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Abstract: With the increasing of altitude activities from low-altitude people, the study of high altitude cerebral edema (HACE) has 
been revived. HACE is a severe acute mountain sickness associated with exposure to hypobaric hypoxia at high altitude, often 
characterized by disturbance of consciousness and ataxia. As for the pathogenesis of HACE, previous studies suggested that it might 
be related to the disorder of cerebral blood flow, the destruction of blood-brain barrier and the injury of brain parenchyma cells caused 
by inflammatory factors. In recent years, studies have confirmed that the imbalance of REDOX homeostasis is also involved in the 
pathogenesis of HACE, which mainly leads to abnormal activation of microglia and destruction of tight junction of vascular 
endothelial cells through the excessive production of mitochondrial-related reactive oxygen species. Therefore, this review summarizes 
the role of REDOX homeostasis and the potential of the treatment of REDOX homeostasis in HACE, which is of great significance to 
expand the understanding of the pathogenesis of HACE. Moreover, it will also be helpful to further study the possible therapy of 
HACE related to the key link of REDOX homeostasis. 
Keywords: high altitude cerebral edema, hypobaric hypoxia, REDOX homeostasis, mitochondria dysfunction, microglia

Introduction
High altitude (intermediate altitude: 1500–2500 meters; high altitude: 2500–3500 meters; very high altitude: 3500–5500 
meters; extreme altitude: >5500 meters) is characterized by low pressure, low oxygen, low temperature, low humidity 
and high ultraviolet radiation.1 People who live in plain areas for a long time entering high altitude areas (>2500 meters) 
will inevitably suffer from acute and chronic altitude sickness to varying degrees due to different body adaptability to the 
environment.2,3 Proper high altitude response (increased respiratory rate, heart rate, metabolic rate, etc.) is beneficial for 
the body to quickly adapt to hypoxic environment. However, if poorly adapted, a variety of acute and chronic altitude 
diseases may occur, such as high altitude brain edema (HACE), high altitude pulmonary edema (HAPE) and high altitude 
heart disease (HAHD). Specifically, the brain is the body’s High oxygen consumption organs that relies primarily on 
glucose and ketone bodies for energy.4 Therefore, it is extremely sensitive to the hypobaric hypoxia environments at high 
altitudes.5

HACE typically occurs in areas with altitudes ranging from 4500m to 5500m, is characterized by symptoms such as 
headache, ataxia, and altered mental status.6,7 Though the incidence is low, it is a rapidly progressive and fatal disease. 
Without timely and effective treatments, patients can progress to coma or even death within 24 hours.8 However, current 
treatment options for HACE are limited. The main reason is that its mechanism is complicated, involving a series of 
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pathological changes such as cerebral blood flow disturbance, disruption of the blood-brain barrier (BBB), and brain 
parenchymal cell damage induced by inflammatory factors in a low-pressure hypoxic environment.9,10 Recently, studies 
have found that REDOX homeostasis plays an important role in the occurrence, development and outcome of 
HACE.2,11,12

REDOX homeostasis refers to the dynamic balance between oxidation and reduction in the body, which belongs to 
the inherent self-defense mechanism of cells and plays a crucial role in maintaining the normal life activities of cell.13 

Profound REDOX imbalances are associated with a wide range of diseases, such as virus infections,14,15 tumors16–18 and 
cardio-cerebrovascular diseases.19–23 Studies found that exposure to low-pressure and hypoxic platforms leads to 
alterations in a range of metabolic reactions and cellular pathways that are closely related to the maintenance of 
REDOX homeostasis.10,24–27 Therefore, we focus on the regulation of REDOX homeostasis to explore the pathological 
mechanism and treatment progress of HACE.

Basic Overview of HACE
Epidemiology and Pathological Mechanism
Unacclimatized individuals who rapidly ascend to heights of more than 2500 meters are at risk of developing one or more 
acute high altitude illness (HAI), mainly including acute mountain sickness (AMS), HACE and HAPE.3 AMS and HAPE 
can occur in susceptible individuals at altitudes as low as 2500 meters, while HACE usually occurs at higher elevations.3 

Specifically, HACE mostly occurs in the stage of rapidly entering high altitude, and the altitude of 4500~5500 meters is 
the high incidence area.6 According to previous studies, the main risk factors of HACE mainly include rapid ascent,28 

fatigue, cardiopulmonary diseases (such as organic heart diseases, upper respiratory tract infections),29 and neurological 
diseases (such as Parkinson’s disease, epilepsy).30 Although HACE morbidity and mortality rates have decreased in 
recent years, the number of HACE patients cannot be underestimated due to increased highland activity. Therefore, it is 
still necessary to further study the pathological mechanism and prevention and treatment of HACE.

