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Abstract: With the improvement of the average life expectancy and increasing incidence of obesity, the burden of liver disease is 
increasing. Liver disease is a serious threat to human health. Currently, liver transplantation is the only effective treatment for end- 
stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stem cells (MSCs) can be used as 
an alternative therapy for liver disease, especially liver cirrhosis, liver failure, and liver transplantation complications. However, MSCs 
may have potential tumorigenic effects. Exosomes derived from MSCs (MSC-Exos), as the important intercellular communication 
mode of MSCs, contain various proteins, nucleic acids, and DNA. MSC-Exos can be used as a delivery system to treat liver diseases 
through immune regulation, apoptosis inhibition, regeneration promotion, drug delivery, and other ways. Good histocompatibility and 
material exchangeability make MSC-Exos a new treatment for liver diseases. This review summarizes the latest research on MSC- 
Exos as delivery vehicles in different liver diseases, including liver injury, liver failure, liver fibrosis, hepatocellular carcinoma (HCC), 
and ischemia and reperfusion injury. In addition, we discuss the advantages, disadvantages, and clinical application prospects of MSC- 
Exos-based delivery vectors in the treatment of liver diseases. 
Keywords: exosomes, mesenchymal stem cells, liver disease, nanocarriers

Introduction
The WHO identified that the world’s overweight and obesity rates have nearly tripled since 1975. By estimation, more 
than 1.9 billion (39%) adults (≥18 years) are overweight and 650 million (13%) individuals are obese.1 With the 
improvement of the average life expectancy and increasing incidence of obesity, the burden of various liver diseases, 
including non-alcoholic fatty cell liver disease (NAFLD), liver cirrhosis, and liver failure, is increasing.2 These high rates 
of morbidity pose a great threat to human health.3 Chronic liver disease and cirrhosis contribute to 2 million deaths 
per year globally, with a high burden of disability and treatment costs.4,5 The prevalence of alcoholic liver disease and 
NAFLD in the general adult population is approximately 7.4% and 20–33%, respectively. Hepatitis B virus (HBV) 
infection affects at least 2 billion people worldwide, and without radical treatment, all forms of chronic hepatitis 
eventually progress to end-stage disease. Hepatocellular carcinoma (HCC) was reported to be the leading cause of 
cancer death worldwide.6 Liver cancer is the fourth leading cause of cancer-related death worldwide and the second most 
lethal cancer with a 5-year survival rate of 18%.7,8 In 2030, the WHO estimates that more than 1 million patients will die 

International Journal of Nanomedicine 2023:18 2873–2890                                               2873
© 2023 Lu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine                                                 Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 15 January 2023
Accepted: 10 May 2023
Published: 31 May 2023

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


from liver cancer.8 The liver disease accounts for about 2 million deaths worldwide every year,9 which poses a great 
threat to human health. Liver transplantation is the only effective treatment for many advanced liver diseases when other 
medical therapies have failed.10–12 However, we have to admit that the shortage of liver donors, high cost, postoperative 
complications, and other issues restrict the popularization of liver transplantation. Therefore, we hope to find effective 
alternative measures to cope with the occurrence and development of liver diseases.

MSC-Exos can inhibit the occurrence and development of liver injury, liver fibrosis, liver cancer, and other liver 
diseases through signal transduction, immune regulation, tissue regeneration promotion, drug delivery, and other path-
ways. However, at present, the mechanism of MSC-Exos in the treatment of liver disease has not yet been fully clarified. 
Preclinical studies are insufficient; therefore, the clinical application still faces several challenges. In this review, we 
summarize the roles and functions of MSC-Exo-based delivery systems in liver diseases, thereby enabling us to better 
understand the latest findings in the field and tackle accompanying clinical challenges.

Mesenchymal Stem Cells
MSCs, a kind of stromal cells with self-renewal and multilineage differentiation abilities,13 were discovered in the 1960s and 
1970s.14,15 MSCs can be isolated from various adult tissues, such as the bone marrow, umbilical cord, adipose, peripheral 
blood, liver, and tooth root.16 (Figure 1) Human-derived MSCs express relatively constant markers, including CD90, CD73, 
and CD105. However, the surface markers and characteristics of MSCs from different sources are slightly different.17 MSCs 
can be induced to differentiate into cells of the mesodermal lineage, such as adipocytes, skeletal cells, and muscle cells.18 

Therefore, MSCs can promote tissue repair, proliferation, and regeneration. The regeneration of liver, kidney, heart, and 

Figure 1 MSC-Exos have proven potential as delivery vehicles and have the opportunity to treat liver diseases. MSCs can be isolated from various adult tissues, such as the 
human-induced pluripotent stem cell, bone marrow, umbilical cord blood, adipose, human menstrual blood. MSC-Exos play a therapeutic role in liver by secreting DNA, 
RNA, protein, lipid and drug through paracrine and blood transport.
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pancreas tissues can be promoted under the action of MSCs.16,19–22 MSCs have been demonstrated to possess nutritional, anti- 
inflammatory, immunomodulatory, anti-apoptotic, and antibacterial properties.23 These characteristics provide MSCs with 
great advantages in the treatment of diseases. MSCs are effective in treating bone, brain, nerve, cardiovascular, and 
autoimmune diseases and promoting wound and soft tissue regeneration.23 In recent studies, researchers have found that 
MSCs have great potential in the treatment of liver diseases, including liver fibrosis, liver failure, liver cirrhosis, metabolic- 
associated fatty liver disease, and liver regeneration.24–28

Several studies have shown that mesenchymal stem cells are the most promising alternative therapy for the treatment 
of liver diseases, especially liver cirrhosis, liver failure, and complications of liver transplantation.29 However, case 
reports have suggested that MSC treatment may cause unexpected differentiation and unknown proliferative lesions,30 

which may have potential tumorigenicity.

