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Abstract: Soft tissue sarcoma (STS) is a highly heterogeneous malignant tumor derived from mesenchymal tissue. Advanced STS 
has a poor response to the current anti-cancer therapeutic options, with a median overall survival of less than two years. Thus, new and 
more effective treatment methods for STS are needed. Increasing evidence has shown that immunotherapy and radiotherapy have 
synergistic therapeutic effects against malignant tumors. In addition, immunoradiotherapy has yielded positive results in clinical trials 
for various cancers. In this review, we discuss the synergistic mechanism of immunoradiotherapy in cancer treatment and the 
application of this combined regimen for the treatment of several cancers. In addition, we summarize the existing evidence on the 
use of immunoradiotherapy for the treatment of STS and the relevant clinical trials that are currently ongoing. Furthermore, we 
identify challenges in the use of immunoradiotherapy for the treatment of sarcomas and propose methods and precautions for 
overcoming these challenges. Lastly, we propose clinical research strategies and future research directions to help in the research 
and treatment of STS. 
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Introduction
Soft tissue sarcoma (STS) is a highly heterogeneous (more than 70 subtypes) malignant tumor derived from mesenchymal 
tissue.1–3 Although the incidence of STS is low, hundreds of thousands of advanced STS cases are recorded worldwide 
each year. Chemotherapy is the most effective treatment for advanced STS, with the response rate of only 15–20%.4,5 This 
poor efficacy resulting in a median overall survival of less than two years.6–8 Therefore, new therapeutic options are needed 
for the effective treatment of advanced STS.

Immunotherapies are treatments that kill tumor cells by activating or promoting the body’s anti-tumor immunity.9,10 At 
present, the widely used immunotherapies in clinical practice include programmed death receptor-1 (PD-1)/programmed 
death protein ligand-1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitors, and the new types of 
immunotherapy include adoptive cellular therapies and cancer vaccines.11,12 PD-1/L1 and CTLA-4 inhibitors have 
promising efficacy (with a response rate of 10–28%) in the treatment of a few pathological subtypes of STS (undiffer-
entiated pleomorphic sarcoma, dedifferentiated liposarcoma, alveolar soft part sarcoma and angiosarcoma), and their 
efficacy in the treatment of other subtypes of STS are limited.11,13–15 Among approaches of adaptive cellular therapies, 
only engineered T-cell receptor (TCR) therapy has achieved remarkable efficacy in synovial sarcoma, with a response rate 
of over 50%.16,17 The efficacy of adoptive cellular therapies in other subtypes of STS are limited.11 Similarly, cancer 
vaccines only have promising efficacy in synovial sarcoma and myxoid/round cell liposarcoma.18 Overall, the efficacy of 
immunotherapy alone in STS is disappointing. Increasingly combined therapies have been used to improve the efficacy of 
immunotherapy for malignant tumors and achieve synergistic sensitization.19–21 Among these combined treatment strate-
gies, the combination of immunotherapy and radiotherapy (immunoradiotherapy) has been extensively studied and is 
expected to have significantly improved treatment effects on malignant tumors, including STS.22–26
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In this review, we summarize the synergistic mechanism of immunoradiotherapy for the treatment of various 
malignant tumors, the clinical research on and progress in the application of immunoradiotherapy for the treatment of 
various malignant tumors, the existing evidence on the use of immunoradiotherapy for the treatment of STS, and key 
ongoing clinical trials. In addition, we propose clinical research strategies and future research directions to help in the 
research and treatment of STS.

