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Purpose: Cervical cancer (CC) has the fourth highest incidence and mortality rate among female cancers. Lactate is a key regulator
promoting tumor progression. Long non-coding RNAs (IncRNAs) are closely associated with cervical cancer (CC). The study was
aimed to develop a prognostic risk model for cervical cancer based on lactate metabolism-associated IncRNAs and to determine their
clinical prognostic value.

Patients and Methods: In this study, CESC transcriptome data were obtained from the TCGA database. 262 lactate metabolism-
associated genes were extracted from MsigDB (Molecular Characterization Database). Then, correlation analysis was used to identify
LRLs. Univariate Cox regression analysis was performed afterwards, followed by least absolute shrinkage and selection operator
(LASSO) regression analysis and multiple Cox regression analysis. 10 IncRNAs were finally identified to construct a risk score model.
They were divided into two groups of high risk and low risk according to the median of risk scores. The predictive performance of the
models was assessed by Kaplan-Meier (K-M) analysis, subject work characteristics (ROC) analysis, and univariate and multivariate
Cox analyses. To assess the clinical utility of the prognostic model, we performed functional enrichment analysis, immune micro-
environment analysis, mutation analysis, and column line graph generation.

Results: We constructed a prognostic model consisting of 10 LRLs at CC. We observed that high-risk populations were strongly
associated with poor survival outcomes. Risk score was an independent risk factor for CC prognosis and was strongly associated with
immune microenvironment analysis and tumor mutational load.

Conclusion: We developed a risk model of IncRNAs associated with lactate metabolism and used it to predict prognosis of CC, which
could guide and facilitate the progress of new treatment strategies and disease monitoring in CC patients.
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Introduction

Cervical cancer (CC) is the fourth most common cancer in women, with most patients diagnosed between the ages of 15
and 45. It is estimated that up to 310,000 women die from cervical cancer each year, with more than two-thirds of the
cases occurring in developing countries' posing a severe threat to women’s physical and mental health. Early-stage
cervical cancer can be treated well and minimize complications, with an overall survival rate of 70-90% over five years.”
However, patients with advanced cervical cancer are usually resistant to radiotherapy and chemotherapy,” presenting
a high risk of metastasis, poor prognosis, and shorter disease-free and overall survival.* The occurrence and development
of cervical cancer is a complicated, multi-stage, and multi-gene-regulated process, which indicates that it is necessary to
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search for effective biomarkers and construct a new prognostic model for early identification and prognostic evaluation
of CC.

Lactate, as the end product of glycolysis, has been considered a mere metabolic by-product and not biologically
active. This view has recently changed, and it has been found that lactate can act as a signaling molecule with
intracellular and extracellular functions.” Moreover, recruiting and inducing the activity of immunosuppressive cells
and molecules® plays a key role in promoting tumor progression, including tumor invasion, metastasis, and
angiogenesis.” Lactate acts as a signaling molecule and fuel source for cancer cells in a glucose-restricted
environment.® Extracellularly, lactate levels can be sensed by cancer cells, T cells, NK cells, dendritic cells, and
macrophages, triggering intracellular signals that regulate cellular behavior and strongly influence their function in the
tumor microenvironment. Moreover, the lactate produced by cancer cells is secreted into the extracellular space,
promoting cancer progression by creating an active ecological niche that shapes tumorigenesis and evolution.’

Long non-coding RNAs (IncRNAs) are RNAs with transcripts longer than 200 nucleotides and do not encode proteins
with unique characteristics and tissue specificity.'® Studies have shown that IncRNAs are involved in the up-regulation
and down-regulation of gene expression at the transcriptional and post-transcriptional levels of all essential cellular
processes (proliferation, differentiation, development, immunity, metabolic alterations, and signaling, including the
cancer state).'' In recent years, more and more studies have shown that IncRNAs are highly associated with CC
tumorigenesis, development, and metastasis. For example, IncRNA SCIRT promotes cervical cancer cell proliferation,
migration, and invasive properties through upregulation of MMP-2/-9;'* IncRNALINC00707 promotes cervical cancer
cell proliferation through miR-374¢-5p/SDC4 axis'® and so on. Therefore, IncRNAs can be considered potential
biomarkers for the treatment and prognosis of CC. However, there are limited studies on lactate metabolism off
IncRNAs (LRLs) in CC, and further studies on key LRLs with prognostic significance in CC patients are still needed.