Exosomes
Extracellular vesicles (EVs) are cell-derived membrane vesicles that are secreted from almost all types of cells and play an 
important role in intercellular communication and regulation.31,32 EVs mainly include apoptotic bodies, microvesicles, and 
exosomes.33 Apoptotic cells can produce apoptotic bodies, and during this process, apoptotic cells can actively package their 
biomolecules into vesicles, so that drugs such as nucleic acids can be loaded into apoptotic bodies.34 However, there is still 
a considerable blank space in the study of the mechanism and function of apoptotic bodies.35 Microvesicles are derived from the 
direct budding of the plasma membrane in living cells and carry active components that can affect target cells and alter their 
behavior.36 Exosomes originate from the fusion of clathrin-coated vesicles, forming multivesicular endosomes by fusing with 
early endosomes, and eventually fusing with the cell membrane and shedding exosomes.37 EVs, typically between 50 nm and 500 
nm in size, are important mechanisms of intercellular communication and are involved in a variety of physiological and 
pathological processes.38 EVs play a good role in the regulation of immunity, tumor progression, specific modulators of cell 
behaviors, and targeted delivery of drugs.38,39 Noncoding RNAs (ncRNAs) account for a small but important proportion of EV 
cargo, and MSC-EVs have been reported to contain ncRNAs related to various molecular mechanisms in liver diseases.37 

Exosomes, as an important component of EVs, were first discovered in the 1980s.40,41 Almost all mammalian cells can secrete and 
absorb exosomes.42,43

Exosomes are small vesicles that are shed from the surface of the plasma membrane through outward budding with 
diameters ranging from 40 nm to 160 nm.44 According to the position statement from the International Society for 
Extracellular, at least two different techniques are generally used to characterize individual EVs. Exosomes, as one of the 
EVs, also follow this rule. Nanoparticle tracking analysis (NTA), dynamic light scattering, or resistive pulse sensing could be 
used to measure the concentration and size distribution of exosomes. Exosomes were visualized by transmission electron 
microscopy using the transmission electron microscope, atomic force microscopy, and Western blot analyses. The 
International Society for Extracellular also suggests that investigators report the amounts of 3 or more proteins in at least 
a semiquantitative manner in any exosome preparation.45

Since the first discovery of exosomes in the 1980s, research on exosomes has been advancing. Exosomes were confirmed to 
be formed from lipid bilayers derived from the plasma membrane. They have the same topology as cells and are rich in sugar 
conjugates, proteins, lipids, nucleic acids, and metabolites.46 The ExoCarta database (http://www.exocarta.org) lists thousands of 
proteins, RNA, and lipids that can all be biological cargoes delivered by exosome-based delivery vectors.47 Noncoding RNAs in 
exosomes have been shown to play a therapeutic role in a variety of liver diseases by inhibiting inflammatory response, 
alleviating oxidative stress in the liver, and inhibiting the activation and proliferation of hepatic stellate cells.48

Due to their good histocompatibility and material exchangeability, exosomes have become an important way of 
intercellular communication and regulating various physiological and pathological activities of the body. Exosomes have 
been proven to have many biological characteristics, including stability, histocompatibility, and good material exchange 
ability.49 Exosomes play an important role in many aspects, including disease development, immunity, cancer, and tissue 
regeneration through the intercellular vesicle transport pathway.46 Additionally, exosomes have the advantages of 
targeted delivery, low immunogenicity, and high repairability.50 Exosomes are naturally secreted by cells and have low 
immunogenicity, which can prevent immune rejection.51 The cell-free structure of exosomes helps prevent potential 
tumorigenic effects. Exosomes had been shown to have targeting properties, and exosomes from different cell sources 
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affected biodistribution.52 The targeting properties of exosomes could be changed by exosome modification, so exosomes 
have the potential to become biological carriers for targeted drug delivery. In a mouse model of pulmonary metastases, 
exosomes released from macrophages are delivered through the airway and colocalize almost completely with cancer 
metastasis. Exosomes were shown to target cancer cells and effectively deliver paclitaxel (PTX, a chemotherapeutic 
agent).53 Modified exosomes could target the lesion region of the ischemic brain and effectively inhibit inflammation and 
apoptosis in this lesion region.54 Therefore, MSC-Exos have proven potential as drug delivery vehicles and may have the 
opportunity to treat liver diseases.

Mesenchymal Stem Cell-Derived Exosomes
EVs derived from MSCs are critical mediators of intercellular communication.55 EVs deliver materials from MSCs to 
effector cells,33 allowing MSCs to function.56 MSCs do not engraft and replace damaged tissues directly but exert 
therapeutic effects through secreted paracrine effectors by these cells. Therefore, the therapeutic effect of MSCs can be 
largely attributed to paracrine effectors, of which exosomes are considered to be critical.57 The biological functions of 
MSC-Exos are similar to those of their parental cells.58 Similar to general exosomes, MSC-Exos also contain a variety of 
biological substances, such as sugar conjugates, proteins, lipids, nucleic acids, and metabolites. Most exosomes 
expressed an evolutionarily conserved set of proteins, including the tetraspanin protein family (CD81, CD63, and 
CD9), heat shock proteins (HSP60, HSP70, and HSP90), ALIX, and tumor susceptibility gene 101 (TSG101).59 

However, exosomes also express cell type-specific proteins, which correlate with their cellular origin. MSC-Exos 
expressed not only CD81 and CD9 but also mesenchymal stem cell surface markers such as CD44, CD73, and 
CD90.59 Among the different types of MSC-derived exosomes, half of the proteins were similar among all proteins.50

MSC-derived exosomes are derived from a wide range of sources (Figure 1), including bone marrow mesenchymal 
stem cell-derived exosomes (BMSC-Exos), adipose tissue-derived mesenchymal stem cell-derived exosomes (AMSC- 
Exos), human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos), exosomes derived from 
human menstrual blood-derived stem cells, and exosomes produced by human-induced pluripotent stem cell-derived 
mesenchymal stromal cells (hiPSC-MSC-Exos).