Process of Anti-Tumor Immunity
Tumor immune response is a dynamic process of interaction between anti-tumor and pro-tumor immune responses. Anti- 
tumor immune cells include natural killer (NK) cells, dendritic (DC) cells, T cells (including cytotoxic CD8+ T cells and 
effector CD4+ T cells), and M1 phenotype tumor-associated macrophages (TAMs).27,28 Pro-tumor immune cells mainly 
include myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells, TAMs (M2 phenotype), cancer-associated 
fibroblasts (CAFs), and group 2 innate lymphoid cells.28–30 Non-cellular factors (cytokines, chemokines, metabolites) 
related to tumor immunity can also be divided into anti-tumor and pro-tumor factors.28,31

The anti-tumor immune response, which mainly occurs in the tumor microenvironment (TME), is basically the 
recognition and killing of tumor cells.32–34 Tumor cells that produce various immune antigens are first recognized by NK 
and DC cells. Activated NK cells not only initiate cytotoxic reactions to directly kill tumor cells, but also secrete 
a variety of anti-cancer cytokines to recruit, stimulate, and regulate a variety of anti-tumor immune cells to further 
activate the anti-tumor immune response.35,36 After DC cells are activated by tumor antigens or NK cells, they mainly 
activate CD8+ T cells to induce anti-tumor immune responses of specific cytotoxic T lymphocytes (CTL], enhance the 
activities of NK cells and CD4+ T cells, and improve the anti-tumor immune response through various mechanisms.37,38 

After CD4+ T cells are activated by the activated DC cells, they can directly recognize and kill some tumor cells; recruit 
and activate more NK cells, DC cells, and CD8+ T cells; and enhance the ability of CTL to kill tumor cells.39 Finally, 
CD8+ T cells are activated into CTL, becoming the main force that kills tumor cells.40,41 This anti-tumor immune 
response process is negatively regulated by MDSCs, Treg cells, TAMs (M2 phenotype), and CAFs.29,30,42

Effects of Radiotherapy on Anti-Tumor Immunity
Radiotherapy is a local treatment for tumor lesions. The effect of radiotherapy on tumor immunity is mainly limited to 
the local TME of target tumor lesions.43,44 In addition, the promotion and inhibition of the effects of radiotherapy on anti- 
tumor immune responses are entire processes and dynamic changes that occur in the TME of target lesions (Figure 1).45 

Radiotherapy may promote or inhibit anti-tumor immune responses depending on the total radiation dose and fractiona-
tions administered.25,46

There are several mechanisms underlying the promotion of anti-tumor immune response using radiotherapy. First, 
radiotherapy leads to a decrease in the number of tumor cells. Data from studies of many cancers suggest that a smaller 
tumor burden is associated with better treatment outcomes of immunotherapy.47 The decrease in the tumor volume and 
the number of tumor cells caused by radiotherapy can reduce the pressure on the anti-tumor immune system and reduce 
the chances of tumor cell mutation and immune escape. Second, radiotherapy leads to stress and apoptosis (immunogenic 
death) of some tumor cells, resulting in the deposition of a large number of different types of tumor immune antigens on 
the tumor cell surface and in the TME. These antigens promote the activation and expansion of NK and DC cells, 
ultimately leading to the production of a large number of activated CD8+T cells for the achievement of an anti-tumor 
immune response.24,48–50 Third, radiotherapy enhances the expression and secretion of anti-tumor immune-related 
cytokines, chemokines, and growth factors, thereby activating and enhancing anti-tumor immune response.22,25,51 

Furthermore, radiotherapy can induce the normalization of blood vessels in tumor tissues and increase the permeability 
of local blood vessels to anti-tumor immune cells, thus increasing the infiltration density of immune cells in the 
TME.25,45 Other mechanisms behind the effect of radiotherapy on anti-tumor immune response have not been fully 
explored. For example, it has been reported that radiotherapy can reduce the abundance of tumor-induced erythroid 
progenitor cells in a manner dependent on interferon and CD8+ T cells, thereby inhibiting tumor growth.52 In addition, 
radiation-induced exosomes can stimulate or inhibit anti-tumor immune responses through a series of mechanisms, such 
as metastasis of tumor antigens.25
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In some cases (usually at large radiation doses), radiotherapy will inhibit the anti-tumor immune response in the TME 
of the irradiated lesion (Figure 1). The mechanisms underlying this effect are as follows: 1) damage to anti-tumor 
immune cells in the irradiated TME, resulting in a reduction of the number of cells and impairment of their 
functions;22,25 2) increase in the numbers and proportions of immunosuppressive cells, such as MDSCs, Treg cells, 
TAMs (M2 phenotype), CAFs, and tumor-associated neutrophils (N2 phenotype) in the irradiated local TME;25,53 3) 
induction of high expression of anti-tumor immunosuppressive cytokines and chemokines in the local TME;22,25,54 and 4) 
activation of the immunosuppressive signaling pathway (including the PD-1/L1 pathway), which inhibits the anti-tumor 
activity of CD8+ T cells.55,56