Through bioinformatics research, we analyzed the characteristics of lactate metabolism-related IncRNAs (LRLs) and
developed a prognostic model in CC. To explore the predictive ability of lactate metabolization-related models for the
prognosis of CC patients and the independent prognostic value of the model. Based on this model, a risk score for each
CC patient was determined for immune prediction, mutation analysis, etc. Our study can improve the accuracy of
prognostic prediction, contribute to the personalized treatment of CC, and prolong the overall survival (OS) of CC
patients.

Materials and Methods

Download of Data
The TCGA database (https://portal.gdc.cancer.gov/) collects CESC sequencing and clinical data. RNA expression data

and clinical data of 304 cervical cancer cases were downloaded from TCGA database. Case inclusion criteria: complete
RNA expression data and complete survival time data were available. Duplicate data were excluded. 262 lactate
metabolism-related genes (LRGs) were extracted from MsigDB (https://www.gsea-msigdb.org/gsea/index.jsp).

Screening IncRNAs Associated with Lactate Metabolism

Based on the data obtained from the TCGA database, the IncRNAs related to lactate metabolism were identified by
Pearson correlation analysis according to the cut-off value (|PearsonR[>0.5, P<0.001). The co-expression network of
lactate metabolism-related genes and IncRNAs was constructed using the R package “igraph”. 20 LRLs with potential
prognostic relevance to CC were identified by univariate Cox regression analysis and forest mapping. In order to show
the differences in LRLs between normal and CC tissues, heat map and box plots were created using the “limma”,

CEINNT3

“pheatmap”, “reshape2”, and “ggpubr” packages with the criteria of [log2FC|>1 and FDR<0.05.

Consensus Clustering Analysis of Lactate Metabolism-Associated IncRNAs

To gain a preliminary understanding of the biological mechanisms of lactate metabolism-related IncRNAs, CC patients
were grouped into clusters using the “ConsensusClusterPlus” software package. Based on the similarity of LRLs
expression levels and the ratio of fuzzy clustering measurements,'* when they are divided into three clusters, that is,
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when k=3, the cluster shows the best stability. A total of 304 CC patients were divided into three clusters: cluster 1
(n=215), cluster 2 (n=62), and cluster 3 (n=27). Survival analysis, clinical relevance, and differences in immune cell
content were analyzed in these three clusters.

Construction and Evaluation of the Prognostic Model and Nomogram

We randomly divided the entire dataset (n = 304) into training (n = 152) and testing (n = 152) subsets in a 1:1 ratio. The
least absolute shrinkage and selection operator (LASSO) Cox regression was performed using the R package “glmnet” to
reduce the dimensionality of the high-latitude data. Ten-fold cross-validation was used to avoid overfitting problems and
the penalty parameter (A) was selected according to the minimum criterion.'”> Then, multivariate Cox regression analysis
was performed to determine prognostic characteristics. The risk score was calculated as follows: (survival coefficient of
IncRNA1) x (expression of IncRNA1) + (survival coefficient of IncRNA2) x (expression of IncRNA2) +.+ (survival
coefficient of IncRNAn) x (IncRNAn) expression. CC patients were divided into two subgroups according to the median
score of the risk score obtained from the prognostic model: high-risk and low-risk subgroups. The time-dependent
receiver operating characteristic (ROC) curve of survival time and the area under the curve (AUC) value were used to
evaluate the predictive ability of the prognostic model. Univariate and multivariate Cox regression analyses were used to
evaluate the independent prognostic value of the risk score. In addition, a nomogram was generated based on risk scores
and clinical indicators to predict the 1 -, 3 -, and 5-year OS of CC patients. Then, the reliability of the identified
nomogram was checked using calibration curves of the data.

Functional Enrichment Analysis of Lactate Metabolism-Related IncRNAs

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was identified using Gene Set Enrichment Analysis
(GSEA). Based on the risk scoring model, the whole group of samples was divided into a high-risk group and a low-risk
group, and the KEGG pathways with significant differences between the high and low-risk groups were determined. The
biological functions, cellular components, and molecular functions of the two groups were compared. Conducted using
the GSEA4.3.2 version, biological processes with normalized (NOM) P values < 0.05 and false discovery rate (FDR)
q values < 0.05 were considered to be significantly enriched.