MSC-Exos, like MSCs, can help maintain tissue homeostasis and help tissues achieve optimal function.56 MSC-Exos can 
regulate cell migration, proliferation, and differentiation. Furthermore, MSC-Exos can remodel matrix synthesis and deliver 
signals and molecules to other cells.55,60–62 In studies on myocardial repair after acute myocardial infarction and autoimmune 
diseases, MSC-derived exosomes showed similar effects as MSCs, including anti-apoptosis, angiogenesis promotion, and 
immunomodulation.50,59,63 In some studies, MSC-derived exosomes (MSC-Exos) have shown better results than 
MSCs.59,64,65 MSC-Exos can prevent the challenges of microvascular obstruction, allogeneic rejection, and abnormal chromo-
somal differentiation of MSCs.59 MSC-Exos have been shown to enhance wound healing and tissue regeneration.49,66,67 MSC- 
Exos can exert beneficial effects in neurological, bone, renal, and heart diseases, as well as cancer.49,68–71 Additionally, MSC- 
Exos possess immunosuppressive properties and can effectively alleviate autoimmune diseases, such as multiple sclerosis, 
systemic lupus erythematosus, type-1 diabetes, uveitis, rheumatoid arthritis, and inflammatory bowel disease.59 Furthermore, 
MSC-Exos can be used as an alternative MSC-based therapy and play a role in the treatment of liver diseases.

As delivery vectors, exosomes can be isolated and prepared in various ways (Table 1). Exosomes can be isolated by 
differential ultracentrifugation and density gradient centrifugation, immunoaffinity chromatography, size exclusion 
chromatography, polymer precipitation, and microfluidic technologies. Differential ultracentrifugation and density 
gradient centrifugation are considered to be the “gold standard” for the isolation of exosomes.72 Different separation 
methods have their advantages and disadvantages, and the best separation method can be selected according to the actual 
needs and conditions. These methods can be used in combination to partially alleviate their limitations and improve 
extraction yield and purity to meet the needs of research and disease treatment.57 Table 1 provides a summary of the 
exosome isolation methods and a comparison of their advantages and disadvantages. Moreover, at present, biological 
cargoes can be loaded into MSC-Exos in various ways, including electroporation, transfection, and overexpression. 
Transfection is the most commonly used method to load RNA. Electroporation generally introduces hydrophilic cargoes 
into MSC-Exos, and overexpression is usually used to introduce proteins into MSC-Exos.73 The methods of drug 
encapsulation by exosomes and exosome culture vary.74 Exosomes treated in different ways have different effects on 
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the liver disease when used as drug delivery vehicles. Electroporation is widely used for exosome drug loading, which 
has the best drug encapsulation efficiency.51 When norcantharidin (NCTD) is loaded into purified BMSC-Exos by 
electroporation, BMSC-Exos-NCTD provides a continuous and slow release of the drug.75 Li et al76 found that the 3D 
culture of hUCMSCs (3D-hUCMSCs) promoted cell yield and stemness maintenance. 3D culture of exosomes (3D-Exos) 
has a better anti-liver fibrosis effect than 2D-Exos.77 Compared to 2D-tumour-cell-derived microparticles (2D MPs), 3D- 
tumour-cell-derived microparticles (3D MPs) can achieve effective internalization into target cells, ultimately improving 
their ability to deliver drugs.78 The stability of proteins and microRNAs in MSC-Exos was significantly increased. 
Therefore, the retention of MSC-Exos in vivo was increased.79 The above reports have guiding significance for the future 
application of MSC-Exos in liver diseases, and we should pay attention to the effect of the way of MSC-Exos culture on 
the therapeutic effect. The above methods and technologies have laid a foundation for the large-scale preparation of 
exosomes and delivery of biological cargoes and drugs, making MSC-Exos-based delivery vectors feasible for the 
treatment of liver diseases.

Application of Mesenchymal Stem Cell-Derived Exosome-Based Delivery Vectors in 
Liver Diseases
To apply MSC-Exos-based delivery vectors in the treatment of liver diseases, the following section will evaluate the role 
of MSC-Exos as delivery vectors in the treatment of liver diseases, including liver injury, liver failure, liver fibrosis, 
HCC, and ischemia and reperfusion (I/R) injury (Table 2) (Figure 1).

Liver Injury and Liver Failure
MSC-Exos can play an effective protective role in various organ damages, including spinal cord injury, traumatic brain injury, 
acute lung injury, and cardiac injury.109–113 Similarly, in recent years, researchers have found that MSC-Exos exhibit great 
promise for liver injury therapy. MSC-Exos have been shown to induce hepatoprotective effects against drug-induced liver 

Table 1 Separation and Purification of MSC-Exos

Separation and Purification 
Method

Advantage Disadvantage Ref.

Differential ultracentrifugation High purity, simple method, common method for 

exosome extraction

The separation time is long and the 

efficiency is low

[80,81]

The two-ultracentrifugation cycle 

protocol that incorporated a 30% 

sucrose cushion

Less pollution Impact EVs size, structure and cargo [82]

Density-gradient ultracentrifugation Minimize lipoprotein contamination when isolating 
exosomes from blood plasma

The separation efficiency needs to be 
evaluated

[83]

Combined tangential flow filtration 
(TFF) with 3D culture

Improve the yield of exosomes to a cumulative 
extent of 140-fold.

