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Abstract: Haemophilus influenzae (H. influenzae) is a significant pathogen responsible for causing respiratory tract infections and 
invasive diseases, leading to a considerable disease burden. The Haemophilus influenzae type b (Hib) conjugate vaccine has notably 
decreased the incidence of severe infections caused by Hib strains, and other non-typable H. influenzae (NTHi) serotypes have 
emerged as epidemic strains worldwide. As a result, the global epidemic trends and antibiotic resistance characteristics of H. influenzae 
have been altered. Researches on the virulence factors of H. influenzae, particularly the mechanisms underlying biofilm formation, and 
the development of anti-biofilm strategies hold significant clinical value. This article provides a summary of the epidemic trends, 
typing methods, virulence factors, biofilm formation mechanisms, and prevention strategies of H. influenzae. The increasing 
prevalence of NTHi strains and antibiotic resistance among H. influenzae, especially the high β-lactamase positivity and the emergence 
of BLNAR strains have increased clinical difficulties. Understanding its virulence factors, especially the formation mechanism of 
biofilm, and formulating effective anti-biofilm strategies may help to reduce the clinical impact. Therefore, future research efforts 
should focus on developing new approaches to prevent and control H. influenzae infections. 
Keywords: Haemophilus influenzae, epidemiology, virulence factors, biofilms, prevention strategies

Introduction
H. influenzae is an opportunistic pathogen that commonly colonizes the human nasopharynx and causes a variety of 
infections, such as acute sinusitis, otitis media, conjunctivitis, community-acquired pneumonia, bacterial vaginitis, and 
invasive diseases, including septic meningitis, septicemia, peritonitis, and arthritis, among others.1 Invasive diseases are 
becoming increasingly prevalent with each passing year. These conditions are marked by high mortality rates and have 
the potential to cause severe sequelae, posing a significant threat to the health of children.2 Based on the presence or 
absence of cell wall capsular polysaccharide components, H. influenzae can be classified into six encapsulated types 
(Hia-Hif) and non-encapsulated NTHi. Of these, Hib is the most virulent and is associated with invasive diseases. The 
introduction of the Hib conjugate vaccine in some countries and regions has led to a change in the epidemiological 
characteristics of H. influenzae, resulting in a significant decrease in severe infections associated with Hib.3 The public’s 
waning attention to H. influenzae has resulted in the serious underestimation of other serotypes, particularly NTHi-related 
infections. The escalating rate of antibiotic resistance, as well as the evolution of virulence factors, specifically the 
formation of biofilms, have presented significant challenges to clinical treatment. As a result, anti-biofilm strategies and 
preventative methods for H. influenzae have become prominent areas of research.
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Epidemiology
The introduction of the Hib conjugate vaccine in Asia significantly trailed its implementation in developed Western 
countries. This lag, particularly in developing nations, led to considerable heterogeneity in H. influenzae epide-
miology globally. Although Japan introduced the Hib vaccine in November 2008, the vaccination rate was initially 
low due to the voluntary nature of the program. Notably, it was not until December 2010, when the national policy 
to lessen the burden of self-pay vaccination was instituted, that the rate of vaccination increased significantly to 
over 90.0%.4 In China, the overall coverage of the Hib conjugate vaccine was 54.9%. The vaccine coverage was 
found to be lower among foreign populations as compared to local residents. Furthermore, the eastern region of 
China had a higher coverage as compared to the central and western regions.5 In Nepal, H. influenzae had been 
identified as the primary etiological agent of meningitis in pediatric patients.6 In Vietnam, before the nationwide 
introduction of Hib conjugate vaccine, a cross-sectional Hib carriage study among 1000 children < 5 years of age 
found that the carriage of H. influenzae was detected in 37.0% of children and the Hib carriage rate was 3.0%.7 The 
infection caused by H. influenzae remains a pertinent public health issue, particularly in emerging economies. As 
a result, it is advised to incorporate the Hib vaccine into national immunization schemes to address disparities in 
vaccination coverage.

As the incidence of Hib infection gradually decreased, the incidence of other serotypes and NTHi strains increased in 
relative terms. In North America, current epidemiological data suggested that invasive Hia disease predominantly 
affected indigenous communities, with Sequence Type (ST) 23 being the predominant clone described in most invasive 
diseases and MLST sites.8 The incidence rate of invasive Hia cases in the United States increased by 11.1% annually on 
average from 2008 to 2017, and the total mortality rate was 7.8% (30/386), 42.7% of Hia cases occurred in children 
under 5 years old.9 In Canada, H. influenzae diseases were predominantly caused by NTHi (74.2%, 950/1281), far 
exceeding serotype Hia (8.9%, 114/1281) and Hif (10.2%, 130/1281).10 In Portugal, 79.2% (206/260) of the invasive 
H. influenzae disease isolates were NTHi, and ST103 and ST57 were the major STs.11 The total carrying rate of 
H. influenzae among children aged 0–6 in daycare was 84.1% (1282/1524), of which 96.7% (1240/1282) were NTHi.12 