Previous studies have suggested that the main causes of HACE are cerebral hemodynamic disorders (increased cerebral 
blood flow and velocity) caused by hypobaric hypoxia, destruction of blood-brain barrier and abnormal inflammatory 
factors. The disturbance of cerebral hemodynamics may disrupt the tight junctions between endothelial cells of cerebral 
arteries and lead to cerebral vasogenic edema caused by BBB damage.31 Moreover, the hypoxic environment can cause 
mitochondrial dysfunction, leading to intracellular edema. In addition, neurons and glial cells release inflammatory 
cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) under hypoxia 
conditions at high altitude.32–35 These inflammatory factors can increase cerebral vascular permeability and result in 
cerebral edema.36 HACE and HAPE are both acute high-altitude illnesses and share some pathophysiological mechanisms. 
Pulmonary edema in HAPE patients may cause pulmonary arterial hypertension, leading to increased right heart load, 
decreased cardiac output and cerebral perfusion pressure, resulting in cerebral hypoxia, cerebral edema, and even HACE. 
Clinical observations have found that HACE patients often have dual edema in the brain and lungs, indicating a close 
relationship between the brain and lungs in acute mountain sickness.37–39 Therefore, we believe that the exploration of the 
pathological mechanisms, prevention, and treatment of high-altitude cerebral edema can be linked with high-altitude 
pulmonary edema, rather than just focusing on the lesions of a single organ or tissue. Oxidative stress injury has been 
proven to be ubiquitous in the pathogenesis of HACE and HAPE and has become a new research hotspot in recent 
years.2,40,41 In the high altitude hypoxia environment, the body produces a large number of free radicals and oxidants, while 
hypoxia and ischemia lead to the lack of intracellular reductants, resulting in the imbalance of REDOX homeostasis in the 
body.12,42,43 This REDOX homeostasis imbalance can cause a variety of pathophysiological reactions, including abnormal 
intracellular metabolism, inflammation, cell apoptosis and so on, resulting in the occurrence of HACE.2,44

Clinical Manifestations and Diagnostic Methods
HACE is an acute and severe HAI caused by dysfunction of central nervous system in the hypobaric hypoxia 
environment at high altitude. In terms of clinical symptoms, HACE also has common manifestations of AMS, such as 
headache, anorexia, nausea, vomiting, dizziness, and fatigue.45 In addition, its more prominent feature is abnormal 
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manifestations of the nervous system, mainly including severe headache, altered states of consciousness, ataxia 
(instability of gait).46 If not treated quickly, HACE can cause epilepsy, coma and even death. Physical signs can present 
as limb dysfunction, pyramidal tract syndrome, or meningeal irritation, and approximately half of patients with HACE 
have papilledema, retinal hemorrhage, urinary retention or urinary incontinence.6

At present, the diagnosis of HACE mainly relies on a history of highland activities, the observation of symptoms and 
signs, as well as a comprehensive analysis of laboratory and imaging tests. In terms of clinical symptoms and signs, the 
absence of coordination between the trunk and lower or upper limbs (truncal ataxia) is a typical sign.46 Studies showed 
that ataxia as measured by heel-knee-tibia test, finger-nose test and rapid rotation is the best objective clinical index for 
the progression of AMS to HACE.47 Laboratory tests such as electrolytes, complete blood counts, blood glucose, ethanol 
levels, carboxyhemoglobin levels, and toxicological screening can help rule out other diseases with similar clinical 
symptoms. HACE imaging changes recognized by computed tomography (CT) and magnetic resonance imaging (MRI) 
are often manifested as vasogenic edema and diffuse microhemorrhage in the white matter area of the splenium of the 
corpus callosum.48 Hemosiderin deposition in the corpus callosum is often considered to be a highly specific sign of 
HACE and can be used to distinguish AMS from HACE.49 Other brain diseases related to hypoxia can also be 
distinguished by the different shapes and locations of lesions in MRI images. For example, hypoxic brain injury, it 
also presents with angiogenic edema and increased water content in the brain. However, it is generally not accompanied 
by diffuse microhemorrhage and hemosiderin deposition, and presents with white matter lesions in the cerebral cortex 
and hippocampus.50 A recent study confirmed that the endpoint of retinal peripapillary capillaries detected by optical 
coherence tomography angiography can be used as a rapid, non-invasive potential biomarker for AMS, enabling the 
observation and prediction of changes in the central nervous system microvasculature and the development of HACE.51 

In addition, uneven enlargement of the inner diameter of the optic nerve sheath, edema of the optic disc, enlargement of 
the inner diameter of retinal blood vessels, and leakage of retinal blood vessels may also be the precursor of HACE to a 
certain extent.52

Progress in Prevention and Treatment of HACE
Because of the low morbidity, rapid progression, and high mortality of HACE, prevention must take precedence over 
treatment. Pretreatment and slow rise are the most effective means to reduce the incidence of HACE.53 Specifically, 
intermittent exposure to low or positive pressure anoxia through the use of hypoxic tents, hypoxic chambers, or hypoxic 
masks pre-acclimates the body to high altitude hypoxia.54 The speed of ascent should be around 600 m/day, and climbers 
should rest for 1 day for every 600–1200 m of ascent.46 Meanwhile, when reaching more than 3000 meters at high 
altitude, climbers should increase their sleep height at a rate of no more than 500 meters per day.3 This only applies to 
those who are at low risk of developing complications and with no previous episodes of altitude sickness. Although it is 
generally believed that adaptation remains the best strategy for HACE prevention, and prophylactic medication is not 
recommended for mountain climbers at low HACE risk, prophylactic medication is also necessary for patients at 
moderate to high risk.54 Acetazolamide (125–250 mg orally, twice daily) is currently the only certified prophylactic 
drug that helps to adapt to high-altitude conditions and may be useful in patients with a history of altitude sickness.3,55,56