Expensive and easily polluting. [73,84]

Size-exclusion chromatography (SEC) Quick, cheap, easy and no expensive equipment is 
needed. Vesicles can be easily separated from 

proteins and HDL.

The separation of vesicles with small 
size (less than 70 nm in diameter) was 

less effective

[85]

Purifying exosomes by polyethylene 

glycol-based method (ExtraPEG)

Enriches exosomes rapidly and inexpensively There is a lack of good extraction effect 

for some subsets of exosomes

[86]

Integrating acoustics and microfluidics The purity and yield are high, and the structural 

integrity of exosomes is less affected

Depends on the extraction instrument [87]

Commercial exosomes extraction 

kits

The operation is relatively simple, and the technical 

requirements for equipment and operators are low

The isolation and purification effect 

needs to be verified

[88]

Abbreviations:MSC-Exos, mesenchymal stem cell-derived exosomes; EVs, Extracellular vesicles; HDL, high-density lipoprotein cholesterol.

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S404925                                                                                                                                                                                                                       

DovePress                                                                                                                       
2877

Dovepress                                                                                                                                                                Lu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 2 The Role of MSC-Exo-Based Delivery Vectors in the Treatment of Liver Diseases, as Discussed in the Text

Liver 
Disease

MSC-Exos 
Types

Loaded 
Small 

Molecule

Animal Model Disease Model Mechanism of Action Effect Ref.

Liver injury hUCMSC-Exos miR-455-3p Eight-week-old 

male mice 
(C57BL/6)

CCl4-induced acute liver 

injury

Block the activation of the IL-6 signaling pathway 

by targeting the PIK3r1 gene

Suppress the over activation of 

monocytes/macrophages and 
improve liver damage and systemic 

homeostasis

[89]

Liver injury BMSC-Exos miR-223 Wild-type (WT) 

male C57BL/6 

mice with ages of 
4–6 weeks

Liver injury caused by 

hepatic S100-induced AIH

Attenuation of NLRP3 and caspase-1 Attenuation of liver injury [90]

ALF AMSC-Exos miR-17 Mice (C57BL/6J, 
aged 5–6 weeks)

LPS/GalN-induced ALF Suppress NLRP3 inflammasome activation by 
TXNIP inhibition

Play a protective role in ALF [91]

Liver 
fibrosis

AMSC-Exos miR-181-5p Eight-week-old 
male C57BL/6 

mice

TGF-β1-induced and CCl4 

-induced liver fibrosis
Inhibit the STAT3/Bcl-2/Beclin 1 pathway Increase autophagy, reduce liver 

fibrosis
[92]

Liver 

fibrosis

MSC-Exos circDIDO1 Target miR-141-3p/PTEN/AKT pathway Suppress HSCs activation [93]

Liver 

fibrosis

AMSC-Exos miR-122 C57BL/6 mice (6 

weeks)

CCl4-induced liver fibrosis Reduce IGF1R expression, enhance the G0/G1 

arrest of HSCs, reduce P4HA1 expression level, 

prevent the up-regulation of TGF-β1 and α-SMA

Inhibit proliferation, block collagen 

maturation in HSCs, suppress HSCs 

activation

[64]

Liver 

fibrosis

MSC-Exos miR-148a The male C57BL/ 

6 J mice (6–8 
weeks)

CCL4-induced liver 

fibrosis

Deliver miR-148a to target KLF6/STAT3 

pathway in macrophages

Ameliorate the inflammatory 

response by the remodeling of 
macrophage phenotypes in vivo

[94]

Liver 
fibrosis

hUCMSC-Exos BECN1 Mice (BALB/c, 
female, 4–5 

weeks)

CCl4-induced liver fibrosis Induce ferroptosis via the downregulation xCT/ 
GPX4 pathway

Target hepatic stellate cells activation 
in vitro and in vivo

[95]

Liver 

fibrosis

MSC-Exos siRNA or ASO Female Balb/c 

mice (8-weeks- 

old)

CCl4-induced liver fibrosis Enhance STAT3 targeting efficiency, suppress 

STAT3 levels and ECM deposition in liver fibrosis

Significantly improve liver function [96]
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HCC AMSC-Exos MiR-199a-3p Male BALB/c 
nude mice (6  

weeks old)

Target mTOR pathway Increase the sensitivity of HCC cells 
to chemotherapeutic agents

[97]

HCC AMSC-Exos miR-122 Male Balb/c nude 

mice (6 weeks 

old)

Negative regulation of the expression of miR- 

122 target genes, enhance cell apoptosis and cell 

cycle arrest

Increase the chemosensitivity of 

HCC cells

[98]

HCC BMSC-Exos miR-127-3p Thirty-two male 

BALB/c nude 
mice (6 weeks 

old, 20–22 g)

Regulate a C5orf66-AS1/miR-127-3p/DUSP1/ 

ERK axis

Block malignant behaviors of HCC- 

sourced CSCs

[99]

HCC hUCMSC-Exos miR-451a Suppress the paclitaxel resistance, cell cycle 

transition, proliferation, migration and invasion, 

and restrict the epithelial-mesenchymal 
transition of HCC cells

Promote apoptosis of HCC cells [100]

HCC BMSC-Exos miR-338-3p Down-regulating EST1 Inhibit HCC cell proliferation, 

invasion and migration, and induce 

cell apoptosis

[101]

HCC BMSC-Exos NCTD 4-week-old male 

BALB/c nude 
mice

Promote cellular uptake, induce cell cycle arrest, 

reduce tumor cell proliferation, increase 
apoptosis

Exert obvious antitumor effects [75]

I/R injury hUCMSC-Exos miR-1246 C57BL/6 mice Regulate GSK3β-mediated Wnt/β-catenin 
pathway

Improve hepatic I/R injury [102]

I/R injury hUCMSC-Exos miR-1246 Male C57BL/6 
mice

Modulate the balance between Tregs and Th17 
cells via miR-1246-mediated IL-6-gp130-STAT3 

axis.

