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Abstract: The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural 
product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad- 
spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of 
betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory 
activity against viral species. Access to large data caches of small molecule structural information is vital to finding new 
pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate 
drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the 
generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review 
article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against 
betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different 
features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in 
selecting a subset of features relevant for inhibition of SARS-CoV-2. 
Keywords: SARS-CoV-2, natural products, protease, methyl transferases, RNA dependent polymerases, viral transcription, genome 
replication, betacoronavirus

Plain Language Summary
Coronaviruses (CoVs) are a family of viruses that cause lung and intestinal illnesses in humans and animals. Generally, these 
are mild illnesses characterized by cold-like symptoms. However, viruses that cause severe disease have emerged over the past 
twenty years, first with the severe acute respiratory syndrome (SARS) epidemic in China in 2002–2003 and subsequently the 
Middle East respiratory syndrome (MERS) on the Arabian Peninsula in 2012. The novel coronavirus that emerged in Wuhan at 
the tail end of 2019 has to date killed >6.01 million people (JHU-CSSE, 2022) and collectively cost the world’s economy >16 
trillion dollars. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative virus responsible for this 
coronavirus disease (COVID-19). The urgent need to control this family of viruses has led to a reassessment of approaches to 
identify and new antiviral drugs. One area of investigation has been marine natural products, compounds or substance 
produced by living organisms present in the marine environment. Access to collections of these natural products is vital to 
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finding new pharmaceuticals to combat coronavirus diseases. Increasingly, advances in artificial intelligence are aiding this 
drug discovery process.

Introduction
The novel coronavirus that emerged in Wuhan at the tail end of 2019 has to date killed >6.01 million people (JHU-CSSE, 
2022) and collectively cost the world’s economy >16 trillion dollars.1 Despite the massive research response to the 
pandemic,2 there are yet no clinically approved broad-spectrum antivirals available for betacoronaviruses. The difficulty 
with relying solely on immunological agents for protection against coronavirus, is the high mutation rate and loss of 
epitope specificity between family members and variants of the same species of coronavirus.3 This means that, in the 
event of a future outbreak of coronavirus, a bespoke vaccine must be developed and pass regulatory testing before it can 
be used to prevent the spread of the disease and treat those infected.4

Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority 
for preventing high mortality rates in future outbreaks.5 Natural metabolites of plants, fungi and bacteria have long 
been known to have antiviral activity.6 These organisms lack the complex adaptive immune system of animals and rely 
on the production of broad-spectrum, small molecule inhibitors to keep pathogenic viruses at bay.7 Currently, however, 
the focus of drug discovery in relation to coronaviruses focuses on the repurposing of already characterized 
pharmaceuticals or using existing pharmaceuticals as structural leads.8–11 Existing drug structural information is, 
however, a much smaller sample space than the population of known molecular structures, with only around 12,000 
characterized members on the online database DrugBank (as of March 2022), accounting for only about 0.5% of 
structures available off ChEMBL. Conversely, there are currently around 400,000 natural products, which are curated 
in online databases and are accessible for molecular docking simulations.12 A variety of NP small molecules isolated 
from photosynthetic algae (eg, phlorotannins, sulfated polysaccharides), marine bacteria (e.g. lactones), and sponges 
(e.g., nucleosides, sesquiterpene hydroquinones, cyclic depsipeptides, alkaloids, etc.) have shown inhibitory activity 
against viral species including human immunodeficiency virus-1 (HIV-1), HCV, influenza, and herpes simplex virus.13 

Examination of marine natural products from algae that are active against SARS-CoV-2 proteins presents a novel and 
viable approach.