For the treatment of HACE, rapid descent to low altitude is a top priority. During the descent, patients with severe 
HACE should be given oxygen with a target saturation of 90%. Patients with severe HACE with delayed transport may 
be treated with a portable hyperbaric chamber to immediately reduce cerebral blood flow, thereby reducing intracranial 
pressure.3 Medication should be administered when the altitude cannot be reduced immediately or when oxygen therapy 
is not available due to conditions. At present, there exists several therapeutic ways for HACE, including absolute repose, 
dehydration therapy, hypothermia, medication and fluid therapy, and oxygen therapy. However, there is no specific 
medicines for the treatment of HACE, previous clinical experience supports the use of dexamethasone, acetazolamide, 
and mannitol.3,57 Recently, it has also been suggested that intranasal administration of dexamethasone may be a non- 
invasive alternative to muscular or intravenous administration. This may be a more convenient and efficient way, but the 
symptoms of congestion and rhinitis common at high altitudes can limit nasal absorption.58 However, dexamethasone is 
not easy to get used to, and sudden withdrawal can cause a rebound in symptoms of high altitude disease.59 Nowadays, 
studies have found that some effective components of traditional Chinese medicine can relieve HACE through 
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antioxidation and reduce oxidative stress in hypobaric and hypoxic environment, such as ginkgo biloba extract,60 

salidroside,61 quercetin,62,63 puerarin,64–66 catechin,67 betel nut polyphenols,68 and so on.

The Role of REDOX Imbalance in the Pathogenesis of HACE
REDOX Homeostasis
The photosynthesis of life on earth leads to the accumulation of oxygen in the atmosphere and exposes the human body to an 
oxygen-rich environment in which oxidation occurs periodically. In order to adapt to this environment, the body has formed a 
molecular mechanism to regulate and maintain the balance between reduction and oxidation, namely REDOX homeostasis.69 

REDOX homeostasis is the most basic driving force of human life activities and the most common metabolic reaction 
mechanism, but it is a dynamic equilibrium process.70 Maintaining this equilibrium requires the participation of oxidants 
(oxygen, hydrogen peroxide, superoxide anion, etc.), reductants (glutathione, NADH, NADPH, etc.), redox enzymes (super
oxide dismutase, glutathione peroxidase, etc.), and redox buffer system (glutathione-glutamine system, NADH/NAD+, 
NADPH/NADP+, etc.). Among them, oxygen is the main determinant of cell metabolism and gene expression. Metabolic 
changes and energy restriction under hypoxia conditions lead to the imbalance of cell REDOX homeostasis.43,71

Reactive oxygen species (ROS) is an important component of intracellular oxides, and its concentration and source 
may be a critical determinant of redox-mediated signal transduction and cell fate.72 Usually, an appropriate amount of 
ROS serves as secondary signaling molecules in human body, playing an essential role in regulating energy metabolism 
and maintaining cell homeostasis. However, excessive amounts of ROS will react non-specifically with biological 
molecules such as DNA, proteins, unsaturated lipids and carbohydrates, causing oxidative damage such as DNA 
breakage, protein denaturation and lipid peroxidation, thus inducing cell death (Figure 1).73 Generally, the main source 
of ROS in human body is mitochondria. Endoplasmic reticulum protein folding and peroxidase activation in peroxisome 

Figure 1 Oxidative stress damage of cells induced by hypoxia at high altitude. 
Abbreviations: RONS, reactive oxygen and nitrogen species; ROS, reactive oxygen species; AO, antioxidant; NADPH, nicotinamide adenine dinucleotide phosphate.
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also promote the production of ROS. In addition, ROS produced by nicotinamide adenine dinucleotide phosphate oxidase 
is also one of the important sources of endogenous ROS in the cytoplasm.74 Because of the short half-life of most types 
of ROS, ROS produced from different sources may have different biological functions.

Under normal circumstances, the production of ROS mediated by nicotinamide adenine dinucleotide phosphate 
oxidase (NADPH) is a necessary signal for insulin stimulation signal transduction.75 Moreover, the increase of ROS 
in the oxidative metabolism of mitochondria can lead to a series of diseases such as neurodegenerative diseases, cancer, 
diabetes and so on.76,77 This is mainly because mitochondria are the main sites of cellular energy metabolism and the 
center of REDOX reaction.78 When stimulated by hypoxia, inflammation, virus or tumors, large amounts of ROS can 
induce strong oxidative stress damage.79,80 At the same time, the body itself has a complete antioxidant defense system to 
protect against oxidative damage caused by ROS, including enzymatic reactions antioxidant defense, non-enzymatic 
reactions antioxidant defense, and antioxidant molecules. Among them, non-enzymatic reactive antioxidants are the first 
line of defense against ROS, while subsequent activation of enzymatic antioxidant defenses dominated. Moreover, the 
antioxidant enzymes produced by the cells mainly include superoxide dismutase, catalase, peroxidase, thioredoxin, 
glutathione peroxidation and glutathione reductase. These enzymes can be activated successively under the stimulation of 
ROS, efficiently catalyze the decomposition and metabolism of ROS, and are regulated by NF-E2–related factor 2 (Nrf2), 
peroxisome proliferators activated receptor-gamma coactivator 1 (PGC-1), p53 and other transcription factors.81