Figure 1 Mechanisms of radiotherapy and immunotherapy effect on the anti-tumor immune response system. The promotional and inhibitory effects of radiotherapy on the 
anti-tumor immune response system are full processes, with dynamic changes occurring in the irradiated tumor lesion. Radiotherapy may promote or inhibit anti-tumor 
immune responses depending on the total radiation dose and fractionations administered. The activated natural killer cells (NKs) and dendritic (DCs), anti-tumor related 
cytokines and tumor-derived exosomes produced by irradiated tumor lesion can directly or through tumor drainage lymph nodes (TDLNs) affect the non-irradiated tumor 
lesions, and finally induce the abscopal effect. TDLNs play an important role in anti-tumor immune response. The activated NKs and DCs, anti-tumor related cytokines and 
tumor-derived exosomes produced by irradiated tumor lesion can stimulate the production of CD8+ T cells and anti-tumor cytokines in TDLNs, thereby generating anti- 
tumor immunity against tumor lesions throughout the body. The addition of immunotherapy can activate the anti-tumor immune response of irradiated tumor lesions, 
TDLNs, and non-irradiated tumor lesions throughout the body.
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In addition to its influence on the anti-tumor immune response in the local TME of the irradiated lesion, radiotherapy 
can also induce the abscopal effect (Figure 1). The abscopal effect is a phenomenon seen when irradiation at a distinct 
anatomic site induces a systemic antitumor response throughout the body.57,58 The abscopal effect describes the 
shrinkage of unirradiated tumors that occurs concurrently with irradiated tumors in patients with multiple tumors. The 
basic principle of the abscopal effect is that the activated NK cells, DC cells, and CTL, as well as related non-cellular 
factors in the local TME of the target lesion, circularly move to the tumor tissue at the non-irradiated site to produce an 
anti-tumor effect.59,60 Therefore, the main agents that drive the occurrence of the abscopal effect include CTL, NK cells, 
and cytokines that promote anti-tumor immunity activated in irradiated lesions.61,62 Traditionally, these drivers are 
believed to migrate through the blood system to distant non-irradiated lesions. Recent research shows that tumor-draining 
lymph nodes (TDLN) and tumor-derived exosomes play key roles in the abscopal effect. TDLN are essential for effective 
anti-tumor immunity induced by radiotherapy. TDLN promote effective anti-tumor immune response by inducing the 
infiltration of CD8+T cells and increase in M1 phenotype TAMs. The loss of bilateral TDLN weakens the enrichment and 
cytotoxicity of CD8+T cells, leading to the weakening of the anti-tumor response induced by radiotherapy.63 Another 
mechanism underlying the abscopal effect is the immunomodulatory effect of tumor-derived exosomes. Tumor-derived 
exosomes contain genetic material and immunosuppressive molecules. These exosomes may carry these signals to distant 
locations and interact with other immune cells, leading to abscopal effects.22,25 Theoretically, when a target lesion is 
irradiated, the cytokines and immune cells in the whole body, including distant non-irradiated lesions, will also change; 
thus, the incidence of abscopal effects can reach 100%.22 However, in clinical practice, the incidence of abscopal effects 
with clinical efficacy is low. This shows that the majority of abscopal effects are subclinical.64–66 Thus, the “radscopal” 
technique was proposed to improve the abscopal effect of radiotherapy. The radscopal technique refers to the enhance-
ment of the anti-tumor effect on the whole body through the administration of low-dose radiotherapy for treatment of 
multiple additional lesions based on conventional radiotherapy for target lesions.67 Conventional radiotherapy may 
produce powerful immunosuppressive factors, whereas low-dose radiotherapy can reprogram and reactivate the TME, 
thus increasing the incidence of the abscopal effect.22,67

In summary, the effect of radiotherapy on the TME is two-sided; that is, it can promote or inhibit anti-tumor immune 
responses. The dose and fractionation of radiotherapy and the pathological classification of the tumor are key factors in 
the promotion or suppression of anti-tumor immunity.