Assessment of Tumor Mutational Burden

Mutation data obtained from TCGA (data category = copy number variation; “maf” file) were processed by applying
VarScan software to measure tumor mutation burden (TMB) using the “maftools” package in the R package. According
to the median TMB score as the cut-off value, all CC patients were divided into a high TMB subtype group and a low
TMB subtype group, and a waterfall plot of the top 20 visualized mutant genes was drawn. The survival differences and
correlations with risk scores between the high TMB subtype group and the low TMB subtype group were analyzed,
among others.

Assessment of Tumor Immune Microenvironment

Based on TCGA RNA sequencing data, the CIBERSORT tool was used to analyze 22 immune cell components,
including B cells, T cells, natural killer cells, macrophages, and dendritic cells in medium tumor samples.'® The
p<0.05 indicated that the cell components inferred from the samples had high credibility. Pearson analysis was performed
to correlate different immune cells and risk scores. Immune scores (including immune score, stromal score, and
ESTIMATE score) were calculated using the ESTIMATE algorithm. To perform ssGSEA, we used the “GSVA” package
to calculate the scores of infiltrating immune cells.

Quantitative Real-Time PCR Was Used for Experimental Verification

The cancer tissues and matched adjacent tissues of 11 CC patients were obtained from the Third Affiliated Hospital of
Zhengzhou University. All CC patients signed informed consent before surgery, and the diagnosis of the tissue was
confirmed by pathology after surgery. In addition, the patient did not receive radiotherapy or chemotherapy three months
before surgery and did not have other malignant tumors or immune system diseases. The fresh tissue obtained was
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immediately stored at — 80 °C in a refrigerator for subsequent studies. The Medical Ethics Committee of the Third
Affiliated Hospital of Zhengzhou University approved this study. Total RNA was extracted by TRIZOL reagent
(Invitrogen) according to the manufacturer’s instructions. cDNA was obtained from purified RNA using the
PrimeScript RT kit (Takara). Quantitative real-time PCR was performed using SYBR premix ExTaq (Takara) according

to the manufacturer’s instructions. This study conforms to the Declaration of Helsinki.

Statistical Analysis

All statistical analyses were performed using Perl data language, R software v4.2.2. The differences between survival
curves were constructed by Kaplan-Meier and compared by the Log rank test. Cox regression analysis was used to
analyze prognostic influences. A parametric test (Pearson’s correlation) was used for standard data, and a nonparametric
test (Wilcoxon’s test or Spearman correlation) was used for nonnormal data. A p-value of less than 0.05 was considered
to indicate statistical significance.

Results

Screening of Lactate Metabolism-Associated IncRNAs with Prognostic Value

To explore the role of IncRNAs associated with lactate metabolism-related genes (LRGs) in the development of cervical
cancer, We downloaded 304 RNA-seq with complete expression data and survival time from TCGA. 262 lactate
metabolism-related genes were downloaded from the MsigDB and identified 549 lactic acid metabolism-related
IncRNAs (using the Pearson correlation analysis [Pearson R| > 0.5 and p < 0.001). We developed a flow chart to
systematically describe our study (Figure 1). We first mapped co-expression networks based on co-expression relation-
ships constructed between lactate metabolism-related genes and lactate metabolism-related IncRNAs, which were used to
show the interactions between LRGs and LRLs (Figure 2A). Univariate Cox regression analysis was then performed to
filter out 20 prognosis-associated LRLs from 549 IncRNAs, and forest plots showed the risk ratios and 95% confidence
intervals (all p<0.05) for the 20 lactate metabolism-associated IncRNAs (Figure 2B). The heat map and box plots were
plotted for visualization to show the difference in the expression of LRLs in CC versus normal tissues (Figure 2C and D).
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Figure | Flow chart for characterization of lactate metabolism-related IncRNAs.
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Figure 2 Screening of lactate metabolism-related IncRNAs (LRLs) with prognostic value. (A) Pearson correlation analysis established a co-expression network of lactate
metabolism-associated genes (LRG) and IncRNAs. (B) Forest plot of 20 IncRNAs identified as prognostic lactate metabolism-associated IncRNAs in univariate Cox regression
analysis. (C) Heat map of the expression of prognosis-related lactate metabolism-related IncRNAs in CC and normal tissues. (D) Box plots of 20 differentially expressed IncRNAs
related to lactate metabolism between CC and normal tissues. Normal tissues are shown in blue and tumor tissues are shown in red. (*p < 0.05, **p < 0.01).
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Consensus Clustering Analysis