Naturally occurring bioactive compounds represent a viable approach for the development of antiviral agents. 
Flavonoids, for example, exhibit broad antiviral and immunomodulatory activities against coronaviruses. Flavonoids 
are key secondary plant metabolites that have been the subject of much study for their therapeutic potential in 
inflammatory diseases owing to their cytokine-modulatory effects. The antiviral activity of flavonoids is realized via 
enzymatic inhibition of the 3C-like protease (3CLpro) the primary protease found in coronaviruses. Recently, five 
compounds obtained from Camellia reticulata and Anastatica hierochuntica (plants) and Kermia aegyptiaca (a marine 
gastropod mollusk), namely taxifolin, pectolinarigenin, tangeretin, gardenin B, and hispidulin, were examined for activity 
against SARS-CoV-2 and represent promising candidates for, for COVID-19 management.14 In a separate study thirty- 
three focused marine NPs related to the pederins, mycalamides, onnamides and theopederins polyketide families were 
assessed using computational approaches including molecular docking and molecular dynamics simulations studies for 
their affinity for the dimeric form of 3Clpro. This revealed that the majority of the marine NPs examined had favorable 
binding scores, in particular dihydro-onnamide A, onnamide C, and pseudo-onnamide A.15

Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. This is 
because, in general, in-vitro-only de novo drug discovery, reliant on vast chemical libraries and expensive and 
extensive robotics, is a laborious and low yielding strategy.16,17 Increasingly, in the age of big data and deep learning, 
molecular docking simulations are being used to narrow the space of possibilities and generate drug leads.11,18,19 It 
would therefore be worthwhile to combine in-silico methods, augmented by metaheuristic optimization and machine 
learning (ML), to generate hits from within a virtual library of natural products in order to narrow down high 
throughput in vitro screens for new drug targets against coronaviruses. In this article, we will explore current insights 
and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico 
optimization and ML.
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Drug Targets
Members of the genus betacoronaviridae are enveloped (surrounded by a bilipid membrane) and positive sense RNA 
viruses (which means the genome can be used directly in translation), that share a unique lifecycle and 50–80% sequence 
homology (between SARS-CoV, SARS-CoV-2 and MERS-CoV).20 Of the 29 open reading frames in its small genome, 
four encode for structural proteins: S (Spike), important for host recognition and attachment, M (membrane) and 
E (envelope), which mediate bilipid fusion in entry and release of the virus, and N (nucleocapsid), which forms the 
protective protein shell around the viral genome and mediates assembly of the final virion after replication.21 Structural 
proteins are essential to the entry and assembly of viruses and can therefore be targeted by antiviral therapies (Figure 1). 
Despite the important role of these proteins in the viral life cycle and their utility as targets for extracellular drug therapy, 
M, E and N proteins are nonetheless unattractive targets for the development of a broad-spectrum antiviral due to the 
high variability in protein sequence across the phylum.21,22 On the other hand, the ACE2 binding domain of the 
S protein, as determined by a team at Tsinghua University, Beijing, shows high structural conservation across the family 
of coronaviruses most related to SARS-CoV and SARS-CoV-2, making it a promising target for inhibitory binding.23

Due to the fact that structural proteins are most exposed to host immune recognition and are therefore subject to 
stronger selection pressure, intracellular viral proteins are far more conserved.22 The most important non-structural 
proteins (NSP) to the betacoronavirus life cycle are an RNA dependent RNA polymerase (RdRp) and two selective 
proteases, a serine-type protease (MPRO) and a papaine like protease (PLPRO).22 RdRp is essential for the reproduction of 
all non-retroviral RNA viruses that infect animals (animals do not express endogenous RdRp) and many that infect 
plants, and in positive sense RNA viruses it is used to first create a template negative strand and then replicate the 
genome aided by an RNA helicase.24 The RdRp protein is highly conserved in betacoronavirus with similarity of 96% 
between SARS-CoV and SARS-CoV-2, and 70% between MERS-CoV and SARS-CoV/SARS-CoV-2.25 The genome of 
most plant viruses are single positive strand RNA, which means there are potentially many phytochemical inhibitors of 
RdRp available from natural sources.8,26

