)

[93] 100 55.7±9.6 70±11 Par/Per RFA 40% 5 years (29%)

[94] 229 – – Par/Per RFA 77.3% –
[95] 50 62.4±9.5 56.3±4.1 Per RFA 54% –

[96] 83 65±8 27.8±9.5 Per RFA 73.5% –

[97] 25 60±7 55 (50–60) Per RFA 68% –
[98] 49 64.0±8.7 56.8±8.1 Per RFA 61.2% –

[99] 67 58±10 55±11 Per RFA – 1.5 years (59%)

[100] 61 62.1±9.9 - Per RFA 54% –
[101] 202 61±9 60±7 Per RFA 35.1% 4.6 years (20.3%)

[102] 191 58.2±12.9 57±11 Per RFA – 1.1 years (32%)

[103] 104 60.4±11.2 60.9±0.6 Par CBA 74.6% –
[104] 154 57.7±12.3 59.6±7.0 Par CBA 57.1% –

[105] 116 58.6±9.2 59.1±6.6 Par CBA 51.7% –

[106] 163 57±9 60±6 Par CBA 69.9% –
[107] 107 50.5±13.1 62.8±5.4 Par CBA 82.2% –

[79] 247 60.8±10.0 65.9±5.4 Par CBA 79.8% 2.2 years (70.9%)

[108] 163 58 (50, 64) 62 (57, 65) Par CBA 69% 5 years (53%)
[80] 25 58±9 60±5 Par CBA 88% –

[109] 55 62.9±8.7 61.7±5.4 Par/Per CBA 61.8% –

[81] 101 62.9±8.9 58.0±9.0 Par CBA 60.3% –
[82] 136 57±13.3 – Par CBA – 1.9 years (63.2%)

[110] 120 61.9±9.3 55.9±8.5 Par/Per CBA 74.2% –

[111] 1742 58.0±10.4 – Par/Per CBA 78.5% –
[112] 100 66.5±9.4 61.5±5.6 Par/Per CBA 80% –

[113] 80 66±10 57±10 Par/Per CBA 68% –

(Continued)
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Cell Death in RFA and CBA
RFA uses radiofrequency currents to generate high temperature to cause damage to the target tissue, while CBA uses argon to 
absorb surrounding heat as it expands rapidly to cause a rapid drop in the temperature of the surrounding tissue. Both RFA 
and CBA are energy-based ablations that utilize extreme temperatures, resulting in irreversible cellular damage.

RFA causes a high temperature and then transmits it to the surrounding tissues, forming the main characteristic lesion 
centered on coagulative necrosis. When the temperature exceeds 60 °C, the time to reach irreversible damage decreases 
exponentially. The inactivation of important enzymes is the initial feature of the damage, and proteins are denatured quickly 
and followed by cytotoxicity causing coagulative necrosis (Figure 3). At temperatures around 40–45 °C, irreversible cellular 
damage only occurs with prolonged exposure (30–60 minutes). Temperature gradients caused by catheter can induce apoptosis 
and lead to the progression of injury. Besides, stimulation of apoptosis can be triggered by various cytokines and can induce direct 
alterations in the tissue microenvironment.122 In particular, endothelial pyroptosis after RFA of liver tissue has been reported to 

Table 1 (Continued). 

Reference Total 
Number

Age (Year) LVEF% Type of AF Treatment 
Method

1-Year Success  
Rate

Follow-Up Time  
(Success Rate)

[114] 256 58±10.9 65±6.5 Par/Per CBA 85.5% 5 years (59.4%)
[87] 200 57.5±9.8 61.1±7.1 Par/Per CBA 72.7% –

[115] 299 60±11 59±8 Par/Per CBA 83.9%(Par)/61.6%(Per) –

[88] 70 64.1±10.1 68.0±9.1 Par/Per CBA 82.8% 3 years (70.0%)
[116] 236 54.6±10.45 64.5±5.8 Par/Per CBA – 1.5 years (74.5%)