A study in Shanghai, China found that all 51 isolates collected were NTHi, of which 5.9% (3/51) caused invasive 
infections, with ST103 (7.84%, 4/51) being the most common.13 A multicenter study in Zhejiang, China, found that 
H. influenzae infections accounted for 18.5% (280/1514) and NTHi accounted for 93.6% (262/280).14 NTHi can lead to 
severe invasive diseases, especially in the elderly, pregnant/postpartum women, and newborns. In the United States from 
2008 to 2019, 92.0% (207/225) of newborns with invasive NTHi infections occurred within the first week of birth, and 
72.4% (163/225) were born prematurely. Compared to full-term newborns, the risk of NTHi in premature infants was 23 
times higher.15 In Belgium, the carrying rate of NTHi in children with acute otitis media and invasive diseases was 98.2% 
(214/218) and 68.1% (64/94) respectively.16 95.0% (190/200) of Japanese adults with invasive H. influenzae diseases 
were NTHi strains.17 NTHi has become a major subtype of H. influenzae infections worldwide and has the ability to 
cause invasive disease. Due to the collective global morbidity and mortality, it has been recognized by the World Health 
Organization as one of the 12 priority pathogens.18 With the introduction of Hib conjugate vaccine, the epidemiology of 
H. influenzae infection has changed, and NTHi has become a major subtype of lower respiratory tract infection and 
invasive disease, which requires great attention and focus. It is particularly important to carry out epidemiological 
investigations of H. influenzae in large samples and multicenter, which can provide an epidemiological basis for clinical 
diagnosis and treatment and national vaccine strategy.

H. influenzae Typing
There are currently multiple typing methods for H. influenzae, each with different focuses and advantages (Table 1). 
Choosing appropriate, convenient, and economical typing methods can provide scientific basis for clinical research and 
epidemiological investigations.

https://doi.org/10.2147/IDR.S424468                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2023:16 5360

Xiao et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Capsule Typing
Slide Agglutination Serotyping (SAST)
Traditional serologic capsule typing was performed using a standard slide agglutination method. However, this traditional 
method’s accuracy is limited and some encapsulated strains may end up being misclassified as NTHi due to inaccuracies 
in performing and interpreting the slide agglutination test, or altered ability to produce capsule due to partial deletion of 
the capsule gene bexA.19

PCR Typing
The capsular polysaccharide gene loci has three functional regions I~III. Regions I and III are functional genes, encoded 
by bexDCBA and hcsAB respectively. They are highly conserved in all capsular types and are related to cell transport and 
post-translational processing. Region II genes encode capsular type a to f specific proteins, and there are differences in 
genes between different serotypes.20 The conventional typing method relies on the bexA gene and is not suitable for the 
study of a large number of isolates, which may lead to the misclassification of bexA deficient mutant strains. Some 
researchers described a molecular strategy that targeted the bexB gene, which provided a simple and reliable method for 
differentiating strains that lack the entire capsule locus from those containing a partial or complete capsule locus.21

Whole-Genome Sequencing (WGS) Typing
Due to the considerable accuracy provided by WGS, public health and clinical laboratories are currently beginning to incorporate 
WGS technology into diagnostic and disease surveillance projects.22 Recently, two in silico approaches using WGS, 
“hinflfluenzae_capsule_characterization”23 and “hicap”24 have provided a more robust and reliable method for H. influenzae 
capsule typing. The consistency between the two typing methods and the actual phenotype serum typing method is 99–100%, 
respectively,25 which are expected to replace the laborious traditional phenotype methods in clinical settings.

Matrix-Associated Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Typing
Several studies have found that MALDI-TOF MS may be a simple and rapid alternative method for capsule serotyping of 
H. influenzae.26 It is also the first report that MALDI-TOF MS can distinguish between Hie and Hif. MALDI-TOF MS 
can also be used as a surveillance tool in vaccinated populations to monitor the ongoing effectiveness of Hib conjugate 
vaccines and as a preliminary screening method for invasive H. influenzae strains.

Biotyping
Biotypic analysis used internal medium for urease reaction and ornithine decarboxylase reaction. H. influenzae can be 
classified into eight different biological types (I–VIII), depending on the biochemical reactions to urease fermentation, 
indole tests, and ornithine decarboxylase fermentation. There may be some correlation between the biotype and the 
source of the disease and strain. Different studies have found that among all biotypes, biotype II is usually the most 
common.16,25 A survey found that biotype II was the most common in all groups, followed by type III found in the acute 
otitis media group and type I found in the invasive disease group.16 Type I may be related to invasive diseases.27

Table 1 Characteristics of Different H. influenzae Typing Methods

Typing Methods Main Types Characteristics and Significance

Capsule typing
SAST Hia-Hif and 

NTHi

Traditional, simple to operate, but low accuracy.

PCR High accuracy and specificity, worth clinical recommendation.

WGS High accuracy and specificity, future development trend.
MALDI-TOF MS Simple and fast, with potential in clinical microbiology laboratory.

Biotyping I-VIII Related with specific diseases, but low commonality and actual value.