Proteases MPRO and PLPRO are essential for post-translational processing in the viruses replicative cycle.22 Figure 2 
shows the despite a low percentage identity between PLPRO protein sequences in SARS and MERS coronaviruses (30– 
28%), structure-based multiple protein alignment revealed a conserved homology in the proteolytic active site (core root 
mean square deviation (RMSD) of 1.47). A further search of this conserved sequence on the Conserved Domain 
Database, showed that the catalytic domain preserves the cysteine protease catalytic triad (Cys, His, Asp) even with 
the most diverse members of the group.27 Many plant viruses use a papain-like cysteine protease for reproductive 

Figure 1 Function of structural proteins S, E, M and N in the mode of entry of SARS-CoV-2. I The S protein binds to ACE2 on the host cell membrane initiating endocytosis. 
II: host acidifies endosome, causing TMPRSS2 or Cathepsin L mediated proteolysis of S protein. III: Proteolysis of S protein causes membrane fusion, facilitated by E and 
M proteins, and release of viral genome. Nucleocapsid disassembles. (Su et al, 2021). Figure made using BioRender© at Biorender.com.
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cleavage28 which indicates there may be phytochemical inhibitors of PLPRO.29 The MPRO protease is similarly a popular 
target of competitive inhibition due to its conserved serine-like proteolytic domain.27

2‘-O-MTase protein is another promising betacoronavirus target, which binds to S-adenosylmethionine (SAM) to facilitate 
2‘-O-ribose methylation. It exists as a heterodimer made of two non-structural protein units, ie NSP16 and NSP10. NSP10 assists 
in the stabilization of NSP16 and SAM binding sites.22,30 A previous study has shown that the NSP16 and NSP10 protein 
sequence is highly conserved in SARS-CoV and SARS-CoV-2 with similarity values of 99.7% and 99.3%, respectively. In the 
case of MERS-CoV, the similarity with SARS-CoV/SARS-CoV-2 is lower at 53.9% and 63.8%, for NSP16 and NSP10, 
respectively. Despite the low similarity between SARS-CoV/SARS-CoV-2 and Mers-CoV, the 2‘-O-MTase protein is the highly 
conserved SAM binding pocket with similar interacting residues in betacoronavirus.31

The highly conserved binding pocket of the betacoronavirus protein targets (such as in MPRO, PLPRO, 2‘-O-MTase, 
and RdRp; Figure 3) opens up the potential for discovering a compound, which can bind effectively to a similar target 
protein of different species or variants from this genus to inhibit the protein’s activity. This strategy paves the way for the 
development of a broad-spectrum antiviral agent as a treatment for coronavirus infection.

Three strategies currently exist for developing new drugs targeted against SARS-CoV-2. The first is focused on 
existing broad-spectrum anti-virals including interferons, ribavirin, and cyclophilin inhibitors, which are all employed to 
treat pneumonia caused by coronavirus. The limitations with these are that they are too “broad-spectrum” and cannot 
neutralize coronaviruses in a targeted fashion. The second approach exploits existing molecular databases to screen for 

Asp286

His272

BA

C
D

Figure 2 Important structural features of PLPRO are conserved across the betacoronavirus family. (A) ClustalOmega alignment of PLPRO peptide sequence from MERS-CoV 
(first sequence, PDB: 4PT5), SARS-CoV (second sequence, PDB: 4MM3) and SARS-CoV-2 (third sequence, PDB: 6wx4), showing low sequence homology. (B) Protein 3D 
structure alignment with mTm-align (Dong et al, 2018) showing a common core with an RMSD of 1.48 (shown in magenta in both sequence view and 3D view) around the 
catalytic and peptide binding site. (C) Conserved Domain Database (NCBI) entry for betacoronavirus PLPRO conserved catalytic domain, showing alignment of most diverse 
members. Conserved catalytic triad, Cys, His and Asp, are highlighted in yellow (Lu et al, 2020). (D) SARS-CoV-2PLPRO (PDB: 6wx4) showing conserved catalytic triad. 
Figure made using Pymol© by Tubiana; Open-Source PyMOL is Copyright © Schrodinger, LLC. All Rights Reserved.
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molecules that may have therapeutic effects on coronavirus. The third strategy leverages genomic information and the 
pathological characteristics of different coronaviruses to develop novel targeted drugs. Theoretically, these therapeutics 
would exhibit better anti-coronavirus effects, however the research and development required could take greater than 
a decade.32