In order to determine whether CC patients could be stratified, the “ConsensusClusterPlus” software package was used to
divide CC patients into different clusters for consensus clustering analysis. Based on the similarity of the expression
levels of LRLs and the ratio of fuzzy clustering measures, we found that the consensus matrix plot showed clear
boundaries for k = 3, which was the optimal value (Figure 3A—D). Survival analysis was then performed on the patients,
and the prognosis of the three groups was statistically significant (P=0.004), among which cluster 1 had the worst
prognosis (Figure 3E). The heat map showed the differences in lactate metabolism-related IncRNAs and clinicopatho-
logical characteristics such as age, tumor grade, and pathological TNM stage among the three groups (Figure 3F). We
next analyzed differences in the content of T cells follicular helper, T cells CD8, T cells CD4 memory resting, and B cells
memory within the clusters (Figure 3G-J).

Construction and Evaluation of the Prognostic Model
To further identify more effective prognosis-related lactate metabolism-related IncRNAs and build prognostic models, we
used the LASSO Cox regression model to analyze the above 20 prognosis-related IncRNAs and used ten-fold cross-
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validation to overcome overfitting. Subsequently, prognostic models were constructed by multivariate Cox regression
analysis. The results showed that 10 LRLs significantly associated with prognosis were identified, namely AC009097.2,
CHRM3-AS2, AL365226.2, LINC01943, AC145343.1, AC100793.4, AC243829.4, LINC02004, AC106782.6, NCK1-
DT. AL365226.2 was a risk factor (HR>1), and other IncRNAs had protective effects (HR< 1). Next, the risk score (RS)
of CC patients was calculated based on the expression levels of 10 candidate IncRNAs and their Cox coefficients as
follows: Risk score = (—1.077*AC009097.2) + (—1.915*CHRM3-AS2) + (0.036*AL365226.2) + (- 0.0154*LINC01943)
+  (-0.135*AC145343.1) + (-0.245*AC100793.4) + (—1.542*AC243829.4) + (—0.020*LINC02004) +
(—3.234*AC106782.6) + (—0.016¥*NCKI1 -DT). Patients were divided into two risk subgroups based on median risk
scores: high-risk and low-risk groups. The lactate metabolism-related risk distribution maps, survival status maps, and
LRLs expression levels in the TCGA dataset are shown in the figure (Figure 4A—C). Survival analysis showed that the
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Figure 4 Construction and assessment of risk models for lactate metabolism-associated IncRNAs. (A) A risk score of the prognostic model for the whole cohort of TCGA
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high-risk group had a shorter survival time than the low-risk group (Figure 4D). We used the “pheatmap” package to map
the heat map of these ten IncRNAs and found that the risk scores correlated with clinicopathological characteristics such
as age, cluster, and T-stage (Figure 4E). Subsequently, the ROC analysis of the prediction model with clinicopathological
parameters allowed us to observe an AUC value of 0.741 for the ROC in the 5-year survival risk score, which was
significantly higher than the AUC values for age (0.580), grade (0.507), staging (0.634), T-staging (0.693), M-staging
(0.484), and N-staging (0.496) (Figure 4F). Furthermore, the ROC curves for 1-year, 3-year, and 5-year survival rates
were plotted in the TCGA cohort (Figure 4G). In addition, the risk score was found to be an independent prognostic
factor for CC patients using univariate and multifactorial Cox regression analysis (Figure SA and B). Finally, we divided
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the 304 CC patients with complete survival-related and clinical information of TCGA in a 1:1 ratio and subsequently into
two cohorts: the Testing group and the Training group. Risk profiles, survival plots, LRLs expression levels, and AUC
values from risk scores describing patients in the two cohorts are included in the Supplementary Material (Supplementary

Figure 1A-J). Consistent with the overall TCGA for survival analysis, both cohorts showed shorter survival times in the
high-risk group compared with the low-risk group. The AUC of the testing cohort was 0.708 while this of the training
cohort was 0.752. The above results suggest that the prognostic model of lactate metabolism-associated IncRNAs
performs better in predicting the prognosis of CC patients.