MLST ST and CC Genetic information has storability and comparability, but significant differences in different regions 
and high cost.

Abbreviations: SAST, Slide agglutination serotyping; WGS, Whole-Genome Sequencing; MALDI-TOF-MS, Matrix-Associated Laser Desorption Ionization-Time Of 
Flight Mass Spectrometry; MLST, Multilocus sequence typing; ST, sequence type; CC, clonal complexes.
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Multilocus Sequence Typing (MLST)
Pathogenic strains were identified by sequencing the internal fragments of seven housekeeping genes (adk, atpG, 
frdB, fucK, mdh, pgi, and recA).28 The typing results of isolates from different laboratories are comparable and 
can be stored, and the allele number, sequence type and corresponding clonal complexes (CC) of the strains are 
available in an Internet database. Through software, phylogenetic analysis can be conducted on different isolates 
to evaluate their phylogenetic relationships and diversity. Numerous studies have reported significant differences 
in MLST types among NTHi strains from different countries and regions. NTHi has multiple MLST types, 
indicating phylogenetic diversity among H. influenzae strains.29,30 The differences in molecular epidemiology 
and genetic evolution and the correlation between MLST clustering types and antibiotic resistance, are still 
controversial and require further research.

H. influenzae Virulence Factors
The virulence factors of H. influenzae include capsule, pili, adhesins, IgA proteases and so on, which mediate bacterial 
adhesion, colonization, invasion, and biofilm formation (Table 2), and have important clinical significance. Some 
virulence factors have become potential targets for new drug development and vaccine research.

Capsule
The capsule is a polymer composed of ribose and polyribosylribol phosphate (PRP), the amount of which is related to 
complement resistance.31 The capsule is encoded by the capsule gene in two identical copies of the chromosome. 
Amplification of the capsule gene can be seen in clinical isolates, which may be a mechanism for the bacteria to escape 
host defense. Bacteria containing 4 copies are significantly more resistant to antibody-dependent, classical complement 
pathway-directed phage cleavage compared to bacteria containing 2 copies.32 Bacterial capsules are composed of 
negatively charged polysaccharides that limit interactions with similarly negatively charged host cells, such as leukocyte 
phagocytosis.33

Table 2 Genes and Functions of Common Virulence Factors in H. influenzae

Virulence Factor Coding Genes Characteristic Function and Clinical Significance

Capsule bexABCD/hcsAB 
acs/bcs/ccs/dcs 
/ecs/fcs

Expressing one of the six polysaccharide 
capsules (Hia-Hif) or none of them (NTHi)

Anti phagocytosis, escape host immunity.

Pili hifABCDE; 
pilABCD; 

comABCDEF

The first fully studied adhesion factor Mediate adhesion, colonization, and biofilm 
formation. PilA antibody becomes a vaccine target.

HMW1/HMW2 hmw1ABC; 
hmw2ABC

Present in 80% of clinical NTHi isolates but 
the expression varies.

Mediate bacterial adhesion and colonization. Highly 
homologous and immunogenic, with potential for 

candidate vaccines.

Hia/Hsf hia/hsf Hia exists in NTHi that does not express 
HMW1/HMW2, and its homologue Hsf is 

commonly present in capsule type strains.

Hia can mediate adhesion and colonization and is 
potential target for vaccine development and new 

drugs. Hsf can increase the virulence of Hib strain.

Hap hap Monomer self-binding autotransporter 
homologous to IgA1 protease

Mediate bacterial adhesion and colonization, but do 
not contribute to biofilm formation.

Omp5 omp5 A major outer membrane protein with 

a highly variable domain

Mediate adhesion and resist complement pathways.

IgA proteases igaA/igaB All H. influenzae strains have igaA, and 40% of 

the strains have igaB.
Mediate bacterial colonization and invasion, and 

related to clinical infection types.

msf SlrVA Belongs to the gene subfamily containing Sel1 
like repeats

Mediate phagocytosis, persistence, and 
transportation.
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Pili
The pili is a polymeric spiral protein structure on the surface of H. influenzae, another important virulence factor, and the 
first fully studied adhesion factor. Type IV pili (T4P) plays an important role in bacterial colonization. T4P is 
a filamentous polymer that spreads across the surface of bacterial cells. It is crucial for bacterial adhesion and 
colonization in respiratory epithelial cells, twitching movements, and biofilm formation.34 The adhesion of NTHi 
expressing T4P is enhanced, and its receptor is intercellular adhesion molecule 1 (ICAM1) on the surface of epithelial 
cells35. The product of PilA gene in the coding gene pilABCD and comABCDEF gene cluster is the main fimbrial protein 
subunit.36 In vitro experiments, antibodies targeting pilA could prevent the formation of NTHi biofilms and damage the 
formed biofilms.37 Due to the importance of T4P in the colonization and pathogenesis, and the high conservation of 
the pilA subunit in different H. influenzae strains, pilA is being clinically studied as a candidate vaccine target for the 
prevention of NTHi disease.38