Synergistic Mechanisms of Immunoradiotherapy
Immunotherapy can produce a series of synergistic effects when administered in combination with radiotherapy. These 
synergistic effects occur in irradiated and non-irradiated tumor lesions (Figure 1). The synergistic mechanisms of 
immunoradiotherapy are as follows: 1) restoration of the anti-tumor activity of activated CD8+ T cell;68 2) promotion 
of the production of more anti-tumor immune factors and T cells;69 and 3) reduction in the numbers and functions of Treg 
cells and other immunosuppressive cells and factors and increase in the ratio of CD8+ T cells to Treg cells, ultimately 
leading to the extension of the killing ability to tumor cells.68,70,71

In summary, recent preclinical studies have demonstrated that immunoradiotherapy has great synergistic potential. 
The generation of this synergistic effect depends on the radiotherapy dose and fraction mode, as well as the timing and 
sequence of immunotherapy administration.72,73 However, the treatment responses of different pathological types of 
tumors vary significantly.68

Efficacy of Immunoradiotherapy for Different Cancers
There are several potential synergistic mechanisms of immunoradiotherapy. However, these mechanisms are meaningful 
only when significant efficacy is achieved in clinical practice. Some representative clinical trials on the use of 
immunoradiotherapy for the treatment of some cancers have been completed (Table 1). Some of these trials achieved 
promising efficacy.

The results of a Phase 1 clinical trial reported in 2018 showed that multisite stereotactic body radiation therapy 
(SBRT) (30–50 Gy in three to five fractions to 2–4 lesions), followed by pembrolizumab, is well tolerated and has 
acceptable toxicity in patients with advanced solid tumors.78 To our knowledge, this was the first report of multisite 
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Table 1 Representative Clinical Trials on Immunoradiotherapy for the Treatment of Different Cancers

Positive/ 
Negative 
Results

Year of 
Publication

Type of 
Cancer

Trial 
Phase

Treatment Clinical Outcomes References

Positive 2022 Oligometastatic 

ccRCC

I/ II SABR (single fraction of 20 Gy, or 

ten fractions of 3 Gy) to all 
metastatic sites and 

pembrolizumab.

SABR and short-course 

pembrolizumab for 
oligometastatic ccRCC was well 

tolerated, with excellent local 

control. Durable responses and 
encouraging PFS were observed, 

warranting further investigation.

[74]

2022 Metastatic 
CRPC

II SABR (single fraction of 20 Gy to 
one or two lesions) + avelumab.

Avelumab with SABR demonstrated 
encouraging activity and acceptable 

toxicity in treatment-refractory 

metastatic CRPC.

[75]

2021 Immunotherapy- 

naive metastatic 

NSCLC

II Pembrolizumab alone or with 

radiotherapy (24 Gy in three 

fractions or 50 Gy in four 
fractions or 45 Gy in 15 fractions).

Adding radiotherapy to 

pembrolizumab significantly 

increased responses and 
outcomes in patients with 

metastatic NSCLC.

[76]

2021 Metastatic MSS 

CRC and PDAC

II Nivolumab + ipilimumab and 

radiotherapy (24 Gy in three 

fractions to one lesion).

This study provides proof of the 

concept of combining radiation 

with immune checkpoint 
blockade in immunotherapy- 

resistant cancers.

[77]

2018 Advanced solid 
tumors

I SBRT to 2–4 lesions at doses that 
ranged from 30 to 50 Gy in three 

to five fractions + pembrolizumab.

Multisite SBRT followed by 
pembrolizumab was well 

tolerated with acceptable toxicity. 