Identification and Validation of a Nomogram

Considering the complexity of formulas for risk characteristics, the nomogram can be applied visually in clinical work.
We can use risk scores and clinical parameters to draw column line diagrams and score risk levels and clinical risk
characteristics so that risk characteristics can be adequately applied in the diagnosis, treatment, and prognosis of CC
patients. The nomogram can be constructed to estimate the survival rate of patients with CC at 1, 3, and 5 years
(Figure 5C). Furthermore, the calibration curves for 1-year, 3-year, and 5-year OS showed that the nomogram was
reliable and accurate in predicting prognostic characteristics (Figure 5D).

Stratification Analysis

To determine whether the risk score could accurately predict patients’ overall survival (OS), we performed a stratified
analysis of the entire group according to the clinicopathological characteristics of CC (eg gender, age, stage, and grade).
It could be found that CC patients with age >65 years, T3-4 stage had higher risk scores, and patients with cluster 1 also
had higher risk scores (Figure 6A—C). Next, a comparison of Kaplan-Meier survival curves between the low- and high-
risk groups with different clinicopathological stratification revealed that patients in the high-risk group had a worse
prognosis compared to those in the low-risk group: age > 65 years (p=0.020), age <= 65 years (p<0.001), lower grade
G1-2 (p<0.001), higher grade G3 (p<0.001), MO (p<0.001), M1 (p=0.049), NO (p<0.001), N1-3 (p=0.010), and T1-2
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Figure 6 Association between risk characteristics and clinicopathological parameters. (A) Age, (B) Risk scores of patients in categories |, 2, and 3, and (C) T-stage of these
patients with different clinicopathological stratification. (D—L) Kaplan-Meier survival curves for low and high-risk groups of CC patients with (D) Age > 65 years, (E) Age <=
65 years, (F) G1-2, (G) G3, (H) MO, (I) M1, (J) NO, (K) NI-3 and (L) TI-2.

(p<0.001) (Figure 6D-L). These results further confirm the good prognostic value of the risk score of CC patients in
combination with clinicopathological features.

Biological Function and Pathway Analysis

Patients with CC in TCGA were divided into high-risk and low-risk groups according to median risk scores. The
IncRNAs that were significantly up-regulated (fold change > 1 and P < 0.05) or significantly down-regulated (fold change
<-1 and P < 0.05) were selected for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEEG) pathway
and Gene Set Enrichment Analysis (GSEA).'” GSEA was used to investigate the differences in pathway enrichment
between high- and low-risk groups. ECM-receptor interactions, TGF-f signaling pathway, adherens junction, thyroid
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cancer, and WNT signaling pathways were enriched in the high-risk group (Figure 7A). Allograft rejection, alzheimer’s
disease, antigen processing and presentation, autoimmune thyroid disease, intestinal immune network for iga production,
oxidative phosphorylation, parkinson’s disease, systemic lupus erythematosus, and type 1 diabetes mellitus were enriched
in the low-risk group (Figure 7B). GSEA results showed that patients in the low-risk group were associated with
immune-related pathways. In contrast, patients in the high-risk group were associated with tumor-associated pathways,
which may explain the different survival rates in the two risk groups. Then, GO and KEGG enrichment analyses were
performed to explore the biological functions and pathways between the two risk groups. It was found that LRLs were
mainly involved in many biological effects and signaling pathways. For example, BP contains cellular component
disassembly, ameboid—type cell migration, epithelial cell migration, wound healing, monosaccharide metabolism pro-
cess, and response to hypoxia. CC contains focal adhesion, cell-substrate junction, collagen-containing extracellular
matrix, secretory granule lumen, and ficolin—1-rich granule lumen. MF includes cadherin binding (Figure 7C and D).
Furthermore, KEGG analysis showed that LRLs were enriched in tumor-related pathways, such as the TNF signaling
pathway, biogenesis-reactive oxygen species, biosynthesis of amino acids, and AGE—RAGE signaling pathway in

diabetic complications (Figure 7E and F).