Adhesins
Adhesins are a large group of proteins including HWM1/HWM2, Hia/Hsf, Hap, and outer membrane proteins. The 
attachment of various adhesin proteins to host tissues is a critical step in the process of bacterial infection. In 80% of 
NTHi strains, bacterial attachment to the nasopharynx for colonization is mediated by two major groups of adhesion 
proteins, HMW1/HMW2.39 They can bind to different specific receptors in host cells and act at different stages of 
H. influenzae invasion, and their expression correlates with H. influenzae aggressiveness and virulence. Some researchers 
have identified the promoting effects of HMW1 and HMW2 adhesins on respiratory tract colonization through a monkey 
model, which may be related to stimulating immune responses.40 In patients with acute otitis media, HMW1 and HMW2 
were the main targets of serum antibody response after infection, with high immunogenicity.41 The high homology, high 
immunogenicity, and important roles of adhesion and colonization of HMW1 and HMW2 have made these adhesins 
promising as vaccine candidates.41

In approximately 25% of NTHi strains that do not express HMW1/HMW2, the Hia protein can be found, a key factor 
in the initial colonization of the nasopharynx. Hia is the main non fimbriae adhesin of NTHi. Recent studies suggest that 
Hia expression may vary in stages to evade immune responses to NTHi, and variants with lower Hia levels may help the 
bacteria avoid being killed by anti-Hia antisera.42 Hia has dual binding activity, mimicking the combined activity of 
HMW1 and HMW2 adhesion proteins in function. Hia plays an important role in the biofilm formation and is expected to 
become a potential target for NTHi vaccine development and new drugs43.

Hsf is commonly found in capsular H. influenzae strains and was originally reported in Hib strains.44 Hsf is a unique 
twisted hairpin shaped trimer autologous transporter that is twice the size of Hia.45 Hib strain mainly obtains multi-
functional glycoprotein vitronectin (Vn) through Hsf and inhibits the formation of membrane attack complex (MAC) to 
protect bacteria from serum-mediated killing. The fine-tuned protein-protein interaction between Hsf and Vn can help 
inhibiting MAC formation and lung epithelial cell invasion, which may contribute to increasing the toxicity of Hib.46

Hap is a monomeric self-binding autotransporter homologous to serine-type IgA1 protease that promotes interaction 
with respiratory epithelial cells.47 Hap is a widely expressed adhesion protein that binds to basement membrane 
components such as fibronectin, laminin and type IV collagen.48 The C-terminal adhesion region and N-terminal serine 
protease structure region of Hap can promote adhesion and regulate Hap self-protein hydrolysis, respectively.49

The P5 protein, encoded by the ompP5 gene, is a major outer membrane protein and is predicted to have a highly 
variable domain.50 P5 can mediate the binding of bacteria to respiratory epithelial cells and mucin, leading to increased 
complement resistance.49 P5 is a necessary condition for NTHi to resist classical and alternative complement pathways.51 

C4b binding protein (C4BP) plays an important role in complement escape of NTHi, and the P5 protein of NTHi is a new 
ligand of C4BP. The expression of P5 is positively correlated with the binding of C4BP.52 However, the P5 protein does 
not seem to contribute to biofilm production.49

IgA Proteases
IgA proteases contribute to host mucosal colonization and tissue invasion and can cleave the heavy chain of the hinge 
region of human IgA1, disrupting IgA protection of the mucosal barrier. The H. influenzae genome has two alleles (igaA 
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and igaB) encoding IgA protease, with all strains having igaA and 40% of strains having igaB.53 The expression of IgA 
protease varies among different NTHi strains. A study evaluated the relationship between IgA protease genotypes and 
clinical infection types and found that igaB was prevalent in 46% of respiratory tract infections, while it was relatively 
rare in invasive infections.54 The activity level of IgA1 protease isolated from symptomatic NTHi infected individuals 
was significantly higher than that of asymptomatic individuals, which determined that IgA1 protease was a virulence 
factor.55 Some researchers have discovered the first small molecule, non-peptide IgA1 protease inhibitor, which may be 
a potential treatment for resistant H. influenzae strains.56

Macrophage Survival Factor
Macrophage survival factor (msf) is a new virulence factor for phagocytosis, persistence, and trafficking to non-mucosal 
sites.57 Statistical genetic analyses found a significant association between possession of the SlrVA subfamily (that is 
msf) and the disease isolates. Msf-containing isolates were significantly higher in disease isolates than in carrier isolates, 
and they may play a role in disease chronicity as well as in invasive disease by providing an adaptive advantage in 
biofilms and increasing the survival of macrophages.