Additional studies on the clinical 
benefit and predictive biomarkers 

of combined multisite SBRT and 

PD-1–directed immunotherapy 
are warranted.

[78]

Negative 2022 Metastatic 

NSCLC 
refractory to 

previous PD(L)- 

1 therapy

II Durvalumab + tremelimumab alone 

or with low-dose (0.5 Gy delivered 
twice per day, repeated for 2 days 

during each of the first four cycles 

of therapy) or hypofractionated 
radiotherapy (a total of 24 Gy 

delivered in three 8-Gy fractions 

during the first cycle only).

Radiotherapy did not increase 

response to combined PD-L1 
plus CTLA-4 inhibition in patients 

with NSCLC resistant to PD(L)-1 

therapy.

[79]

2022 Pretreated 

mRCC

II SBRT to a lesion at a dose of 10 

Gy in three fractions and 

nivolumab.

No sufficient evidence that 

suggests that nivolumab in 

combination with SBRT provides 
an added benefit in the treatment 

of pretreated mRCC.

[80]

2022 Advanced 
Merkel cell 

carcinoma

II Nivolumab + ipilimumab alone or 
with SBRT (24 Gy in three fractions 

to at least one tumor site).

Addition of SBRT did not improve 
the efficacy of combined 

nivolumab and ipilimumab.

[81]

2022 Refractory 
metastatic 

pancreatic 

cancer

II SBRT of 15 Gy with nivolumab or 
nivolumab/ipilimumab.

The contribution from SBRT is 
unknown.

[82]

(Continued)
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SBRT combined with immunotherapy. The results of a new clinical trial showed that multisite stereotactic ablative body 
radiosurgery (SABR) (single fraction of 20 Gy or 10 fractions of 3 Gy to all metastatic sites) and short-course 
pembrolizumab for the treatment of oligometastatic clear cell renal cell carcinoma is well tolerated and has excellent 
local control. These findings support the synergistic anti-tumor activity of immunoradiotherapy.74 Several other repre-
sentative clinical trials on the safety and efficacy of immunoradiotherapy for the treatment of multiple malignancies 
involved the use of PD-1 inhibitors combined with single-lesion radiation.75–77,84 Although the synergistic anti-tumor 
effect of immunoradiotherapy was believed to have been achieved in these trials, no significant abscopal effect was 
observed in these studies.

Several recent key clinical trials on immunoradiotherapy have yielded negative results (Table 1). In these clinical 
trials, immunotherapy was used in combination with various forms of radiotherapy for the treatment of different cancers. 
However, no abscopal effect or evidence of synergy was observed.79–83 There are several possible reasons for these 
findings. The mode of radiotherapy, number of target lesions irradiated, dose and fraction of radiotherapy, and timing of 
immunotherapy administration may have important effects on the results. However, several clinical trials on the use of 
different radiotherapy modalities in combination with immunotherapy for the treatment of different cancers are currently 
ongoing.22

There are two strategies to achieve synergy between radiotherapy and immunotherapy. The first strategy is to achieve 
an abscopal effect by irradiating a lesion using radiotherapy while simultaneously administering immunotherapy. The 
other strategy is to achieve synergistic effects by administering low-dose radiation to as many lesions as possible while 
simultaneously administering immunotherapy. However, regarding the irradiation of a single tumor lesion, no truly 
significant abscopal effect has been achieved using immunoradiotherapy in completed clinical trials with large sample 
sizes (Table 1). Consequently, the achievement of the abscopal effect using immunoradiotherapy remains elusive. It is 
relatively feasible to achieve synergistic effects by delivering low doses of radiation to as many lesions as possible.