Mutation Analysis
TMB, defined as the number of somatic mutations per million bases of the genomic sequence, varies in different

malignancies. It has been shown that TMB is a promising predictive biomarker that can predict clinical response and
prognostic outcome of immunotherapy.'® Patients are assigned to different subtypes at the TMB immune setpoint line.'
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Firstly, the distribution of somatic mutations in different risk score subtypes was drawn by a waterfall plot. The mutation
landscape of the high-risk group is depicted in Figure 8A, and it can be observed that TTN has the highest mutation rate.
Figure 8B depicts the mutation landscape in the low-risk group, where TTN has the highest mutation rate. In addition, we
performed a survival analysis, and it can be observed that the low TMB subtype group has a lower survival rate than the
high TMB subtype group (Figure 8C). In order to further verify the effectiveness of the risk score and its synergistic
effect on prognostic stratification, we divided it into four groups: high -TMB + high-risk score group, high-TMB + low-
risk score group, low-TMB+ high-risk score group, and low-TMB + low-risk score group to draw stratified survival
curves. If the stratified survival curve showed significant differences in overall survival between different groups of
patients, and the low TMB+ high-risk score group had the worst prognosis (P<0.001 Figure 8D).

Immune Microenvironment Analysis and Immunotherapy
The immune microenvironment affects the occurrence and development of tumors and can provide a reference for tumor
immunotherapy. First, the differences in the levels of immune cell infiltration were depicted in the form of box plots.
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They showed differences between the high-risk and low-risk groups in the levels of T cells CD8, T cells CD4 memory
resting, T cells regulatory(Tregs), Macrophages MO, Mast cells activated, Eosinophils, and Neutrophils (Figure 9A).
Next, the ESTIMATE algorithm was used to assess the stromal, immune and estimation scores in TME in CC. The
results revealed significantly higher immunity and estimation scores in the low-risk group compared to the high-risk
group (Figure 9B). Then, to further explore the underlying mechanisms and immune pathways in the high- and low-risk
subgroups, the RNA-seq data from TCGA were processed using the “GSVA” package. The enrichment scores of immune
cell subsets and their associated functions were quantified using the “ssGSEA” package, and the heat map and box plots
were generated (Figure 9C and D). Because of the importance of checkpoint inhibitor-based immunotherapy, we further
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explored the differences in immune checkpoint expression between the two groups.”’ There were significant differences
in the expression of GFM1, NDUFA4, DNMI1L, POMK, and other essential indicators between the two groups (P < 0.05
Supplementary Figure 2). In addition, targeted checkpoints activated by immune cells are the most effective way to

activate anti-tumor immune responses. Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell
death protein 1 (PD-1), two joint inhibitory checkpoints commonly found on activated T cells, have been found to be the
most reliable targets for the treatment of cancer.”' It has been found that anti-PD-1 mainly induces the expansion of
specific tumor-infiltrating depleted-like CD8 T-cell subsets. Anti-CTLA-4 induces the expansion of ICOS Thl-like CD4
effector cell populations and participates in specific subsets of depleted-like CD8 T cells.** In an analysis of the
differential response to immunotherapy according to the risk-score group, anti-PD-1 and anti-CTLA-4 immunotherapies
were associated with more effective responses in the low-risk group (Figure 9E and F).

Finally, Pearson correlation analysis was performed on different immune cells and risk scores. It was found that
Eosinophils, Macrophages M0, Macrophages M2, Mast cells activated, Neutrophils, and T cells CD4 memory resting
were positively correlated with risk scores (P<0.05). Mast cells resting, T cells CD8 and T cells regulatory(Tregs) were
negatively correlated with the risk score (P<0.05). This phenomenon indicates that higher risk scores are associated with
poorer antitumor immunity (Figure 10A—T).*?

Validation of a Risk Model for Lactate Metabolism-Associated IncRNAs

In order to verify the bioinformatics analysis, six Incrnas related to lactate metabolism commonly used in CC tissues and
adjacent tissues in the risk model were selected for analysis, including AC009097.2, CHRM3-AS2, LINC01943,
AC145343.1, AC243829.4 and NCK1 -DT. In addition, the primer sequence numbers of AL365226.2, AC100793.4,
LINC02004, and AC106782.6 were not found in the literature and databases, so they could not be verified for the time
being. The results showed that the expression levels of LINC01943, CHRM3-AS2, NCK1 -DT, AC009097.2 and
AC243829.4 were up-regulated in the tumor tissue samples compared with the standard tissue samples in 11 pairs of
CC tissues and adjacent tissues, which was consistent with the analysis of IncRNAs in TCGA database. However,
AC145343.1 did not show a statistically significant difference, which should be due to the small sample size in this study
(Figure 11).