[89] 133 59.7±9.9 – Par/Per CBA 75.2% –

[117] 133 66±10 51±8 Per CBA 67% –
[118] 49 63±10 – Per CBA 69% 1.1 years (69%)

[119] 100 63±10 57.6±6.4 Per CBA – 0.9 years (67%)

[95] 50 62.4±9.8 57.5±3.7 Per CBA 56% –
[120] 69 59.4±8.1 – Per CBA 59% 1.7 years (50%)

[121] 917 – – Per CBA – 1.4 years (68.9%)

Abbreviations: AF, atrial fibrillation; RFA, radiofrequency ablation; PFA, pulsed field ablation; CBA, cryoballoon ablation; Par, Paroxysmal; Per, Persistent.

Figure 3 Comparison of cell death patterns due to RFA and PFA. RFA causes damage by localized cell necrosis, whereas PFA causes damage by apoptotic cell death. By 
comparing the schematic diagrams, RFA causes widespread necrosis, and the area of necrosis may contain patterns of death including necrosis, necroptosis, pyroptosis, and 
ferroptosis. A large accumulation of inflammatory cells such as neutrophils, monocytes and lymphocytes are chemotactic to the migrated area, which in turn induces a strong 
inflammatory response. Whereas the necrosis by PFA is limited to the area close to the catheter, the wider damage is predominantly apoptotic. There is also relatively little 
infiltration of inflammatory cells in the migratory zone. 
Abbreviations: RFA, radiofrequency ablation; PFA, pulsed field ablation.
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be closely associated with systemic inflammatory response syndrome, confirming that pyroptosis occurs with thermal 
injury.123,124 There is little ferroptosis reported from RFA or thermal injury. However, ferroptosis mediated alkali burn- 
induced corneal injury has been reported in ophthalmology.125 In sum, cell death in the injury zone is a complex process and 
various types of cell death may need to be further explored.

CBA creates an injury similar to RFA, a pattern of injury centered on necrosis.126 Ice crystals can form inside and 
outside the cells during CBA and are accelerated by nucleation. Spontaneous nucleation of cells can occur at −5°C to 
−15°C.127 The percentage of intracellular ice increases during rapid temperature reduction. Cell damage occurs due to 
shearing, and the damage caused during rapid temperature reduction is lethal.128 Animal studies verified that the 
sublethal temperature in the peripheral zone causes cells to activate apoptosis.129,130 Regrettably, the existence of 
other types of cell death in the migratory region has not yet been reported clearly.

Cell Death in PFA
Unlike RFA and CBA, which are energy-based ablations, PFA uses multiple strong pulses to generate an electric field 
that causes irreversible cell membrane damage.131 Electric fields are most commonly generated by a high-voltage direct 
current delivered between two or more electrodes. When a sufficiently strong electric field is applied to a cell and 
increases the permeability of its membrane, electroporation occurs, leading to increased ion transport and overall 
membrane instability.132 Its nonthermal mechanism of ablation allows PFA to ablate the atrial myocardium because it 
has a lower threshold for injury compared to the phrenic nerve and esophagus which are close to the heart. At a certain 
distance from the electrode, there will be an area of tissue at the PFA threshold that forms the edge of the lesion. With the 
use of higher voltages or increasing other exposure metrics (including pulse duration and the number of pulses), the 
lesion volume will increase. Cell death due to field exposure above the PFA threshold and permanent hyperpermeability 
is attributed to adenosine triphosphate depletion, ion channel failure, calcium overload, and a general loss of intracellular 
homeostasis.133–135

This non-thermal damage maintains the integrity of the extracellular matrix and thus reduces structural remodeling. 
Apoptosis has been reported widely as the most common form of cell death by PFA.136 (Figure 3) Animal models 
showed that the injury zone is delineated well and bounded by the surrounding tissue clearly.137 This ensures that tissues 
outside the lesion are less affected during ablation and reduces the occurrence of inflammation. The PFA delivery energy 
is determined by the voltage, the pulse duration, and the number of pulses. In the region close to the electrodes, where the 
electric field reaches high amplitude, cells may undergo thermal damage.138,139 Sometimes, PFA-ablated tissues 
experience necrosis, pyroptosis, or necroptosis rather than apoptosis.140–142 Therefore, appropriate electroporation 
parameters could mitigate the degree of necrosis and the inflammatory response.