Relationship Between Imbalanced REDOX Homeostasis and HACE
Blood-brain barrier (BBB) plays an important biological role in maintaining the stability of brain tissue and the normal 
physiological state of central nervous system. REDOX homeostasis in vivo is a critical condition for maintaining the 
integrity of BBB. However, high altitude hypoxia environment can lead to REDOX imbalance, BBB damage, and 
induces HACE (Table 1).82,83 Moreover, Table 1 shows the changes of oxidant, reducing agent, REDOX enzyme and 
REDOX buffer system in the body during the process of HACE. Mitochondria are both REDOX centers and oxygen- 
sensitive organelles, and their functions are closely related to oxygen levels.73 Under the condition of hypoxia at high 
altitude, mitochondrial function is inhibited, resulting in abnormal mitochondrial energy metabolism and excessive 
production of ROS, leading to brain oxidative stress damage and inducing the occurrence of HACE. It can be divided 
into three aspects: First, oxidative stress leads to abnormal activation of microglia and destruction of tight junctions of 
vascular endothelial cells through excessive production of mitochondrial-related ROS,56,84,85 leading to massive activa
tion of inflammatory factors and increased BBB permeability,86 thus causing brain edema; Second, mitochondrial 

Table 1 High Altitude Cerebral Edema and REDOX Imbalance

Pathology Species Hypoxic Condition Changes in REDOX Homeostasis Sample References

HACE Rat Acute hypobaric hypoxia (9144m, 5 h) ↑ MDA, ↓ GSH, ↓ GPX, ↓ SOD Brain [91]

Rat Acute hypobaric hypoxia (7620m, 48 h) ↑ ROS, ↑ MDA, ↓ GPX, ↓ SOD Brain [92]

Rat Acute hypobaric hypoxia (7600m, 24h) ↑ ROS, ↑ MDA, ↓ GSH, ↓ SOD Brain [93]
Rat Acute hypobaric hypoxia (6000m, 72 h) ↑H2O2, ↑MDA, ↓SOD, ↓GSH Brain [94]

Rat Acute hypobaric hypoxia (6000m, 72 h) ↑H2O2, ↑MDA, ↓SOD, ↓GSH Brain [11]

Rat Acute hypobaric hypoxia (7000m, 72 h) ↑MDA, ↓SOD, ↓GSH Brain [95]
Rat Acute hypobaric hypoxia (6000m, 72 h) ↑GSSG, ↑NOx, ↑Lipid hydroperoxide, 

↓GSH, ↓GSH/GSSG, ↓GPX, ↓GR, 

↓SOD

Brain [96]

Rat Acute hypobaric hypoxia (9000m, 24 h) ↑MDA, ↑LDH, ↑GSSG, ↓GSH, ↓SOD Plasma; Brain [97,98]

Rat Acute hypobaric hypoxia (8000m, 72 h) ↑MDA; ↓SOD, ↓GSH Brain [99]

Rat Acute hypobaric hypoxia (7000m, 24 h) ↑MDA, ↓SOD Brain [100]
Rat Acute hypobaric hypoxia (8000m, 72 h) ↑MDA, ↑NO, ↓SOD, ↓GSH Brain [101]

Rat Acute hypobaric hypoxia (8000m, 24 h) ↑MDA, ↓SOD, ↓GSH Brain [102]

Abbreviations: HACE, high altitude cerebral edema; MDA, malondialdehyde; ROS, reactive oxygen species; GPX, glutathione peroxidase; SOD, superoxide dismutase; 
GSH, glutathione; GSSG, glutathione disulfide; GR, glutathione reductase; H2O2, hydrogen peroxide; GSH/GSSG, reduced/oxidized glutathione ratio; LDH, lactate 
dehydrogenase; NOX, NADPH oxidase; ↑, increased level; ↓, decreased level.
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dysfunction can also lead to imbalance of intracellular calcium balance, which leads to excessive release of Ca2+ and 
calcium overload, thus causing cytotoxic edema;87–89 Third, hypoxia inhibits oxidative phosphorylation of cells, resulting 
in mitochondrial membrane depolarization, depletion of ATP and decrease of cell transport. Then, increased intracellular 
osmotic pressure may induce a large number of neurons and endothelial cells, leading to destruction of BBB.84,90 

Therefore, the role of mitochondrial dysfunction in HACE is essential, and the study of the improvement and protection 
of mitochondrial function is of great significance for the prevention and treatment of HACE.

Additionally, microglia are macrophages in brain tissue and are the only immune cellular substances in the central 
nervous system that help maintain the homeostasis in brain tissue. In the altitude hypoxia environment, microglia will 
produce a large number of free radicals and oxidants, thus causing oxidative stress response. Oxidative stress reaction 
will lead to the decrease of antioxidant enzyme activity and the enhancement the activity of oxidase in microglia, thus 
reducing the resistance of microglia to free radicals and oxidants, and further aggravating the degree of oxidative 
stress.103 At the same time, oxidative stress can also cause inflammation. On the one hand, this inflammatory response 
promotes the increase of M1-polarized microglia through up-regulation of NRF1,34,35 thus breaking the tight junctions of 
vascular endothelium and increasing vascular permeability.104,105 On the other hand, by upregulation of Aquaporin-4 
(AQP4) (marker of HACE cytotoxic edema), astrocytes swell and release a large amount of cytotoxic compounds, which 
leads to tissue damage and increased swelling, forming a vicious cycle.106 These pathological changes lead to a 
breakdown of the blood-brain barrier, swelling of brain tissue, and eventually HACE disease (Figure 2). In addition, 
oxidative stress response of microglia can also lead to mitochondrial membrane oxidative damage and mitochondrial 
dysfunction, leading to energy metabolism disorders and cell apoptosis.107 Apoptotic cells will release a large number of 
intracellular substances, which further cause inflammation and oxidative stress, thus aggravating the degree of HACE.