Current Research Evidence on Sarcomas
Currently, radiotherapy is only recommended for preoperative or postoperative treatment of locally resectable STS to 
reduce the rate of recurrence.85–88 Immunotherapy is marginalized and is only considered to have some efficacy against 
a few sarcoma subtypes.87,89,90 This, together with the rarity of STS, ultimately leads to a scarcity of studies on the effect 
of immunoradiotherapy on STS compared to other cancers. However, some preclinical studies have preliminarily 
clarified the effect of radiotherapy on the TME of STS. Radiotherapy first affects TME by damaging cancer cells via 
direct breakage of DNA and the generation of reactive oxygen species.22 The immunogenic cell death of the damaged 
cancer cells affects the behavior of immune cells.25,72 Cellular response driven by DNA damage also changes the 
immunogenicity of these irradiated cancer cells.54 Radiotherapy can also effectively increase the quantity and density of 
activated CD8+ T cells and PD-L1+ macrophages in sarcomas.91–94 The change in the TME of sarcomas induced by 

Table 1 (Continued). 

Positive/ 
Negative 
Results

Year of 
Publication

Type of 
Cancer

Trial 
Phase

Treatment Clinical Outcomes References

2021 Metastatic or 

recurrent 

HNSCC

II Nivolumab or nivolumab + SBRT 

(9 Gy in three fractions) to one 

lesion.

The authors found no 

improvement in response and no 

evidence of an abscopal effect 
with the addition of SBRT to 

nivolumab in unselected patients 

with metastatic HNSCC.

[83]

Abbreviations: ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; CRPC, castration-resistant prostate cancer; CTLA-4, cytotoxic T-lymphocyte-associated 
protein 4; HNSCC, head and neck squamous cell carcinoma; mRCC, metastatic renal cell carcinoma; MSS, microsatellite stable; NSCLC, non-small-cell lung cancer; PDAC, 
pancreatic ductal adenocarcinoma; PD(L)-1, programmed death receptor-1/programmed death protein ligand-1; PFS, progression-free survival; SABR, stereotactic ablative 
body radiosurgery; SBRT, stereotactic body radiotherapy.
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preoperative radiotherapy is related to the incidence of postoperative metastasis.92 Although radiotherapy can induce an 
increase in the number of tumor-infiltrating lymphocytes in sarcoma tissues, it also upregulates the expression of various 
immunosuppressive factors, including PD-L1.91,92,94,95 PD-1 blockade and radiotherapy successfully repolarize myeloid 
cells in sarcomas, transforming the immunosuppressive TME to pro-anti-tumor immune response.93 In addition, 
immunoradiotherapy can effectively increase the number of B cells in TME,94,96 and B cells are associated with survival 
and therapy response in STSs.97–99

Some clinical reports have indicated the existence of an abscopal effect related to radiotherapy in different 
sarcomas.100,101 Immunoradiotherapy seems to achieve the abscopal effect more frequently in sarcomas that that of 
radiotherapy.102–104 In a clinical case series, three patients with undifferentiated pleomorphic sarcoma, one with intimal 
sarcoma and one with chondroblastic sarcoma, concurrently received SBRT and pembrolizumab at ten sites of metastatic 
lesions. The expected high rates of local control in tumors treated using SBRT were observed. Two patients demonstrated 
either an enhanced local tumor regression or a possible abscopal effect.105 In the abovementioned clinical reports, most 
of the patients with pathological subtypes of sarcoma, including pleomorphic sarcoma, clear cell sarcoma, unclassified 
round cell sarcoma, and alveolar soft part sarcoma, were highly sensitive to immunotherapy or radiotherapy.106,107 This 
suggests that the population that most likely to benefit from immunoradiotherapy are those with subtypes of sarcomas 
that are sensitive to immunotherapy and/or radiotherapy, such as those with UPS or synovial sarcoma. Because UPS is 
a subtype of sarcoma that is sensitive to both radiotherapy and PD-1 inhibitor therapy;11,12 Synovial sarcoma is a subtype 
of sarcoma that is sensitive to both radiotherapy and adaptive cellular therapy or cancer vaccine.17,18,108–110

The authors of these clinical case reports claim that radiotherapy has an abscopal effect on sarcomas. However, the 
results of research on other malignant tumors show that it is unrealistic to attempt to produce an abscopal effect by 
irradiating a single lesion. It is relatively feasible to achieve synergistic effects with immunoradiotherapy by the 
administration of low-dose radiation to as many lesions as possible. However, there is no research evidence or report 
on achieving the synergistic therapeutic effects of immunoradiotherapy by irradiating multiple STS lesions.