Discussion
Although the incidence and mortality associated with cervical cancer are gradually decreasing after the large-scale
implementation of cervical cancer cell screening programs,”* cervical cancer is still the fourth most common cancer
among women worldwide.”> For the treatment of cervical cancer, radical resection and pelvic lymphadenectomy are
usually used for early-stage patients, and radiotherapy and chemotherapy are used for advanced-stage patients.® Despite
the progress made in the treatment of cervical cancer, due to the heterogeneity of tumors, there are significant differences
in prognosis even among patients with similar clinical characteristics, which indicates that the existing classification and
clinicopathological characteristics are insufficient to predict the prognosis of patients.”” As cervical cancer is a highly
preventable tumor, there is a great need for more effective biomarkers to more accurately determine which treatments
patients will benefit most from.*®

Lactate has long been considered a metabolic waste product, but recent studies have found that lactate tightly links
two fundamental hallmarks of cancer: immune evasion and metabolic reprogramming.” Moreover, there is evidence that
even when tumor cells are oxygen-rich, they may produce large amounts of lactic acid through glycolysis. Lactate
content was higher in tumor tissues than in normal tissues. Therefore, lactic acid is essential for tumor development.?’
Lactate is a critical metabolic participant in the tumor immune response because its oversecretion favors the polarization
of tumor-associated macrophages to an immunosuppressive phenotype while impeding tumor infiltration by cytotoxic
T lymphocytes, thereby exacerbating tumor immune escape.’® LncRNAs have been shown to play an essential role in
cancer by regulating cellular signaling cascade responses.®! An increasing number of studies have shown that IncRNAs
are involved in developing CC and are good prognostic indicators for CC patients.**>* To the best of our knowledge, this
is the first study to investigate the correlation between lactate metabolism-related IncRNAs and prognosis in CC patients.
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Figure 10 Correlation analysis of different immune cells and risk scores. Pearson correlation analysis between (A) Eosinophils, (B) Macrophages MO, (C) Macrophages M2,
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These results indicate that lactate metabolism plays an important role in the progression of CC and may be useful in
predicting the clinical outcome and survival prognosis of CC patients.

This paper explores the significance of LRLs in CC through a comprehensive bioinformatics analysis. Univariate Cox
regression analysis on TCGA CESC data showed that 20 LRLs were related to prognosis. Subsequently, consensus
cluster analysis showed that the prognosis-related LRLs could divide CC patients into 3 clusters. Then, using LASSO
regression and multivariate Cox analysis, 10 LRLs were identified as independent prognostic factors to construct
a prognostic risk-related model. CC patients can be divided into high-risk and low-risk groups according to the median
risk score, and the survival rate of the low-risk group is higher than that of the high-risk group. Nomogram is
increasingly used to evaluate tumor prognosis. It can tailor risk assessment to patients based on their clinical or disease
characteristics.*® Building a nomogram to predict a patient’s 1 -, 3 -, and 5-year survival is clinically applicable. This

2956 e International Journal of General Medicine 2023:16

Dove!


https://www.dovepress.com
https://www.dovepress.com

Dove Gao et al

A AC009097.2 B c
- CHRM3-AS2 LINC01943
2.5 4
20 *k = Normal c * £ Normal c * &2 Normal
‘g s : B Tumor 220 : B Tumor 2, == Tumor
» 7] 3
] - 3 T o [
s g 15 s e
310 == 3 %2
2 210 T g
§ 0.5 ki B 4
© & 0.5 &,
0.0 r ! 0.0 T T 0 T T
Normal Tumor Normal Tumor Normal Tumor
D E F
AC145343.1 AC243829.4 NCK1-DT

* %k k

5 5
3 Normal

2.0 *k ok
3 Normal ] 3 Normal
S 4 = L2 4 =3 Tumor
15 ’ 3 Tumor Tumor
§ 3 3
. 1
2 2

1 ﬁ
T T L T T
Normal Tumor Normal Tumor

ns

Relative expression
o

Relative expression

Relative expression

e
>

T T
Normal Tumor

Figure |1 To verify the expression levels of IncRNAs related to lactate metabolism in tumor tissues and adjacent tissues. (A—F) performed the expression of six candidate
IncRNAs between cervical tumor tissues and paracancerous tissues.("*p>0.05,%p < 0.05, *¥p < 0.01, ***p < 0.001).

study provides a prognostic model based on LRLs for CC patients. The AUC value is more significant than 0.7, which
can accurately classify patients into different prognostic groups and facilitate the identification and early intervention of
high-risk populations. Therefore, this predictive model can be used to identify novel biomarkers for subsequent studies.
Moreover, the risk score of IncRNAs related to lactate metabolism in cervical cancer was observed to be correlated with
immune cell infiltration and tumor microenvironment.