Figure 2 HACE mediated by microglia in hypoxia environment at high altitude. Hypoxia-induced systemic inflammation can promote M1 polarization of microglia by up- 
regulating the expression of Nrf1, releasing a large number of pro-inflammatory factors to activate MAPKs and NF-κB signaling pathways in astrocytes, up-regulating the 
expression of AQP4, destroying the integrity of BBB, and inducing HACE.
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Study on REDOX Homeostasis in the Treatment of HACE
Related Targets
HACE is mediated by oxidative stress damage caused by the imbalance of REDOX homeostasis in low atmospheric 
pressure and low oxygen at high altitude. Therefore, maintaining REDOX homeostasis of brain cells is an important 
method to prevent and treat HACE. As mentioned above, antioxidant enzymes in the body are regulated by several 
transcription factors. These key transcription factors maintain REDOX homeostasis by regulating transcription levels of 
antioxidant enzymes and protein content of related enzymes. Among them, Nrf2 is a key regulatory factor of cellular 
antioxidant response, which can reduce the oxidative stress damage of the body through several ways.108 Specifically, 
Nrf2 binds to Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm and is targeted for degradation, thus 
maintaining a steady-state level under normal physiological conditions. However, some cysteine residues in Keap1 are 
oxidized to cysteine sulfonic acid at high altitude, which inhibits Keap1’s ability to promote Nrf2 ubiquitination and 
degradation in the proteasome. As a result, the steady-state level of Nrf2 is elevated, and it dissociates from Keap1 and 
trans-locates to the nucleus to form a complexes with other proteins that regulate the expression of more than 100 genes 
involved in cellular stress responses via antioxidant response elements (AREs) or electrophile response elements 
(EpREs) (Figure 3a).109 On the one hand, Nrf2 can regulate the production of ROS and reactive nitrogen species 
(RNS) by controlling the transcription of ROS/RNS-producing enzyme.110 On the other hand, Nrf2 can induce the 
expression of antioxidant enzymes (such as catalase) to remove ROS and improve the antioxidant capacity of the body.111

In addition, under hypoxic conditions, mitochondrial hypoxia impairs normal oxidative phosphorylation and electron 
transport chain function, leading to the production of a large number of ROS, thus promoting the occurrence of HACE. 
Hypoxia-inducible factor-1 (HIF-1), as a transcription factor that is activated under hypoxic conditions and directly 

Figure 3 (a) Nrf2 activates antioxidant factors to reduce oxidative stress. The oxidation of SH- group in Keap1 inhibits its ability to target Nrf2 degradation. Nrf2 is isolated 
from Keap1 group and located in the nucleus, where it activates several antioxidant factors, including glutathione S-transferase (GSTs), TRX, thioredoxin reductase (TrxRs) 
and glutathione synthase (GS), thus maintaining intracellular REDOX homeostasis. (b) HIF-1α activates the hypoxic adaptation response of mitochondria under hypoxic 
conditions. Under hypoxia, the stability of O2-regulated HIF-1α can regulate the transformation of mitochondria to O2-independent ATP production based on glycolysis, 
activate mitochondrial autophagy, eliminate severely damaged mitochondria that produce large amounts of ROS, and finally alleviate the oxidative stress damage caused by 
mitochondria under hypoxic conditions.
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targets several mitochondrial proteins to protect the body from oxidative stress.112,113 HIF-1 is a heterodimer composed 
of stable HIF-1β and unstable HIF-1α regulated by O2. Among them, HIF-1α is a constitutive expression protein and its 
expression level is very low under the condition of normal oxygen due to the continuous degradation of HIF-1α by 26S 
proteasome. However, under hypoxia conditions, HIF-1α can be stabilized by inducing inhibition of HIF-1α hydroxylase, 
thereby activating mitochondrial adaptation to hypoxia. This adaptive response promotes cell survival by reshaping 
cellular energy metabolism, including the transition to oxygen-independent glycolytic based ATP production and down- 
regulation of mitochondrial oxidative phosphorylation to reduce oxygen-dependent energy production.40,97 In addition, 
HIF-1α also activates mitochondrial autophagy through two typical hypoxia targets BCL2 and adenovirus E1B 19-kDa- 
interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L), thus eliminating severely damaged mitochondria that produce 
large amounts of ROS,113 and ultimately alleviating oxidative stress damage caused by mitochondria under hypoxia 
conditions (Figure 3b).

AQP4 is an aquaporin in the astrocyte foot process, which is an important part of the formation of aquaporin in brain. 
Microglia can regulate the expression and distribution of AQP4, thus affecting the permeability of brain water channels 
and water flow velocity. Microglia activate A1 reactive astrocytes by activating the inflammatory pathway of nuclear 
factor kappa-B (NF-κB) and releasing fission mitochondria in extracellular cells under altitude hypoxia. AQP4 is 
upregulated in the bottom of astrocytes, leading to increased permeability of brain water channels, making water flow 
between the brain tissue and the brain easier, causing astrocytes cytotoxic edema and increasing the risk of HACE 
development.114 A series of inflammatory responses mediated by NF-κB signaling pathway and BBB damage caused by 
AQP4 accumulation are the main links leading to HACE.115–117 In a word, the study on them is helpful to further 
understand the pathological mechanism of HACE and provide new ideas and methods for its prevention and treatment.