The use of predictive biomarker could be extremely helpful in stratifying patients for their risk and for their 
propensity to effectively responds to immunotherapy, thereby increasing therapeutic options for selected patients and 
reducing unnecessary side effects. A series of studies have demonstrated that higher tumor infiltrating immune cell 
infiltrates, sarcoma immune class E, tertiary lymphoid structure, neutrophil-to-lymphocyte ratio, immune-related adverse 
event are predictive biomarkers of survival in patients with STS who received immunotherapy.111–113 However, there are 
currently no reports of predictive biomarkers related to the immunoradiotherapy of STSs.

Ongoing Trials on Immunoradiotherapy for Sarcomas
Several clinical trials on the use of immunoradiotherapy for the treatment of STSs have been registered at clinicaltrials. 
gov and are currently ongoing (Table 2). Most of these trials are focused on the perioperative management of resectable 
STSs; only one study is focused on advanced STSs. The immunotherapeutic drugs used in these clinical trials include 
atezolizumab, durvalumab, ipilimumab, nivolumab, pembrolizumab, and tremelimumab. Conventional high-dose radio-
therapy is the primary irradiation method used in these studies. The completion of these clinical trials will further validate 
the synergistic efficacy of different immunotherapeutic agents combined with radiotherapy for the treatment of sarcomas. 
This is a necessary step towards improving treatment outcomes for patients with STS. However, the research evidence 
obtained so far indicate that the designs of these clinical trials have obvious limitations. The major problems and 
drawbacks of these trials are as follows: 1) no specific sarcoma subtype was selected; 2) no solid theoretical and 
preclinical basis for the trial; 3) the effects of irradiation dose and fraction, as well as the number of irradiated lesions, 
were not considered; 4) evaluation was limited to perioperative treatment and did not include the verification of the 
abscopal effect in advanced disease; 5) the influence of the time of administration of immunotherapy agents was not 
considered; and 5) the influence of adjuvant drugs was not considered.

Discussion
In this review, we discuss the synergistic mechanisms of immunoradiotherapy for the treatment of cancers. To our 
knowledge, this is the first review of the possible synergistic mechanism of immunoradiotherapy for cancer treatment, the 
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effectiveness of the combined regimen for the treatment of several cancers, the evidence of efficacy of immunora-
diotherapy for the treatment of STSs, and key ongoing clinical trials. Immunoradiotherapy has achieved positive results 
in the treatment of a variety of cancers. This may be an important breakthrough in the treatment of several cancers. 
However, application of immunoradiotherapy for STS is still in the preliminary validation stage. Existing research 
evidence indicate that immunoradiotherapy has a promising effect on some subtypes of STS, especially those subtypes 
sensitive to immunotherapy and/or radiotherapy. Such as UPS or synovial sarcoma. However, there is limited relevant 
evidence or ongoing clinical trials on this.

To improve the therapeutic effects on STS, the study of immunoradiotherapy for STS needs to be more in-depth and 
detailed (Figure 2). Several problems need to be addressed in future clinical studies. First, the sarcoma subtypes that are 
more responsive to combination therapy should be determined. The radiosensitivity of tumor cells, percentage of 
interstitial cells, structure of angiogenesis, and mode of metastasis for each type of sarcoma vary. This leads to 
a considerable difference in the responses of sarcoma subtypes to immunotherapy and radiotherapy. Therefore, it is 
necessary to study the therapeutic response of each sarcoma subtype to immunoradiotherapy.46 Second, the number of 
irradiated lesions is a key factor in immunoradiotherapy for STS. As previously mentioned, there are two irradiation 
methods for possibly achieving synergy between radiotherapy and immunotherapy. One strategy is to irradiate one lesion 
hoping to produce abscopal effects to shrink other non-irradiated lesions. Another strategy is to irradiate as many lesions 
as possible. According to the results of the studies discussed in this review, the latter approach is more feasible. Third, 
according to results of existing research, different radiation doses or fractions lead to completely different or even reverse 
immune responses. Therefore, it is necessary to study the effects of different total doses and fractions of radiation on 
immunoradiotherapy for STS. Fourth, attention should be paid to the timing of the administration of immunotherapy 
drugs, which has a significant impact on the effect of the therapy.73,114 If the timing of administration is inappropriate, the 
number of anti-tumor immune cells activated by the immunotherapeutic agent may be reduced by radiotherapy or the 
anti-tumor immune response activated by radiotherapy may not be synchronized with immunotherapy, resulting in poor 
anti-tumor efficacy. Fifth, a combination of additional treatments could be considered. As previously mentioned, 