H. influenzae Biofilm
Biofilm is a microbial community with a certain spatial configuration that is attached to the surface of an object and 
consists of coated bacteria, lipopolysaccharide, matrix proteins, nucleic acids, and other components. Its formation is 
influenced by the factors of bacterial pathogens themselves, such as pili, liposaccharides, proteins, nucleic acids, quorum 
sensing system (QS) and two-component signaling system.58,59 Biofilms protect bacteria from environmental, host, and 
chemical stressors, and can enhance bacterial virulence and resistance. Biofilm formation is associated with recurrent 
respiratory diseases and asymptomatic colonization.60 More than 80% of human infectious diseases may be mediated by 
biofilms.61 H. influenzae can form biofilms in vivo and in vitro. A variety of clinical diseases and H. influenzae biofilms 
are closely related, such as chronic rhinosinusitis, secretory otitis media, adenoid hypertrophy, chronic obstructive 
pulmonary disease, cystic pulmonary fibrosis, and prolonged bacterial bronchitis. The in-depth study of H. influenzae 
biofilm can provide new treatment ideas for recurrent, chronic, and refractory infections.

Biofilm Classification
The formation of H. influenzae biofilms can be evaluated by modified microtitration plate method stained with crystal 
violet.62 However, there is currently no recognized classification standard for determining the ability of biofilm 
formation. Referring to some relevant literatures,63,64 classification is based on the calculated cut-off optical density 
(ODc). ODc is defined as the average optical density value of the blank control group plus three times the standard 
deviation. OD≤ODc indicates no biofilm formation, ODc<OD≤4ODc indicates weak biofilm formation, and OD>4ODc 

indicates strong biofilm formation.

Structure and Components
The process of biofilm formation can be divided into five stages: initial adhesion, proliferation, maturation, depolymer-
ization and recolonization.65 In the adhesion stage, H. influenzae is irreversibly attached to respiratory epithelial cells 
through pili and adhesins, including binding ICAM-135 receptor and carcinoembryonic antigen-related cell adhesion 
molecules (CEACAMs).66 During the proliferation and maturation stages, bacteria can produce extracellular polymeric 
substances (EPS) and it mediates signal transmission, metabolic changes, gene expression changes, nutrition and oxygen 
gradient changes through the QS system, and finally forms a mature biofilm with mushroom like or tower like structure.67 

When the internal environment of mature biofilm reaches saturation, bacteria can be depolymerized to become planktonic 
again and colonize other positions.

Biofilm formation is influenced by numerous autochthonous factors, such as T4P and adhesin proteins, as previously 
described. During NTHi biofilm formation in vitro, the relatively low average temperature of the human nasopharynx 
(34°C) significantly enhances T4P expression and motility compared to in vivo temperature (37°C).68 NTHI biofilms 
contain variants expressing lipooligosaccharide (LOS) that contain phosphorylcholine (PCho) and sialic acid. The 
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expression of PCho is significantly correlated with an increase in biofilm thickness, surface coverage, total biomass, and 
a decrease in biofilm roughness.69 LOS containing sialic acid can promote NTHi to form biofilm in vitro and promote the 
persistence of bacteria in the middle ear or lung in vivo.70 However, some studies have found incorporation of 
phosphorylcholine into the LOS of NTHi does not correlate with the level of biofilm formation in vitro,71 so further in- 
depth research is needed.

QS is a density-dependent coordination system of gene expression among bacteria in a community, which is essential 
for the formation, development, and diffusion of biofilms. Most biofilms achieve QS through the Auto-Inducer 2 (AI-2) 
pathway controlled by the luxS manipulator.72 These signals are detected by the ABC translocator protein RbsB, leading 
to a downstream transcriptional cascade response that drives biofilm formation.73 The expression of AI-2 can promote 
the formation of NTHi biofilm and the persistence of bacteria in vivo.74,75 A study used NTHi mutant experiments to 
confirm that activation and interruption of the luxS operon in the AI-2 pathway can affect the maturation and diffusion of 
biofilms, respectively.76 Induction of luxS synthesis can lead to increased transcription of glycosyltransferase. 
Glycosyltransferase is a key enzyme involved in the production of extracellular matrix in bacterial biofilms formed by 
streptococci found in the lungs of COPD patients.77 NTHi also expresses a QSeB/C two-component secondary system 
independent of the AI-2 system, which may support the coordination of biofilm gene expression when the luxS-RbsB 
system is damaged.58

Extracellular DNA (eDNA) and DNABII proteins are important components of NTHi biofilm EPS. 
Immunofluorescence techniques have shown that eDNA provides structural stability, maintenance, and extension of 
the biofilm to secondary sites.78 In the chinchilla otitis media model, eDNA can reduce the biological activity of an 
important effector of innate immunity, namely Human β-Defensin-3 (hBD-3).79 The degradation of eDNA can destabi-
lize the biofilm of NTHi and also reduce surface adhesion and biofilm formation of bacteria in the planktonic state.80 The 
integration host factor (IHF) and histone-like protein HU in the DNABII protein family, located in different regions of 
the extracellular matrix of biofilm, have independent functions and play a central role in the structural integrity of NTHi 
biofilms.81 In the chinchilla model, targeted immunization with these proteins can lead to rapid removal of biofilms.81 

NTHi T4P can transport eDNA and DNABII from bacterial cytoplasm to periplasm through the expression of ComE 
pore, which suggests a novel form of DNA release from viable NTHi.82 Monoclonal antibodies targeting DNABII 
protein can significantly damage NTHi biofilms.83