HACE Therapy Targeting REDOX Homeostasis
The balance of REDOX homeostasis is crucial to the physiological activities of the body, and its imbalance can lead to 
various diseases. However, it can also be utilized as a way to treat these diseases. For example, hypoxic tumors grow in 
anoxic environments resulting in dramatic changes in cellular metabolic pathways and molecular mechanisms, leading to 
an imbalance in cellular REDOX status and lack sensitivity to various antitumor therapies. Moreover, recent studies 
suggest that intervention in cellular REDOX status via chemical or gene therapy may enhance low-oxygen tumors’ 
sensitivity to treatment, thereby improving the therapeutic efficacy of tumors.118,119 These findings demonstrate that 
maintaining cellular REDOX homeostasis may provide new directions and ideas for the treatment of some diseases. It is 
also feasible to explore the treatment of HACE with REDOX imbalance as the entry point. In this paper, the existing 
relevant studies are discussed.

Non-Drug Therapy
Hyperbaric oxygen is one of the main ways to treat HACE. It can rapidly increase the partial pressure of blood oxygen in 
patients with HACE and correct the state of cerebral ischemia and hypoxia. Studies have shown that hyperbaric oxygen 
preconditioning can increase the activity of antioxidant enzymes and the ability of scavenging lactic acid by inducing the 
expression of heat shock protein 70, so as to reduce the oxidative stress response of mouse brain in hypoxic environment 
and prevent the occurrence of HACE.60,96 In addition, intermittent hypoxia exposure has also been shown to reduce the 
incidence of HACE through anti-oxidation and anti-inflammation,25,120 which may be related to multiple modifications 
and functional improvements of mitochondrial DNA sequences under long-term / chronic hypoxia.90

Drug Therapy
Anti-inflammatory agents and antioxidants are the first choice for treating the imbalance of antioxidant homeostasis 
caused by oxidative stress and inflammation. Glucocorticoids have long been used for the treatment of HACE and have 
good anti-inflammatory effects. However, it may cause adverse reactions such as hyperglycemia, indigestion, and 
withdrawal symptoms, and there are contraindications for peptic ulcer, breastfeeding and pregnancy. Therefore, in recent 
years, there has been increasing attention to anti-inflammatory and antioxidant substances derived from a number of 
natural substances, especially traditional Chinese herbal medicines. Natural antioxidants such as ginkgolide B,121 
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quercetin,62 tetrahydrocurcumin,100 areca polyphenols,68 salidroside,97,122 phenylethanol glycoside99 and potentilla 
anserine L. polysaccharide101 can reduce oxidative stress and inflammation in a hypobaric and hypoxic environment 
by enhancing the activity of antioxidant enzymes and inhibiting NF-κB inflammatory signaling, so as to prevent or treat 
HACE. In addition, endogenous Exendin-4 and ganglioside GM1 are also thought to alleviate HACE by inhibiting 
inflammation and oxidative stress (Table 2). Sun et al95 found that Exendin-4 effectively protected the integrity of BBB 

Table 2 The Drug Treatment of HACE

Drugs Source Compound 
Property

Mechanism of Action Reference

Salidroside A phenolic glycoside extracted from 

the tuber roots of Rhodiola, 
Rhodiola and Rhodiola sachalinensis

Phenolic 

secondary 
metabolites

(1) It can reduce brain oxidative stress injury, 

inflammatory reaction and BBB damage caused by high 
altitude hypoxia. 

(2) abnormal energy metabolism can be corrected and 

balanced by increasing the levels of ATP, SDH, 
competition, Ca2+-Mg2+-ATPase and Na+-K+-ATPase; 

(3) the expression of tight junction proteins (ZO-1, 

claudin-5 and occluding) can be increased to maintain 
the integrity of BBB.

[61,97,123]

Puerarin Isolated from the traditional Chinese 
medicine Pueraria lobata

Isoflavone 
derivatives

By inhibiting the release of TNF-α and the 
phosphorylation of NF-κB and MAPK pathway, it can 

prevent the increase of AQP4 and protect the brain 

injury of rats induced by hypobaric hypoxia.

[65,66]

Betelnut 

polyphenols

The main components extracted 

from the mature seeds of plant betel 
nut.

Flavonoids Areca nut polyphenols could significantly improve blood 

oxygen saturation, reduce organ injury, decrease MDA 
content in tissue, increase SOD activity and GSH 

content, and significantly reduce serum inflammatory 

cytokines in rats with acute high altitude hypoxia. The 
brain damage caused by acute hypobaric hypoxia can be 

alleviated by enhancing antioxidant capacity and 

reducing inflammation.

[68]

GP-14 Effective components extracted 

from whole grass of gynostemma 
pentaphyllum, a Cucurbitaceae plant

Saponins (1) GP-14 pretreatment can inhibit the activation of 

microglia, accompanied by the decrease of M1 
phenotype and the increase of M2 phenotype, thus 

blocking the activation of NF-κB signal pathway and 

reducing inflammation; 
(2) The leakage of IgG decreased and the expression of 

tight junction protein increased, which maintained the 

integrity of BBB.

[124]

THC Curcumin is the main metabolite of 

curcumin. It can be hydrogenated 
from curcumin and naturally exists in 

curcuma and other Chinese herbal 

medicines.