Table 2 Ongoing Clinical Trials on Immunoradiotherapy for Soft Tissue Sarcomas

Estimated Study 
Completion Date

NCT 
Number

Trial 
Phase

Indication Intervention Number 
of Patients

2027 NCT03548428 II Oligometastatic STS SBRT (3 to 5 fractions depending 

on tumor size) + atezolizumab

103

2025 NCT03463408 I Resectable STS Standard of care radiation + 
nivolumab and ipilimumab

14

2025 NCT03092323 II High-risk STS Conventional radiotherapy (50 Gy 

in 25 fractions) + pembrolizumab

126

2025 NCT03915678 II Advanced STS Radiotherapy (27–60 Gy in 3–5 

fractions) + atezolizumab and 

BDB001

247

2025 NCT04420975 I Resectable STS Radiotherapy (5 fractions) + 

nivolumab and BO-112

20

2023 NCT03474094 II Operable localized STS Conventional radiotherapy (50 Gy 

in 25 fractions) + atezolizumab

69

2023 NCT03338959 II High-risk STS Radiotherapy + pembrolizumab 26
2022 NCT03116529 II High-risk STS Conventional radiotherapy (50 Gy 

in 25 fractions) + durvalumab and 

tremelimumab

35

2022 NCT03307616 II Recurrent or resectable undifferentiated 

pleomorphic sarcoma or 

dedifferentiated liposarcoma

Radiotherapy (5 fractions) + 

nivolumab and ipilimumab

32

Abbreviations: NCT number, registration number at https://clinicaltrials.gov; SBRT, stereotactic body radiotherapy; STS, soft tissue sarcoma.

https://doi.org/10.2147/OTT.S410693                                                                                                                                                                                                                                  

DovePress                                                                                                                                                            

OncoTargets and Therapy 2023:16 392

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://clinicaltrials.gov
https://www.dovepress.com
https://www.dovepress.com


radiotherapy results in a 100% abscopal effect.22 However, this effect is so weak that it rarely occurs in clinical practice. 
Therefore, immunoradiotherapy combined with other systemic treatments, such as chemotherapy, is worthy of explora-
tion. Sixth, attention should be paid to the influence of concomitant use of medications. Many drugs have been 
preliminarily proven to inhibit the efficacy of immunotherapy.115 Therefore, the influence of concomitant use of drugs 
should be considered in detail when designing clinical trials on immunoradiotherapy for STS. Finally, therapeutic 
markers require further study.

In conclusion, immunoradiotherapy has shown synergistic effects in the treatment of some cancers (such as renal cell 
carcinoma, prostate cancer, colorectal cancer, pancreatic adenocarcinoma and lung cancer). However, there is still no 
overwhelmingly positive evidence of these effects in completed clinical trials. In addition, studies on immunoradiother-
apy for the treatment of sarcomas are in the preliminary stages, and immunoradiotherapy may benefit patients with 
subtypes of sarcomas that are sensitive to immunotherapy and/or radiotherapy. Although there are problems that still 
need to be studied, there is no denying that immunoradiotherapy is a promising treatment for STSs.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, study design, 
execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically 
reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article 
has been submitted; and agree to be accountable for all aspects of the work.

Figure 2 Problems need to be addressed in future mechanisms and clinical studies on immunoradiotherapy in soft-tissue sarcomas.
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