Our study identified ten prognostic markers of CC associated with lactate metabolism: AC009097.2, CHRM3-AS2,
AL365226.2, LINC01943, AC145343.1, AC100793.4, AC243829.4, LINC02004, AC106782.6, and NCK1-DT, which
have been tentatively shown to be associated with tumors in studies. Lang et al found that AC009097.2 is a novel
prognostic marker for cervical cancer that may be associated with fatty acid metabolism.*® It was also found to be a new
marker of 9 IncRNAs related to pyroptosis, which can be used as biomarkers to evaluate the prognosis and immunother-
apy of EC.>’ CHRM3-AS2 has been demonstrated: silencing of CHRM3-AS2 expression inhibits the malignant
progression of gliomas by regulating the expression of miR-370-5p/KLF4® and is a prognostic marker for ovarian
cancer.>® AC145343.1 was found to be a risk factor for ex vivo HCC in GILncSig.*® Wang et al found that AC243829.4
could be used as a prognostic marker of renal cell carcinoma when studying immune subtyping related IncRNAs in clear
renal cell carcinoma. The corresponding IncRNA-mRNA network was also created,*' which can also be used as
IncRNAs related to prognostic ferroptosis associated with immunotherapy and chemotherapy response in gastric cancer
patients.*? In addition, NCK1-DT is considered a prognostic marker in colon cancer,” and NCK1-DT acts as an
oncogene to promote gastric cancer progression through miR-22-3p / BCL9-Wnt/B-catenin signaling pathway.**
However, AL365226.2, AC100793.4, LINC02004, and AC106782.6 have been less studied in cancer. In this study,
we identified a possible association between ten IncRNAs and lactate metabolism and provided evidence for their
importance in CC prognosis. Among these ten LRLs, AL365226.2 was the risk factor, while AC009097.2, CHRM3-AS2,
LINCO01943, AC145343.1, AC100793.4, AC243829.4, LINC02004, AC106782.6 and NCK1 -DT are favorable prog-
nostic factors for CC.

TMB can be used as an effective biomarker to predict the response to immunotherapy.*> We evaluated the characteristics
of TMB in different risk groups of CC patients and found that TTN was the gene with the highest mutation frequency. In
addition, the probability of survival was lower in the high-risk group than in the low-risk group, regardless of the TMB level. It
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has been shown that solid infiltration of memory CD8 T cells, NK cells, and Th1 cells is associated with a good prognosis.*® In
this study, ssGSEA showed that as the risk score increased, the infiltration of CD8+T cells, NK cells, and Thl cells decreased,
indicating that patients in the high-risk group had a worse prognosis than those in the low-risk group. Moreover, when the risk
score increased, the immune characteristics such as APC _co_inhibition, Type I IFN_Response, MHC class I, T cell co-
inhibition, and T cell co-stimulation were significantly decreased. Overall, risk models constructed based on lactate meta-
bolism-associated IncRNAs can reveal statistical differences in tumor mutation burden (TMB), immune cell infiltration, and
immunotherapy between high and low-risk groups, which may have implications for guiding the treatment of CC patients.
This study also has certain limitations. Firstly, the data used to construct the risk model were only obtained from the
TCGA database. This risk model of lactate metabolism-associated IncRNAs and its clinical utility must be cross-validated
using perspective and real-world data. In addition, as some of the IncRNAs screened in this study have not been analyzed
previously, their regulatory mechanisms need further investigation. The mechanism of the relationship between lactate
metabolism-related IncRNAs and CC prognosis remains unclear and needs to be explored experimentally.

Conclusion

In this study, we constructed that a risk model based on lactate metabolism-associated IncRNAs can be used to predict the
survival of CC patients, providing a new approach for risk stratification and biomarkers of CC patients. In addition, we
systematically analyzed the relationship between the characteristics, mutational analysis, functional enrichment analysis,
and immune microenvironment of lactate-related IncRNAs, which may help to provide new ideas for the detection and
individualized treatment of CC patients.
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