Molecular Docking Algorithms
Molecular docking is a widely used technique to determine a preliminary assessment of how well a ligand interacts with 
a drug target.33,34 The general approach of such algorithms is to use a predetermined structure of the macromolecular 
target (generally formatted as a PDB file) and 1) subdivide the entire structure or predetermined binding pockets into 
a search grid, 2) randomly place the ligand structure inside the grid, 3) assign the binding energy of the ligand-target pose 
based on a scoring function, 4) repeat steps 2 +3 exhaustively or until a threshold is achieved using heuristic optimization 
and 5) report this threshold. Several approaches can be used to shrink the search space as a non-parametric examination, 
otherwise it would become too computationally expensive for a library search.33 The number of poses that must be 
calculated is proportional to the size of the assigned grid and this dimension can usually be reduced by knowing 
predetermined binding sites for substrates (for example, in order to inhibit the S protein an inhibitor must bind to the 
ACE2 binding site).23 If important sites are not known or if allosteric binding is desired, “hot spots” can be determined 
before the search, by using cavity search algorithms (such as the one used by MolDock)34 or by using small molecular 
fragment probes to search to entire protein surface (small molecules have fewer poses and have, theoretically, better 
binding energies than more complex ligands).35 BetaCoV PLPRO has 3 conserved sites: a peptide binding site/catalytic 
domain, a zinc binding site and an ubiquitin-binding domain.27 All three appear to be important for the function of this 
protease and the life cycle of the virus.29 Establishing the hotspots of these domains and the drugability of each binding 
site might be beneficial for guiding a library search. Figure 4 shows three binding hotspots found by Fragment Hotspot 
Maps,35 showing overlap with all three conserved domains.

BA

DC

Figure 3 Ligand binding sites (yellow) of betacoronavirus proteins. (A) Superposition of PLPRO of SARS-CoV-2 (PDB: 7cjm, blue), SARS-CoV (PDB: 3e9s, red), and MERS- 
CoV (PDB: 5w8u, green). (B) Superposition of MPRO of SARS-CoV-2 (PDB: 6luv, blue), SARS-CoV (PDB: 3v3m, red), and MERS-CoV (PDB: 4rsp, green). (C) Superposition 
of 2’-O-MTase of SARS-CoV-2 (PDB: 6w4h, blue), SARS-CoV (PDB: 3r24, red), and MERS-CoV (PDB: 5ynb, green). (D) Superposition of RdRp of SARS-CoV-2 (PDB: 7bv2, 
blue) and RS-CoV (PDB: 6nur, red). Figure made by YMChoo using BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v21.1.0.20298 software program was used to 
perform the calculations and to generate the graphical results.
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Although systematic, exhaustive search strategies are sometimes employed by molecular dynamics (MD) algorithms, 
heuristic methods are preferential with ligands with more degrees of freedom.33 Different meta-heuristics are used to 
explore the search space efficiently, including a MonteCarlo approach (SMINA and ISO software), genetic algorithms 
(DockThor, GAsDock and GOLD) and particle swarm optimization (Plants). In general, Monte Carlo approaches 
randomly sample poses, identify clusters of high scoring poses and iteratively search inside the clusters for 
optimums.36 This algorithm works excellently for finding global optima while avoiding “trapping” in local optima, 
however it requires a large amount of sampling, scaling exponentially with the degrees of freedom of the ligand. Genetic 
algorithms (the most common approach) improve on Monte Carlo based approaches by reducing the amount of stochastic 
sampling. These algorithms 1) select the highest scoring poses in a random sampling, 2) “mutate” the samples by 
randomly altering their pose, 3) shuffle the bond rotations and average the position between two “mating” pairs (also 
called recombination), 4) retest, select the highest scoring poses and repeat 2–4 until a local maximum is found or a pre- 
set number of generations have elapsed.37