Inflammation and AF
The inflammatory response in local myocardial tissue leads to structural remodeling, which slows down atrial myocardial 
conduction velocity and prolongs the effective induction period, ultimately leading to the AF toward permanent 
arrhythmia. In patients with an acute systemic inflammation such as sepsis, the morbidity of AF can be up to 23%.143 

In patients with more severe septic shock, the morbidity of new-onset AF can be up to 46%.144 Other chronic systemic 
inflammatory diseases such as rheumatoid arthritis,145 psoriasis,146 and inflammatory bowel disease147 have all reported 
high incidences of AF. In addition, AF can lead to the release of inflammatory factors. Elevated IL-6 and tumor necrosis 
factor (TNF) were detected in both atrial tissue and peripheral blood in canines with atrial rapid pacing.148 Recent studies 
have shown that T-cell-mediated inflammation can be regulated by modulating gut flora, which reduces atrial structural 
remodeling in turn and the development of age-related AF.149

In addition to elevated serum inflammatory factors in AF, the local inflammatory status of myocardial tissue was also 
validly assessed. Epicardial adipose tissue from persistent AF patients expressed IL-1β in large abundances at the 
transcriptional level.150 High expression of tissue factors was produced by inflammatory stimuli in the left atrial 
appendage obtained from AF patients.151 Narducci et al showed high expression of CRP in atrial septum specimens 
from patients with paroxysmal AF.152 Local inflammation produces abundantly pentraxin 3. Markedly elevated pentraxin 
3 expression by serology and immunohistochemistry confirmed an increased local inflammatory burden in AF.153
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Inflammation and Electrical Remodeling
Inflammatory cytokines such as platelet derived growth factor (PDGF), IL-2, and TNF-α regulate cellular ion 
channels and calcium homeostasis. PDGF from myofibroblasts can reduce the action potential duration and Ca2+ 

transients.154 TNF-α can increase the potential for pulmonary veins to cause arrhythmogenesis and induce abnorm-
alities in calcium homeostasis, leading to inflammation-associated AF.155 It has been shown that mice overexpressing 
TNF-α have prolonged action potentials and Ca2+ transients, higher diastolic Ca2+ currents, and lower systolic Ca2+ 

currents.156,157

Inflammation, in addition to regulating cellular ion channels and calcium homeostasis, has been associated with the 
heterogeneity of atrial conduction. Heterogeneous conduction may be the result of altered expression or distribution of 
connexin (Cx) 40, Cx43, or atrial fibrosis. In a canine model of aseptic pericarditis, reduced expression and transmural 
gradients of Cx40 and Cx43 (both absent in the epicardium, reduced in the pericardium, and normal in the 
endocardium) were associated with marked atrial conduction abnormalities and the induction and maintenance of 
AF.158 One study found that the serum IL-6 level is negatively correlated with the expression level of Cx43. The 
expression of Cx40 and Cx43 decreased rapidly after direct exposure of IL-6 to HL-1 cells, and their expression 
recovered rapidly after the cessation of IL-6 exposure.159 Ishii et al found that the degree of atrial inflammation was 
associated with the atrial conduction heterogeneity and the duration of AF.160 Topical application of arachidonic acid 
to the atria of canines produced heterogeneous conduction, whereas methyl-prednisolone reversed it.161 Additionally, 
endurance athletes have increased risk for AF, and a longitudinal study of athletes participating in marathons found 
that prolonged signal-averaged P-wave duration was accompanied by transient increases of high-sensitivity C-reactive 
proteins (hs-CRP), pro-inflammatory cytokines, leukocytes, neutrophils, pro-cardiac natriuretic peptide, and high- 
sensitivity troponin, suggesting that acute changes in inflammatory cytokines are associated with atrial electrical 
conduction and susceptibility to AF.162