Curcumin 

compounds

(1) THC has effective antioxidant and anti-inflammatory 

effects, and can significantly reduce the increase of brain 
water content (BWC), IL-1β and TNF-α induced by 

acute hypobaric hypoxia, and reduce pericellular edema 

induced by AHH; 
(2) THC can increase the activity of SOD and decrease 

the level of MDA. At the same time, it can significantly 

down-regulate the expression of VEGF, MMP-9 and NF- 
κB in vivo and in vitro, inhibit NF-κB/VEGF/MMP-9 

pathway, and effectively reduce brain edema induced by 

acute hypobaric hypoxia.

[100]

(Continued)
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Table 2 (Continued). 

Drugs Source Compound 
Property

Mechanism of Action Reference

EGCG Extraction from green tea Catechins, 
polyphenols

EGCG can inhibit NF-κB pathway, reduce the release of 
proinflammatory factors and microglia recruitment to 

blood vessels to prevent microglia activation, improve the 

increase of brain water content and aquaporin 4 expression 
induced by high altitude hypoxia, thus inhibit 

neuroinflammation and the increase of blood-brain barrier 

permeability to reduce brain edema.

[67]

CPhGs A compound consisting of 

phenylethanol, caffeic acid and sugar 
groups, widely found in forsythia, 

Magnolia, thistle and other medicinal 

plants

Water soluble 

phenolic 
compounds

CPhGs have effective antioxidant and anti-inflammatory 

activities, which can reverse the increase of oxidative 
stress and the decrease of antioxidant stress system 

under acute hypobaric hypoxia, improve the 

pathological changes of brain tissue in high altitude 
hypoxia environment, reduce brain water content, and 

carry out protective intervention on HACE.

[99]

PAP Active components extracted from 

the rhizome of Potentilla anserina, a 

perennial herb of Rosaceae.

Polysaccharide 

compound

PAP can reduce the levels of MDA and NO, increase the 

activity of SOD and GSH, block the activation of NF-κB and 

HIF-1α signaling pathways, inhibit the production of 
downstream pro-inflammatory cytokines (IL-1β, IL-6, TNF- 

α and VEGF), thus reduce brain water content and alleviate 

brain injury. It has the potential to treat and prevent HACE 
by inhibiting oxidative stress and inflammation.

[101]

Quercetin It can be extracted from Chinese 
herbs such as Dendrobium 

candidum, Calendula, Magnolia, and 

vegetables such as broccoli and 
onions.

Natural 
flavonoids

Quercetin has the ability to cross the blood-brain 
barrier, and its anti-inflammatory and antioxidant 

properties can effectively relieve high altitude brain 

edema. 
(1) inflammation can be reduced by weakening REDOX 

sensitive transcription factor (NF-κB) and eliminating 

free radicals; 
(2) it can increase the expression level of GSH, SOD, 

CAT, GPx and GR to enhance the level of antioxidation, 

inhibit lipid peroxidation and reduce oxidative stress.

[62]

GB Important active substances in the 

leaves of Ginkgo biloba

Natural 

substances, 
terpenoids

BWC content, MDA content, active caspase-3 and 

PARP expression decreased significantly, while SOD 
activity and GSH content increased significantly. 

Conclusion: ginkgo biloba extract has a protective effect 
on brain edema induced by high altitude in rats. The 

protective effect of GB may be related to its 

antioxidation and inhibition of caspase-dependent 
apoptosis pathway.

[60,121]

Ex-4 Isolated from the saliva secretion of 
the Gila monitor lizard Heloderma 

suspectum

Polypeptide 
(enteric insulin- 

stimulating mimic 

peptide of 39 
amino acids)

(1) Ex-4 preconditioning can effectively inhibit 
inflammation and oxidative stress and alleviate brain 

injury by reducing the expression of IL-6, TNF-α and 

NF-κB in HACE model rats; 
(2) Ex-4 can increase the expression of VEGF and 

promote angiogenesis to maintain the integrity of blood- 

brain barrier, reduce brain water content and improve 
HACE in HACE model rats.

[95]

(Continued)
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by decreasing the expression of IL-6, TNF-α and NF-κB, increasing the expression of VEGF to promoting angiogenesis. 
Ganglioside GM1 can down-regulate the levels of pro-inflammatory cytokines IL-1β, TNF-α and IL-6 in serum and brain 
tissue by activating PI3K/AKT-Nrf2 pathway, thus playing a therapeutic intervention role in HACE.93

HIF-1α protects mitochondria from hypoxia by regulating vascular metabolism, inflammatory response, apoptosis and 
cell metabolism. Therefore, the study of mitochondrial functional stability and HIF-1α activation may provide new ideas 
for the prevention and treatment of HACE. Studies have shown that cobalt chloride,126 taurine127 and salidroside97 can 
maintain high levels of heme oxygenase-1 and reduce ROS-induced lipid and protein oxidation through HIF-1α signaling 
pathway, thus protecting the integrity of mitochondrial structure and function and reducing oxidative stress damage. 
Mitochondrial kinetic dysfunction can directly promote the increase of mitochondrial ROS production. Studies have 
shown that mitochondrial division inhibitor-1 (MDIVI-1) has a protective effect on brain edema in mice induced by 
simulated high altitude exposure.125 On the one hand, MDIVI-1 reduces the secretion of IL-6 and TNF-α by inhibiting 
ROS/NF-κB signal pathway. On the other hand, MDIVI-1 may reduce the activation of astrocytes by reducing microglia 
release to damaged mitochondria, thus reducing the expression of AQP4 to relieve brain edema (Figure 4a).