Database Searching
There are around 400,000 structures in the COlleCtion of Open Natural ProdUcTs (COCONUT),12 which means 
that an iterative search for a new inhibitor of a target protein, if each search took 2 minutes, would take 91 years 
and 2 months to complete (of course only if searches were run consecutively). Even with concurrent searches, 
iterative strategies are computationally expensive and would require a reduction of accuracy by using simpler 
approximations.33

A popular non-systematic approach is to use a fragment library, made from a library of structures, to iteratively build 
an “ideal inhibitor”. This approach can use a genetic algorithm or a deterministic meta-heuristic model, such as simulated 
annealing to build a stochastically optimized molecule.38,39 Each candidate can then be used to search the library of 
natural products for “real candidates” based on 3D similarity. Supplementary Table S1 provides a summation of the 
metrics that can be used to compare an ideal molecule to a library of real molecules. Based on these metrics, the top 
candidates from the library can then be tested by molecular docking in a small number of similar poses. This process can 
be repeated until a list of high scoring molecules are available.39

Alternatively, a meta-heuristic approach can be used to search an organized library. We note that the similarity scores 
based on metrics from Supplementary Table S1 and information from Table 1 can be used to arrange the library of 
molecules as nodes in n-dimensional space with edge weights being proportional to 3 dimensional similarity 
(Supplementary Table S1) and similarity of attributes (Table 2; Figure 5A).40

Catalytic domain

Zinc binding domain

Ubiquitin binding 
domain

Figure 4 SARS-CoV-2 PLPRO showing drugability hotspots in conserved domains. Fragment Hotspot Maps (Radoux et al, 2016) returned 4 binding hotspots (hydrophobic 
binding in yellow, hydrogen bond donor in red and hydrogen bond acceptor in blue) on top of the three active domains (blue circle – catalytic domain, grey circle – ubiquitin 
binding domain, green circle – zinc binding domain). Figure made using Pymol© by Tubiana; Open-Source PyMOL is Copyright © Schrodinger, LLC. All Rights Reserved.
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We propose that this network be explored by a particle swarm algorithm (Figure 5B and C) where only local optima 
are recorded to avoid over-representing structural homologues and a tabu list be maintained to ensure that the same 
molecule is not re-tested.41 After a list of high scoring molecules is extracted from the organized library, molecular 
docking of homologues surrounding the optimum in the network can be used to extract a pharmacore or to identify plant 
extracts for in-vitro validation.

In-Vitro Validation
The main weakness of in-silico drug design is the unrealistic approximations that must be used to shrink the computa
tional requirements of a given search. Often, quantum approximations and empirical scoring functions are used to 

Table 1 Quantifiable Molecular Attributes That Can Be Used to Classify Molecular Similarity

Molecular 
Attributes

Description Parameters and Assumptions

Quantitative 

Structure Activity 

Relationship, 
QSAR96

Based on Lasso Regression of attributes of 

characterized drugs versus their quantified 

activity.

Attribute list can be generated based on 

observation or generated by machine 

learning.

Differential 
solubility97

LogP = log base 10 of partition coefficient 
in a n-octanol- water system. Log P must 

not differ much from zero for differential 

solubility to be high. DS = |logP|Where |x| 
is the absolute value.

Assumption that drug must be taken up 
(hydrophilicity) and diffuse across 

barriers (lipophilicity).

Diffusability97 Inversely proportional to molecular 

weight.

Assumption that molecular size is 

inversely proportional to uptake by cells 

or diffusion across biological barriers.

Table 2 Databases Containing Natural Marine Compounds

Database Marine 
Compounds

Link Note

Seaweed 
Metabolite 

Database

1,110 https://www.swmd.co. 
in/

Only from algae.

MarinChem3D 30,117 http://mc3d.qnlm.ac/ All marine compounds.

Comprehensive 

Marine Natural 

Products 
Database

32,000 https://www.cmnpd.org/ All marine compounds.