Biofilms and Antibiotic Resistance
NTHi biofilms exhibit a complex multidrug resistance strategy to a variety of widely used antibiotics. Studies have 
shown that ciprofloxacin, azithromycin and amoxicillin are 100% effective against NTHi planktonic strains, while 
killing only 68%, 57% and 4% of NTHi strains in biofilms.84 Sub-inhibitory concentrations of β-lactam antibiotic 
stimulated the biofilm-forming ability of NTHi strains, genes involved in glycogen production and transporter 
function were up-regulated and down-regulated genes were linked to multiple metabolic processes but not those 
involved in stress response.85 The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant 
state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress.86 The 
eDNA-rich extracellular matrix can impede the penetration of a range of antimicrobials, including ampicillin and 
ciprofloxacin.80 Fluctuating gene expression and cellular metabolism within biofilms result in a drug-resistant 
bacterial phenotype. Planktonic H. influenzae has been shown to exhibit a heterogeneous drug-resistant phenotype 
to imipenem,87 and this resistance can be enhanced in biofilm communities.88 Differences in biofilm formation 
depend on the type of diseases, and there is a high degree of heterogeneity among biofilms produced by H. influenzae 
clinical isolates,89 but there does not appear to be a significant correlation between biofilm thickness and resistance to 
antibiotics.90

Biofilms and the Immune System
Biofilms have important host components, including neutrophil extracellular traps (NETs). However, the formation of 
NETs is not an important determinant of NTHi clearance, but NTHi communities with biofilm phenotypes can survive in 
NETs.91 The study found that peroxidase and peroxiredoxin-glutaredoxin (pdgx) are the decisive factors to promote the 
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survival and persistence of bacteria in NETs.92 Biofilms also induce metabolically inactive persistent cells and provide 
physical and chemical barriers to immune system effectors and antimicrobials. Biofilms can produce IgA proteases that 
integrate into the extracellular matrix and block the host immune response by cleaving human IgA. IgA proteases are 
differentially expressed in vivo but play an important role for bacterial survival in respiratory epithelial cells.93 The 
eDNA of H. influenzae biofilms can also bind to hBD-3, reducing its antimicrobial properties.79 HBD3 is a member of 
the innate immune system and is essential in the protection of respiratory epithelial cells from bacterial invasion.94

Polymicrobial Biofilms
Biofilms are rarely formed by a single species, and the clinical significance of polymicrobial biofilms has been 
increasingly recognized. In polymicrobial biofilms, pathogens continuously communicate with each other through direct 
contact or the release and uptake of QS molecules.95 NTHi and Streptococcus pneumoniae often colonize the respiratory 
tract of COPD patients together and interact synergistically to promote initial attachment, biofilm formation and 
survival.96 The mechanism of interaction between these two bacteria has been previously studied. NTHi can provide 
passive protection for Streptococcus pneumoniae in vivo through two distinct mechanisms: production of β-lactamase 
and formation of biofilm communities.97 NTHi and Streptococcus pneumoniae can mutually regulate the expression of 
virulence genes. The lytA and cbpD gene expression, which regulate autolysis and self-cleavage in Streptococcus 
pneumoniae, were significantly downregulated98 and the expression of T4P structural protein in NTHi was significantly 
upregulated.99 However, another study claimed that NTHi could coexist with Streptococcus pneumoniae during the first 
24 hours, but after 48 hours, the viability of NTHi rapidly decreased to undetectable levels, when moraxella catarrhalis 
was present in the polymicrobial biofilm NTHi could survive for 48 hours.100

Biofilms and Clinical Correlation
The study on the correlation between biofilm formation ability and clinical characteristics has clinical value. A study of 
NTHi of lower respiratory tract origin found biofilm formation in 10.2% (10/98) of isolates, with no significant 
differences in antimicrobial susceptibility patterns and severity of clinical symptoms between the biofilm-forming and 
non-forming groups, but correlated with ICU length of stay, demonstrating for the first time the clinical impact of NTHi 
biofilm production.101 Another study found that the biofilm index was higher in the invasive disease group compared to 
the non-invasive group, but the difference was not statistically significant.102 NTHi isolated from children with fever or 
fever with earache could produce biofilms more frequently than children without these symptoms.103 The production of 
biofilms was not significantly associated with treatment failure or recurrence of acute otitis media, but the production of 
biofilms was significantly lower in conjunctivitis-otitis media syndrome and H. influenzae strains modified with 
penicillin-binding proteins.62