Table 2 (Continued). 

Drugs Source Compound 
Property

Mechanism of Action Reference

GM1 A ganglioside in the mammalian 
brain, found chiefly in neurons.

Sphingolipid 
containing sialic 

acid

By inhibiting the levels of pro-inflammatory cytokines in 
serum and brain tissue, inhibiting the accumulation of 

ROS and MDA, increasing the levels of SOD and GSH 

and activating PI3K/AKT/Nrf2 signal pathway to inhibit 
oxidative stress and inflammation, the cerebral vascular 

leakage and brain edema of HACE model rats were 

reduced.

[93]

MDIVI-1 It can be prepared from 2- 

nitrobenzoyl chloride or 2-dichloro- 
5-methoxyaniline.

Quinazolinone 

derivatives

(1) MDIVI-1 significantly reduces DRP1 phosphorylation 

and mitochondrial breakage induced by hypoxia, 
promotes the rapid formation of interconnected 

mitochondria, reduces the release of damaged 

mitochondria by microglia to inhibit the activation of 
astrocytes, reduces ROS production, inhibits the 

activation of ROS/NF- κ B signal pathway, and relieves 

inflammation and oxidative stress; 
(2) By inhibiting the phosphorylation of dynamic 

associated protein-1, and reducing the expression of 

aquaporin 4, maintain the integrity of BBB.

[125]

THF It exists in a variety of fruits and 

vegetables, and can also be 
synthesized by using poplar chrysin.

Flavonoid 

compounds

(1) to inhibit oxidative stress and inflammation induced 

by hypoxia; 
(2) to correct the disorder of energy metabolism 

caused by the decrease of the levels of lactic acid, lactic 

acid, lactate dehydrogenase and pyruvate kinase, and the 
increase of ATP level and ATP activity; 

(3) it can reduce the expression of matrix 

metalloproteinase-9, aquaporin-4, hypoxia-inducible 
factor-1 α and vascular endothelial growth factor, so as 

to reduce the destruction of BBB and brain edema, and 

improve the cognitive impairment induced by HACE.

[11]

Abbreviations: SDH, succinate dehydrogenase; BBB, blood-brain barrier; TNF-α, tumor necrosis factor-α; AQP4, aquaporin-4; MDA, malondialdehyde; ROS, reactive 
oxygen species; GPX, glutathione peroxidase; SOD, superoxide dismutase; GSH, glutathione; GR, glutathione reductase; LDH, lactate dehydrogenase; IL-1β, interleukin-1β; 
IL-6, interleukin-6; VEGF, vascular endothelial growth factor; CAT, catalase; Sal, salidroside; GP-14, gynostemma pentaphyllum saponin; THC, tetrahydrocurcumin; EGCG, 
epigallocatechingallate; CPhGs, phenylethanol glycoside; PAP, potentilla anserine L. polysaccharide; GB, ginkgolide B; EX-4, exendin-4; GM1, ganglioside GM1; MDIVI-1, 
mitochondrial division inhibitor-1; THF, 5,6,7,8-tetrahydroxyflavone.
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Studies128,129 confirmed that the up-regulated expression of AQP4 in brain tissue of HACE patients was positively 
correlated with the damage degree of BBB. Therefore, inhibiting the overactivation of microglia and down-regulating the 
expression level of AQP4 may be a new way to prevent and treat HACE. Current studies have found that puerarin,65 

catechin67 and gynostemma pentaphyllum saponins (GP-14)124 (Figure 4b) can inhibit the activation of microglia to 
astrocytes by inactivating NF-κB inflammatory signal pathway. Therefore, it can realize the protection effects on HACE 
by blocking the effect of AQP4 on BBB permeability.

Conclusions and Future Directions
REDOX homeostasis is a delicate balance between the oxidation and reduction systems. At high altitudes, this balance is 
disrupted, leading to oxidative stress and inflammation, and mediating the onset of HACE. We reviewed the changes in 
REDOX homeostasis during HACE pathogenesis, in which the activation and expression levels of Nrf2, HIF-1α and 
AQP4 are key factors. A number of potential therapeutic agents have been explored for these targets. However, their 
mechanisms and efficacy remain unclear due to the universality of the REDOX system and complexity of HACE. 
Therefore, it is necessary to further explore these signaling molecules and pathways to guide the targeted regulation of 
complex underlying pathophysiology and thus improving the therapeutic level of HACE.
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of reactive astrocytes and the expression of AQP4, and finally alleviates inflammatory reaction and oxidative stress damage, and protects the integrity of BBB. (b) The 
protective effect of GP-14 on HACE and its mechanism. GP-14 can reduce the level of inflammation by inhibiting the expression of pro-inflammatory cytokines regulated by 
IκB-α and p65 phosphorylation. It also regulates the polarization of microglia M1/M2 by inhibiting the polarization of microglia to M1 phenotype and promoting microglia 
polarization to anti-inflammatory M2 phenotype; At the same time, it also reduces IgG leakage and increases the expression level of tight junction scaffold protein ZO-1, thus 
protecting the integrity of BBB and reducing the occurrence of HACE.
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