Improve hepatic I/R injury [103]

I/R injury hUCMSC-Exos miR-20a Male Sprague 

Dawley rats of 

about 300 g in 
body weight

Inhibit Beclin 1- and FAS-mediated autophagy 

and apoptosis

Alleviate hepatic I/R injury [104]

(Continued)
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Table 2 (Continued). 

Liver 
Disease

MSC-Exos 
Types

Loaded 
Small 

Molecule

Animal Model Disease Model Mechanism of Action Effect Ref.

I/R injury BMSC-Exos miR-124-3p Specific pathogen 
free (SPF) SD rats

Downregulate Steap3 expression to inhibit 
ferroptosis

Attenuating graft I/R injury [105]

I/R injury BMSC-Exos miR-29a-3p Clean-grade male 
Sprague-Dawley 

(SD) rats

Suppress ferroptosis by targeting Ireb2 Alleviation of steatotic liver I/R injury [106]

NAFLD hUCMSC-Exos miR-627-5p Male rats (6 

weeks old, 

weighting 240– 
260 g)

NAFLD rat model was 

established by high-fat 

high-fructose (HFHF) 
feeding for 8 weeks.

Improved glucose and lipid metabolism of L-O2 

cells by targeting FTO

Improved liver damage, lipid 

deposition and glucose and lipid 

metabolism in vivo, ameliorated the 
progression of NAFLD

[107]

Liver 

regeneration

hUCMSC-Exos miR-124 Sprague-Dawley 

rats (male, 8 

weeks old)

70% partial hepatectomy Promote liver regeneration and inhibit liver 

injury via negatively regulating Foxg1

Promote liver regeneration after 

partial hepatectomy

[163]

Abbreviations:hUCMSC-Exos, human umbilical cord mesenchymal stem cell-derived exosomes; AIH, autoimmune hepatitis; ALF, acute liver failure; TXNIP, thioredoxin-interacting protein; STAT3, signal transducer and activator of 
transcription 3; CircDIDO1, a circRNA derived from 2 to 6 exons of DIDO1 gene; α-SMA, Alpha-smooth muscle actin; HSCs, hepatic stellate cells; KLF6, Kruppel-like factor 6; GPX4, glutathione peroxidase 4; ASO, antisense 
oligonucleotide; HCC, hepatocellular carcinoma; ECM, extracellular matrix; mTOR, a serine/threonine kinase; C5orf66AS1, one of long noncoding RNAs; DUSP1, dual-specificity phosphatase 1; CSCs, cancer stem cells; EST1, E26 
transformation specific-1; I/R injury, ischemia and reperfusion injury; IL-6, interleukin-6; gp130, The interaction between miR-1246 and IL-6 signal transducer; Ireb2, Iron response element-binding protein 2; NAFLD, non-alcoholic fatty 
cell liver disease; FTO, a fat mass and obesity-associated gene.
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injury. MSC-Exos inhibited the acetaminophen (APAP)- and hydrogen peroxide (H2O2)-induced hepatocyte apoptosis mainly 
through activation of antiapoptotic, proliferative, and regenerative responses by upregulation of Bcl-xL protein expression.114 

MSC-Exos significantly attenuated CCl4-induced lipid peroxidation and reduced other iron ptosis markers, including decreased 
expression of SLC7A11 and increased expression of Ptgs2 and LOXs, thus alleviating CCl4-induced liver injury.115 

Phosphoinositide 3-kinase (PI3K) plays a key role in the activation of the IL-6-related signaling pathway. hUCMSC-Exos 
rich in miR-455-3p can regulate the PIK3r1 gene, which encodes the PI3K subunit P85α and inhibits IL-6-related signaling 
pathways, thus inhibiting macrophage activation and alleviating acute liver injury.89 Furthermore, in an experimental model of 
autoimmune hepatitis (AIH), BMSC-Exos are effective in liver injury, which could be related to miR-223 regulation of NLRP3 
and caspase-1.90

Acute liver failure (ALF) is a rare but life-threatening critical illness that usually results from viral infections and drug- 
induced liver injury.116 NLRP3 inflammasome has been identified as a potential mediator of hepatocyte damage, immune cell 
activation, and hepatitis amplification.117 AMSC-Exos can reduce the activation of NLRP3 inflammasome in macrophages 
through miR-17-mediated thioredoxin-interacting protein (TXNIP) inhibition. Therefore, AMSC-Exos play a protective role in 
lipopolysaccharide and d-galactosamine (LPS/D-GalN)-induced ALF.91 hUCMSC-Exos have been shown to significantly 
improve LPS/D-GalN-induced hepatitis by the downregulation of NLRP3.118 BMSC-Exos can promote autophagy and 
effectively reduce hepatocyte apoptosis in LPS/D-GaIN-induced ALF.119 In a study, MSC-Exos migrated to sites of injury 
and AML12 cells (a mouse hepatocyte cell line) after fulminant hepatic failure (FHF). Therefore, LPS/D-GalN-induced 
apoptosis of AML12 cells was inhibited. MSC-Exos significantly inhibited apoptosis in hepatocytes, improved liver function, 
and increased survival rates by reducing the number of mononuclear cells and the expression of caspase-3.120 Glutathione 
peroxidase1 (GPX1) is a critical antioxidant in the human body.121

In conclusion, MSC-Exos can be used as a delivery vector to overexpress target miRNAs and deliver these miRNAs 
to target tissues, thus playing a role in effectively reducing liver injury and liver failure. This may become a new 
approach to the treatment of liver injury and liver failure.