Anti-Biofilm Strategy
Biofilms have strong drug resistance and immune defense effects and are closely related to clinical severe and chronic 
infections. The urgent need to develop effective anti-biological strategies will be an important direction for future 
research. Physical clearance methods such as surgical debridement, ultrasound, and electrical current clearance are not 
suitable for respiratory mucosa. Biological clearance methods such as bacteriophages have demonstrated anti biofilm 
activity against various bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus in vitro and in vivo 
experiments.104,105 However, there are few studies on H. influenzae. Bacteriophages are highly heterogeneous and 
have potential biosafety risks, so strict in vivo research is still needed. Chemical clearance methods such as antibacterial 
drugs, antibodies, enzymes, surfactants, and some QS inhibitors are currently the mainstream direction of applied 
research. In vitro models and animal experiments, relevant research on antibodies has achieved phased results, which 
will be described in detail in the subsequent chapter on vaccine prevention. Some natural compounds, such as plant 
essential oils, Chinese herbal extracts, and synthetic chemicals can inhibit and destroy biofilms by inhibiting the QS 
system, like Oldenlandia diffusa extract,106 plant essential oils,107–109 3-hydroxychalcone (chalcone 8)110 and so on. 
However, due to the possible cytotoxicity and complex synthesis and extraction processes, in vivo research and even 
clinical trials still require further in-depth research. In addition, serum proteases have proteolytic activity against bacterial 
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adhesions involved in biofilm formation.111 Antibacterial photodynamic therapy (aPDT) of photosensitizer Chlorin e6 
(Ce6) has significant bactericidal activity against NTHi in planktonic and biofilm states, and is an effective and promising 
adjuvant treatment for acute and recurrent otitis media.112,113

In clinical practice, rational selection of antibiotics or combined use of certain drugs is more clinically valuable. 
Studies have found that high concentrations of amoxicillin cannot remove NTHi from biofilms, while respiratory 
quinolones can inhibit biofilm formation and eradicate mature biofilms and can kill NTHi in biofilms even under sub- 
MIC conditions.114 Simultaneous administration of carbapenem, neoquinolone and macrolide has the effect of anti NTHi 
mature biofilm.115 The combination of metal chelating agent EDTA and antibiotics can inhibit biofilm formation and 
damage mature biofilms, and increase the sensitivity of NTHi biofilms to ampicillin and ciprofloxacin.80

Antibiotic Resistance
The resistance rate of H. influenzae to common antibiotics, particularly β-lactam antibiotics, has been continuously 
increasing. The resistance mechanism of H. influenzae includes the production of β lactamase (encoded by TEM−1 and 
ROB−1 resistance genes)116 and the decrease of PBP3 affinity caused by mutations in ftsI genes (encoded by PBP3S and 
PBP3BLN resistance genes).117 The mechanism of the β-lactamase-negative ampicillin resistant (BLNAR) strain is the 
alteration of the PBP3 protein encoded by the ftsI gene. In addition, strains with both mechanisms are referred to as β- 
lactamase-positive amoxicillin-clavulanate resistant (BLPACR).118 The β-lactamase positivity and BLNAR strains varied 
in different countries and regions. In Shanghai, China, 33.3% (17/51) of the strains produced TEM-1-type β-lactamase, 
and BLNAR strains accounted for 11.8% (6/51),119 while the proportion of BLNAR strains in Guangzhou, China in 
2016–2017 was 22.1% (89/402).120 In Portugal, the β-lactamase positivity rate was 7.5% (96/1282).12 In contrast, in 
France, the rate of β-lactamase positivity was as high as 27.1% (157/580) and 35.0% (208/595) for the BLNAR 
strains.121 In Belgium, β-lactamase positivity was 23.8% (132/554) and 16.0% (15/94) in the carrier and invasive groups, 
respectively.16

In addition to β-lactam antibiotics, fluoroquinolones are also commonly used for respiratory infections. 
Fluoroquinolone-resistant H. influenzae was first reported in 1993, and child fluoroquinolone-resistant H. influenzae 
was first reported in Hong Kong in 2004.122 Subsequently, fluoroquinolone-resistant H. influenzae increased gradually, 
with different prevalence trends worldwide. No fluoroquinolone-resistant strains were found in invasive H. influenzae 
isolates collected in Canada between 2007 and 2014.123 In Spain, 0.4% (28/7267) strains were resistant to 
fluoroquinolone.124 2.7% (11/402) ciprofloxacin-resistant H. influenzae were detected in Guangzhou, China.120 

A study in Taiwan found that 41.7% (20/48) of H. influenzae isolated from nursing home residents were not sensitive 
to fluoroquinolones, and the reduced sensitivity to fluoroquinolones was associated with a gyrA gene mutation at site 
84.125 The drug resistance situation of H. influenzae is very serious. The in-depth investigation of large samples and 
multi-centers to grasp the mechanism of drug resistance and the changing situation is of great significance for the 
scientific and rational selection of antibiotics in the clinic.

H. influenzae Vaccine Prevention
Prevention against H. influenzae is mainly based on vaccines. In China, the main vaccine is Hib polysaccharide conjugate 
vaccine, including single Hib vaccine, DTaP-Hib (quadruple vaccine) and DTap-Hib-IPV (pentavalent vaccine). In addition, 
in Western countries, there is the DTap-Hepatitis B-Inactivated Polio-Hib (hexavalent vaccine). But there is no specific 
vaccine for NTHi. Several studies on potential vaccine targets for NTHi have achieved certain results.