Inflammation and Structural Remodeling
Inflammation is also closely related to structural remodeling of the heart, and clinical and experimental studies of AF 
have revealed that atrial fibrosis is the most important histopathological change in AF.163 PDGF-A promotes cell 
proliferation and collagen expression in cardiac fibroblasts and increases susceptibility to atrial fibrosis and AF, which 
can be reversed by mast cell stabilizers and PDGF-A blockers.164 PDGF and its receptors are expressed in atrial 
fibroblasts more strongly compared to ventricular fibroblasts. Whereas induction of HSPs, especially HSPA1A, attenuates 
the remodeling of atrial substrates.165 TNF-α/TGF-β signaling pathway could increase secretion of MMPs which is 
involved in the pathogenesis of mouse atrial fibrosis.166 In contrast, anti-TNF-α treatment reduced the activation of 
MMP-2 and MMP-9 and prevented collagen synthesis and deposition.167 Recruitment of macrophages is critical for 
tissue fibrosis. Macrophages can stimulate IL-6 in cardiac fibroblasts, which leads to TGF-β1 in cardiac fibroblasts and 
the phosphorylation of Smad3, stimulating cardiac fibrosis.168 In clinical studies, high levels of CRP, IL-6, and IL-18 and 
low levels of HSP27 were associated with increased atrial size and susceptibility to AF, which further supports the role of 
inflammation in atrial remodeling.169–171

Inflammatory Response After Ablation Procedures
There is no doubt that invasive catheter ablation procedures impart inflammatory response to the tissue, but this 
inflammatory response may be intimately correlated with the form of energy.

The ablated tissue or cells and extracellular matrix may release pro-inflammatory cytokines.172 Serum levels of IL-1β, 
IL-6, IL-8, and TNF-α are shown to be elevated after RFA.173–175 Infiltration of inflammatory cells such as neutrophils, 
macrophages, dendritic cells, and natural killer cells has been reported in migratory zone.176–178 There is controversy 
regarding the cellular damage and inflammatory response produced after CBA. Some studies have shown a weak 
systemic inflammatory response after CBA,179 while others have shown comparable cellular damage and inflammatory 
response between CBA and RFA.180 Antolič et al found that myocardial damage was more pronounced with CBA than 
RFA. However, there was no significant difference between the two ablation techniques in terms of inflammatory 
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response and coagulation activation.181 Nonetheless, Shinsuke et al found that RFA and CBA groups had comparable 
peak blood hs-CRP and produced comparable inflammatory responses, and CBA caused greater myocardial damage.182

The inflammatory response after PFA has been less studied. Massimo et al reported a detailed histological analysis of 
atrial lesions after PFA and performed the first comparative study of the histological findings at 7 and 30 days, finding 
that the degree of tissue inflammation was evident at 7 days and reduced with almost no inflammatory cells observed at 
30 days, indicating a shorter duration of the inflammatory response.183 Another study found that significant ablation- 
related necrosis, inflammation and fibrosis were seen in all tissue sections of RFA compared with PFA, and they 
speculated that RFA causes a greater inflammatory burden compared with PFA.184 Comparing the inflammatory response 
generated by the organism after PFA and RFA in patients with hepatocellular carcinoma, it was found that the serum of 
macrophage migration inhibitory factor was elevated immediately after PFA, while this phenomenon was not observed in 
the RFA group, which may promote the early repair process after PFA and lead to a significant reduction of the ablation 
zone and alleviate the inflammatory burden in the organism.185 Further studies are still needed regarding the strength of 
the inflammatory response after different ablation procedures for AF.