Liver Fibrosis
Liver fibrosis is caused by chronic liver damage, inflammation, and excess accumulation of extracellular matrix (ECM) 
components.122–124 Several studies have found that hepatic stellate cell (HSC) activation is a key driver of hepatic 
fibrosis.125–127 In a CCl4-induced liver fibrosis model, AMSCs translocated miR-181-5p to damaged hepatocytes by 
selectively transferring exosomes to mouse HSCs. In vitro analysis confirmed that miR-181-5p-rich AMSCs were 
secreted extracellularly and subsequently taken up by stem stellate cells, thus allowing miR-181-5p to be transferred. 
MSC-Exos could be used to deliver miRNAs to HSCs. miR-181-5p-modified AMSC-Exos effectively inhibited liver 
fibrosis by increasing autophagy of HSCs by inhibiting the STAT3/Bcl-2/Beclin 1 pathway and decreasing TNFα, IL-6, 
and IL-17 levels.92 CircDIDO1 (a circRNA derived from 2 to 6 exons of DIDO1 gene) mediated by MSC-Exos was 
confirmed to inhibit HSC activation by sponging miR-143-3p, which was an activator of the activation of the PTEN/AKT 
pathway.93 MSC-Exos induced the transformation of proinflammatory macrophages to the anti-inflammatory phenotype 
and subsequently reduced liver fibrosis. MiR-148a, as the therapeutic effector of MSC-Exos, regulated the STAT3 
signaling pathway by directly targeting KLF6.94 Wang et al77 showed that miR-6766-3p in the exosomes derived from 
human embryonic stem cells (hESC-Exos) inactivates recombinant mothers against decapentaplegic (SAMD) signaling 
by restraining TGFβ type II receptor (TGFβRII) expression, consequently attenuating LX2 cell and HSC activation and 
suppressing liver fibrosis. By delivering miR-122 content into HSCs, exosomes led to altered expression of miR-122- 
target gene in HSCs, thereby enhancing the therapeutic effect of AMSCs on liver fibrosis.64 The signal transducer and 
activator of transcription 3 (STAT3) has been proven to be an important transcription factor related to the pathogenesis of 
liver fibrosis.96 Compared to scrambled siRNA control, siRNA-STAT3, or ASO-STAT3, MSC-Exos carrying siRNA or 
antisense oligonucleotide (ASO) treatments enhanced STAT3 targeting efficiency and suppressed STAT3 levels and 
extracellular matrix (ECM) deposition in established liver fibrosis in mice. Liver function was significantly restored.96 In 
addition to playing an effective role as a delivery vector for the treatment of liver fibrosis, MSC-Exos could inhibit liver 
fibrosis. Rong et al found that the expression of several proteins (PPARγ, Wnt3a, Wnt10b, and β-catenin) in the Wnt 
signaling pathway can be downregulated by BMSC-Exos, which in turn inhibited downstream gene (WISP1, Cyclin D1) 
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expression. BMSC-Exos could inhibit the activation of HSCs through inhibition of the Wnt/β-catenin signaling pathway, 
inhibit the expression of α-SMA, alleviate liver inflammation, improve liver function, promote hepatocyte regeneration, 
reduce liver fibrosis, and improve liver function.128 Ferroptosis has been reported to play an important role in liver 
fibrosis.129 MSC-Exos can enhance HSCs ferroptosis through the exosome/BECN1/xCT/GPX4 pathway, thereby ame-
liorating liver injury and alleviating liver fibrosis.95 Altogether, the delivery vector based on MSC-Exos has a good effect 
in the treatment of liver fibrosis and is expected to become a new method for the treatment of liver fibrosis in the future.

Hepatocellular Carcinoma
Liver cancer is the most common fatal malignancy and the second leading cause of cancer-related death worldwide.130,131 In 
recent years, the incidence of hepatocellular carcinoma (HCC) is increasing.3,132 Tumor occurrence is closely related to the 
physiological state of the tumor microenvironment (TME), which is involved in tumor biology, tumorigenesis, development, and 
treatment response.133,134 Surprisingly, TME can be regulated by exosomes.135–137 Recently, researchers have found that MSC- 
Exos can exert an inhibitory effect on HCC through various pathways. Exosomes may be able to enhance or expand their 
therapeutic ability in cancer through chemical or biological modification.138 AMSC-Exos can mediate the delivery of miR-199a- 
3p between AMSCs and HCC cells, thus the sensitivity of HCC cells to chemotherapeutic drugs can be effectively improved by 
miR-199a-3p-modified AMSC-Exos by targeting the mTOR (a serine/threonine kinase) pathway.97 AMSC-Exos mediated miR- 
122 communication between AMSCs and HCC cells and further altered miR-122-target gene expression in HCC cells. By 
enhancing cell apoptosis and cell cycle arrest, the sensitivity of HCC cells could be enhanced by miR-122-modified AMSC- 
Exos.98 By downregulating E26 transformation specific-1 (EST1), the miR-338-3p-modified BMSC-Exos could delay the 
development of HCC, which inhibited the proliferation, invasion, and migration of HCC cells, and induced cell apoptosis.101 

MiR-451a-modified hUCMSC-Exos inhibited the epithelial-mesenchymal transition of HCC cells by repressing ADAM10 (a 
target gene of miR-451a). By this means, hUCMSC-Exos inhibited paclitaxel resistance, cell cycle transition, proliferation, 
invasion, and migration of HCC cells, thereby promoting apoptosis of HCC cells.100 HCC can be inhibited by miR-125a and 
miR-125b, which repressed proliferation, stem cell properties, and migration of HCC cells through the CD90 pathway.139 