The pneumococcal NTHi protein D conjugate vaccine (PHiD-CV) had a vaccine protective effect of 35.3% against 
NTHi-associated otitis media, suggesting for the first time that a vaccine strategy targeting NTHi is possible.126 The 
vaccine efficacy of PHiD-CV in treating clinical acute otitis media and bacterial otitis media in children<24 months was 
24.0% and 48.0%, respectively, and the efficacy in treating moderate and severe clinical otitis media was 17.7% and 
32.7%, respectively.127 Researches into the development of vaccine targets in vitro and vivo primarily focused on 
H. influenzae adhesion proteins, particularly those that are critical in biofilm formation and stabilization. The anti- 
recombinant soluble form of PilA (rsPilA) antibody could destroy and prevent the formation of NTHi biofilms in vitro, 
and could also prevent experimental otitis media caused by NTHi in animal models.37 A chimeric immunogen, 
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“chimV4”, against both the P5 and T4P, could provide significant protection against otitis media caused by NTHi in 
chinchilla models by percutaneous immunization.128 Recombinantly expressed protein D and outer membrane protein 26 
could induce a robust antibody response after vaccination as a separate vaccine in a mouse model.129 The fusion protein 
of E protein and PilA also expressed certain vaccine potential against NTHi biofilm in vitro mouse models.130 The 
cationic cholesterol pullulan based (cCHP) - P6 nasal vaccine in the mouse model could also induce effective protective 
effect in the airway mucosa.131 The mixture of anti IHF and amoxicillin clavulanate completely inhibited the formation 
of NTHi biofilms.132 Australian Aboriginal otitis-prone children had lower serum IgG titres to major NTHi vaccine 
candidate antigens (rsPilA, ChimV4 and outer membrane protein 26), suggesting that Aboriginal children may benefit 
from immunisation with vaccines containing these antigens to increase titres of protective antibodies.133 There are also 
other NTHi surface dominant antigens that can be used as candidate vaccine molecules. However, unlike capsular type 
H. influenzae, NTHi lacks a single surface antigen and may require a multi component binding targeted vaccine. How to 
combine candidate vaccine antigen molecules will be a research hotspot in the future.

Discussion and Future Work
H. influenzae is an important pathogen that causes respiratory tract infections and invasive diseases, posing a serious 
threat to children’s health and remaining a public health issue that requires attention at present. With the introduction of 
the Hib conjugate vaccine, there has been a significant reduction in severe Hib-related infections. However, the infection 
situation in developing countries with low conjugate vaccine coverage is still severe, leading to a serious disease burden. 
It is recommended to incorporate the Hib vaccine into national immunization planning as soon as possible.

With the decline in the Hib incidence rate, other serotypes, especially the NTHi subtype, have gradually become 
epidemic strains and have led to severe infections. Due to the global incidence rate and mortality, NTHi has been 
recognized as one of the 12 priority pathogens by the WHO. Additionally, the drug resistance situation of H. influenzae is 
severe, and the high β-lactamase positivity and the emergence of BLNAR strains have made clinical treatment more 
difficult. There are significant regional differences in the detection rate of β-lactamase, drug resistance genes, and drug 
resistance patterns. Timely regional and multicenter epidemiological surveys are necessary to understand the epidemic 
trend of H. influenzae strains and provide epidemiological evidence for clinical treatment and national vaccine strategies.

Virulence factors, such as the capsule, fimbriae, adhesion proteins, and IgA protease, play an important role in the 
adhesion, colonization, invasion, and biofilm formation of H. influenzae. In-depth research on these factors provides 
ideas for clinical treatment and prevention strategies. Some antibodies like PilA antibody,37 HMW1 and HMW2 protein 
antibodies,41 Outer membrane protein P5128, P6131, IgA1 protease inhibitor56 have shown promising results in vitro 
experiments and are expected to become candidate vaccine targets. Bacterial biofilm is a complex spatial structure that 
can protect bacteria from environmental, host, and chemical stress sources, and can enhance bacterial virulence and drug 
resistance. Its complex regulatory mechanisms, strong drug resistance, and correlation with clinical chronic infections 
have been research hotspots in recent years. The ultimate goal is to actively develop effective and clinically translatable 
anti-biofilm strategies. Drugs targeting bacterial biofilm constituent proteins and QS systems may be new research 
directions and approaches. Fortunately, some protein antibodies targeting biofilm formation and stability have achieved 
certain results in vitro and in vivo experiments. We hope to see more scientific clinical research results, ultimately 
benefiting the public.

In summary, the increasing prevalence of NTHi strains and antibiotic resistance among H. influenzae has increased 
clinical difficulties. H. influenzae infection is still a public health problem that can cause serious disease burden, although 
it has been underestimated by the public. Future studies should concentrate on the epidemic trends and drug resistance 
characteristics of H. influenzae in different regions, the mechanisms underlying biofilm formation, and the development 
of anti-biofilm strategies. These efforts will provide a scientific basis for the clinical diagnosis, treatment, and prevention 
of H. influenzae infections.
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