There is little direct histological evidence of inflammation in local myocardial tissue post catheter ablation, mainly 
due to concerns about the safety of invasive myocardial biopsy procedures. However, advances in imaging technology 
have made it possible to assess atrial inflammation in a non-invasive manner. Xie et al proposed that 
18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT) would reflect favorably the 
degree of inflammatory burden after catheter ablation.186 Late-gadolinium enhancement magnetic resonance imaging 
(LGE-MRI) is superior for assessing fibrosis as the final terminus of local inflammation. Clinical studies have reported 
that the higher the grade of fibrosis appraised by LGE-MRI after catheter ablation, the increased the rate of recurrence. In 
addition, enhanced CT assessment epicardial adipose tissue associated with local inflammation has been extensively 
utilized in clinical practice.187–189 Artificial intelligence algorithms can effectively predict the recurrence of AF after 
catheter ablation. By evaluating patient data, artificial intelligence algorithms can select the most effective AF treatment 
based on the patient’s unique characteristics.190 These tools considerably enrich the means of objectively appraise the 
local inflammatory response after catheter ablation. Early identification of excessive inflammatory responses and 
interventions facilitate a better prognosis.

Relationship Between Inflammation and Recurrence After Ablation Procedures
The primary goal of catheter ablation is to eliminate triggers that cause fibrillation, such as reentry, or to eliminate areas 
that lead to multiple depolarization, but it does not address the underlying process of myocardial remodeling.

The report published by Andrade et al suggested that early recurrence is thought to be due to inadequate early 
structural remodeling after pulmonary vein isolation (PVI), leading to leakage of the electrical impulses. Late recurrence 
may be the ectopic foci shifting from the pulmonary veins to other sites.191 In addition to other comorbidities, there is 
a fact that the levels of markers associated with myocardial injury like creatine kinase, creatine kinase-MB and troponin 
are high after catheter ablation.192 Troponin has been shown to be the most sensitive marker for detecting myocardial 
injury.193 A systemic review found that the level of troponin was closely associated with AF recurrence after RFA.194 

During PVI, both radiofrequency ablation and cryoballoon ablation indiscriminately damage myocardial tissue, including 
blood vessels, nerves and myocardium. Complete PVI inevitably damages the left coronary artery branch, and stenosis 
with thrombosis causes myocardial tissue damage to extend from the ablation line to other areas. As mentioned above, 
ectopic foci activity is enhanced by subsequent atrial infarction and inflammation. The increase of local inflammation 
after catheter ablation may contribute to recurrence.

Several studies identified lymphocytes/neutrophils as a reliable predictor of recurrence after catheter ablation.195,196 

Galectin-3 is a biomarker of AF that mediates atrial inflammation and may reflect progressive atrial fibrosis in AF. More 
studies have shown that galectin-3 is an independent predictor of recurrence after catheter ablation of AF,197–199 and 
Takemoto et al demonstrated that inhibition of galectin-3 could improve outcomes in persistent AF treated with catheter 
ablation.200 Besides, it has been reported that uric acid/albumin,201 myeloperoxidase,202,203 monocyte/HDL,204 TLR4,205 

MMP-2 and TNF-α,206 and CRP207 were associated with higher recurrence after catheter ablation. The inhibitory effects 
of anti-inflammatory drugs such as steroids, colchicine, angiotensin-converting enzyme inhibitor/angiotensin receptor 
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blocker, and statins on AF are summarized in a review by Kensuke et al in detail.208 In addition, the AntaEP study 
indicated that antazoline may be suitable for pharmacological cardioversion of AF occurring during PVI, hinting the 
potential participation of histamine in the progression of AF.209

Conclusion
Inflammatory cell death is strongly associated with the development and recurrence of AF. Therefore, avoiding 
inflammatory and unnecessary cell death in myocardial tissue is essential to prevent the recurrence of AF. In the current 
review, PFA, a new energy source of non-thermal irreversible electroporation, has great advantages over traditional 
catheter ablation. From the cellular perspective, catheter ablation uses extreme temperatures to cause necrosis of diseased 
tissues and cells, and the inflammatory response generated places a certain burden on the organism. In contrast, PFA 
benefits patients by protecting adjacent tissues and inducing apoptosis with a less inflammatory response on the organism 
while ensuring significant efficacy of durable PVI. However, different parameters cause different types of cell death in 
the tissues. There is still a lack of clinical trials on PFA, and further research is needed to investigate its safety and 
effects.
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