Delivery of miR-125a/b by MSC-Exos may be a new therapeutic approach for HCC. In conclusion, MSC-Exos rich in different 
miRNAs can inhibit HCC cells through various effects, resulting in a therapeutic effect on HCC. MSC-Exo-based HCC 
treatment has a certain potential to become an alternative therapy for HCC. Compared with the anticancer drug, norcantharidin 
(NCTD) treatment alone, BMSC-Exos-NCTD delivery system showed a more significant antitumor effect, which was reflected 
in promoting cellular uptake, inducing cell cycle arrest, reducing tumor cell proliferation, and increasing apoptosis. Moreover, 
BMSC-Exo-NCTD increased cellular proliferation and inhibited hepatocyte oxidation without showing body toxicity.75 

Additionally, adipose stem cell exosomes (ASC-Exos) have been shown to inhibit the hepatoma cell line growth and promote 
the normal liver cell line growth.51 Therefore, MSC-Exos have been hypothesized to have the ability to inhibit the growth of liver 
cancer cells and promote the growth of normal liver cells, thereby exerting a therapeutic effect on HCC.

Liver cancer stem cells (CSCs) are a unique subset of HCC cells with stem cell characteristics, which have the ability of self- 
renewal and differentiation.140,141 However, this role can be inhibited by MSC-Exos. Exosomes released by CSCs induced 
Nanog expression and regorafenib resistance in differentiated cells142 and induced tumor development and progression in vivo.137 

Furthermore, exosomes can affect CSCs. Gu et al99 evidenced that the malignant behaviour of liver CSCs was blocked by 
exosomes through the C5orf66AS1/miR-127-3p/DUSP1/ERK axis. However, several researchers have previously found that 
MSCs promote HCC.143,144 MSCs interact with tumor cells in a myriad of ways that can support or suppress tumor growth. 
Klopp et al144 indicated that the effect of MSCs on tumors can be affected by several factors, including the heterogeneity of 
MSCs, the effects of propagating cells in vitro, the time of MSCs that enter the TME in vivo, and the variability of MSCs from 
patient to patient. This suggests that researchers should pay attention to the influence of the above factors on the results when 
studying the effect of MSC-Exos on HCC, because they may produce results that MSC-Exos have a promoting effect on HCC.

In summary, MSC-Exos inhibit HCC by delivering different types of miRNA, drug delivery, and blocking the 
stemness of liver CSCs, thereby achieving the therapeutic effect of HCC. However, attention should be paid to the 
potential role of MSC-Exos in promoting HCC to better apply them in clinical treatment.
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Ischemia and Reperfusion Injury
Exosomes have been shown to play a protective role in organ ischemia and reperfusion (I/R) injury of organs, such as the brain 
and heart.145–147 Exosomes protect cardiomyocytes from acute myocardial I/R injury by transmitting survival signals to the 
ischemic myocardium and inhibiting cardiomyocyte apoptosis in vivo.148 Studies have shown that MSC-Exos are used as 
delivery carriers in the ischemia and reperfusion (I/R) injury of various organs, such as the brain, spinal cord, heart, kidney, and 
liver.149–152 hUCMSC-Exos regulated the glycogen synthase kinase 3β (GSK3β)-mediated Wnt/β-catenin pathway by delivering 
miR-1246 and finally alleviated hepatic I/R injury.102 Furthermore, hUCMSC-Exos could alleviate hepatic I/R injury by 
delivering miR-1246, targeting the IL-6/gp130/STAT3 axis to regulate the balance between Tregs and Th17 cells.103 hUCMSC- 
Exos-enriched miR-20a could alleviate hepatic I/R injury by alleviating the abnormal expression of genes related to apoptosis 
and autophagy.104 Ferroptosis was associated with the I/R injury of liver transplantation (LT) with a severe steatotic donor liver. 
Wu et al105 showed that heme oxygenase oxygen-1 (HO-1)-modified BMSC-Exos (HM-Exos) could inhibit hepatocyte 
ferroptosis and reduce graft hepatic I/R injury by delivering miR-124-3p to downregulate the Steap3 level. Additionally, HM- 
Exos could inhibit hepatocyte ferroptosis by delivering miR-29a-3p targeting Ireb2, ultimately reducing hepatic I/R injury.106 

These studies provide a new way to solve the problem of future donor liver shortage. Furthermore, many studies have found that 
exosomes can reduce the inflammatory response, inhibit cell apoptosis, promote cell proliferation, and liver regeneration, thereby 
alleviating hepatic I/R injury.153–156 In summary, MSC-Exos-based delivery vectors can alleviate hepatic I/R injury by delivering 
multiple miRNAs, which may effectively improve the success rate of LT and the prognosis of patients.

Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, and the liver-related mortality of patients 
with non-alcoholic steatohepatitis has increased in recent years.108 NAFLD affects more than one-third of the population.157 

Exosomes from AMSCs attenuated white adipose tissue inflammation, systemic insulin resistance, dyslipidemia, and hepatic 
steatosis in a study on obese mice.158 Exosomes enriched in miR-223 inhibited NAFLD-associated liver fibrosis by transfer 
into hepatocytes to suppress the hepatic expression of fibrotic genes.159 hUCMSC-Exos rich in miR-627-5p improved glucose 
and lipid metabolism and alleviated liver injury by inhibiting FTO (fat mass and obesity-associated gene) expression, thereby 
meliorating the progression of NAFLD.107 Moreover, hepatocyte-derived exosomal miR-192-5p was shown to inhibit 
proinflammatory macrophage activation and disease progression in NAFLD.160 In conclusion, MSC-Exos can deliver 
multiple miRNAs, thereby slowing or halting the progression of NAFLD and improving the quality of life of patients.

Liver Regeneration
Exosomes have great potential for liver regeneration, tissue repair, and blood vessel formation. Exosomes, as nanocarriers, 
deliver active factors or small molecules to promote tissue repair. Preclinical studies of exosomes in tissue engineering and 
regenerative medicine have been performed in the fields of bone/cartilage repair, skin repair, and nerve, liver, kidney, and 
vascular tissue regeneration.161 Hepatic gene expression of cytokines and growth factors related to cell proliferation, 
angiogenesis, and anti-inflammatory response was upregulated by an MSC-conditioned culture medium (MSC-CM).162 In 
the early phase after surgical resection, MSC-derived factors promoted hepatocyte proliferation and regenerative responses. 
After patients have undergone extensive liver resection or liver transplantation, MSC-derived factors therapy could represent 
a feasible new strategy to promote liver regeneration.162 After partial hepatectomy in rats, miR-124 derived from hUCMSC- 
Exos can downregulate Foxg1 and promote liver regeneration.163 Xue et al found that ADMSC-Exos could promote vascular 
endothelial growth factor (VEGF) expression and angiogenesis by activating the protein kinase A (PKA) signaling 
pathway.164 The above studies provide new ideas for the application of MSC-Exos-based delivery vector in liver regeneration, 
which may benefit patients with extensive liver resection.

Advantages and Disadvantages of MSC-Exos
As a relatively novel treatment, exosomes have certain advantages over nano-drug. As mentioned above, exosomes have been 
shown to promote the growth of normal cell lines and inhibit the growth of hepatocellular carcinoma cell lines which were 
inhibited through several anti-inflammatory molecules. Compared with nano-drugs, exosomes are naturally secreted by cells, 
which have the advantages of low immunogenicity and immune rejection prevention.51 Unlike other lipid nanoparticles, 
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exosomes have surfaces that are rich in membrane proteins, which can mediate adhesion and target functions between 
exosomes and plasma membrane of recipient cells, thereby regulating exosome uptake.38,161 These advantages may allow 
MSC-Exo-based delivery vectors to play a good therapeutic effect in the treatment of liver diseases. The use of MSCs as cell 
therapy carries some risks, such as potential tumorigenicity and immunological rejection.165 As a cell-free therapy, MSC-Exos 
can effectively reduce this risk. Although derived from MSCs, MSC-Exos sometimes have better results than MSCs.128 In 
addition, many in vivo studies have shown that MSC-derived exosomes can enter the liver.38 This suggests that MSC-Exo- 
based delivery vector is a promising alternative to MSC therapy, especially in liver disease.

In the treatment of liver diseases, MSC-Exo-based delivery vectors have a wider application space. Concurrently, we 
must admit that MSC-Exos should be used cautiously in the treatment of HCC because the role of MSC-Exos in tumor 
development has not been fully elucidated.137 The choice of exosome drug loading method and surface targeting peptide 
needs to be fully considered.138

MSC-Exos in Clinical Trials
Currently, 139 clinical trials of exosomes are available at www.ClinicalTrials.gov and nine of them are on MSC-Exos. 
However, currently, clinical trials on the treatment of liver diseases based on MSC-Exos are lacking. This situation is in 
part due to the fact that translating MSC-Exos therapy from preclinical studies to the clinic requires key parameters.65

Conclusions and Prospects
The above findings add substantially to our understanding of the therapeutic effect of MSC-Exo-based delivery vectors in 
liver disease. In the past years, MSC-Exo-based therapy has raised considerable concern. With in-depth research on cell- 
free therapy, exosomes have a broad application value in liver diseases, including drug delivery, liver cancer, and liver 
transplantation. MSC-Exos have shown therapeutic potential in various liver diseases and are expected to become a new 
treatment method for liver diseases. Besides, MSC-Exos can be used as a carrier for drug delivery to assist the more 
accurate delivery of clinically used drugs to target tissues, which not only improves the efficacy of drugs but also reduces 
systemic toxic side effects. As a kind of biological carrier, MSC-Exos provide a new idea for the current drug delivery 
scheme and expand the drug delivery system in the treatment of liver diseases. Therefore, MSC-Exos have the potential 
to become biological agents for the treatment of liver diseases. By delivering biological cargoes or drugs, MSC-Exos 
have the potential to be an alternative treatment option for various liver diseases, whether benign or malignant liver 
disease and early or advanced liver disease. MSC-Exo-based delivery vectors have been widely shown to reduce normal 
cell apoptosis, promote liver regeneration, increase autophagy of hepatic stellate cells, and inhibit the growth of 
hepatocellular carcinoma cells. However, MSC-Exos do not exhibit systemic toxicity. Through these mechanisms, MSC- 
Exos have shown good therapeutic effects in drug-induced liver injury, liver I/R injury, liver resection, HCC, and other 
liver diseases by delivering biological cargoes or drugs. At present, MSC-Exo-based liver disease therapies are still in the 
stage of in vitro research and animal models. The current challenges of large-scale production, quality control, long-term 
storage, cost, and safety of MSC-Exos have not been solved. Therefore, we need to conduct more in-depth research and 
analysis.50 The clinical application of MSC-Exos-based delivery vectors, as an emerging treatment for liver diseases, 
should be fully and effectively evaluated. More preclinical studies should be conducted to accumulate more data and 
prepare for relevant clinical studies. In the treatment of liver disease, investigators need to fully consider the safety and 
potential side effects of MSC-Exo-based therapy. Further studies on how to efficiently extract or prepare MSC-Exos on 
a large scale, reduce the cost, improve the loading efficiency of biological cargoes or drugs, and accurately exert 
therapeutic effects on effector cells or tissues are needed. In summary, MSC-Exos own high clinical translation and 
application value. In the future, the treatment of MSC-Exos as a biological carrier may not only assist the existing 
treatment options for liver diseases but also become a new treatment plan for liver diseases. MSC-Exo-based therapy has 
the potential to relieve the symptoms of patients with liver disease and improve their quality of life and prognosis.
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