Dictionary of 
Marine Natural 

Products

http://dmnp.chemnet 
base.com/faces/chemi 

cal/ChemicalSearch. 

xhtml

Paid access database.

MarinLit 35,790 http://pubs.rsc.org/ 

marinlit

Paid access database.

MetaboLights Not specified https://www.ebi.ac.uk/ 

metabolights/index

Generic Metabolites 

database, it is possible 
to select single species.
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simplify that calculation of binding affinities. Furthermore, receptor flexibility is generally not allowed in docking 
simulations due to the added search space entailed in moving both the ligand and the target.42 As a result, in-silico 
evaluation is best suited to a “hit to lead” approach, where a wide list of potential leads (termed “hits”) are assayed 
in vitro to narrow down the “true leads”.10,11,18,19,21,29,33,39,43

Selected natural extracts from in-silico analysis can then undergo high throughput screening for inhibitor activity. 
Techniques for finding PLPRO or MPRO inhibitors can utilize the proteolytic rate constant as an indicator of activity,44 by 
for example, using fluorescent polarization of fluorescently labelled peptides.45 Alternatively, a technique such as surface 
plasmon resonance can be used to directly measure KD dissociation constants.11,33 Once an extract is confirmed as being 
inhibitory, chromatographic fractions can be tested in another round of high throughput screening to identify the 
molecular formula of the inhibitor.29

In 2021, this group proposed that in-silico drug discovery could be exploited to generate a series of hits that would be 
traced back to natural product extracts, and that subsequently these extracts would be assayed using a mass spectrometry 
technique that allows the detection of ligands via mass signatures. This type of high throughput workflow allows for the 
rapid creation of natural, antiviral drug leads and could effectively lead to a broad-spectrum prophylactic/therapeutic for 
future betacoronavirus pathogens.46

Machine Learning and Drug Discovery
The terms machine learning (ML), artificial intelligence (AI) and deep learning (DL) are often used interchangeably but 
have distinctly different meanings, AI is the field of computer science that simulate intelligent behavior utilizing their 
environment as input. ML is a branch of artificial intelligence based on the idea that systems can learn from data, identify 

A

CB

Figure 5 A meta-heuristic strategy for searching a large chemical database for molecular docking. (A) Construction of the Network: For each pair of molecules, common 
structures are selected using a similarity score based on predetermined metrics. If the maximum similarity score is higher than a threshold, it is marked as a connection 
represented as an edge in the network constructed using a “push and pull” technique.40 (B) Swarm particle approach: A n number of nodes are selected to 'host' a particle, 
where the vector that the particle will take is defined by the adjacent neighbors of the node where the particle is a given momentum t based on an initial random velocity.41 

Each node the particle travels through is a structure that is computed by molecular docking. (C) Swarm particle convergence: The swarm particle algorithm starts at time 0 
with many random particles exploring the space through random vectors with their own magnitude, direction, and sense. With each iteration, the particle's vector will 
change with a velocity that is influenced by the optimal ligand that it has uncovered. Eventually, the particles will converge on an optimum at time.41 Figure made using 
BioRender© at Biorender.com.

https://doi.org/10.2147/IDR.S395203                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2023:16 2328

Boswell et al                                                                                                                                                          Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


patterns, recognize behaviors, and make decisions with minimal human intervention,47 while DL are the implementation 
of representation-learning methods with multiple levels of representation,48 being then a subset of ML and, it is 
commonly found implemented on neuronal networks (Figure 6). ML Is not a new term, it was coined in 1959 by 
Arthur Samuel an IBM engineer describing a checkers game.49 The capabilities of ML algorithms have matured in the 
past 20 years as computers and computational resources have gained in sophistication. Historically, the utility of ML 
algorithms has been limited by data availability and computational power. Since the 2000s ML tools have become more 
accessible, with several open-source libraries providing powerful and accessible methods. These libraries have enabled 
faster and wider application and implementation of ML algorithms to various tasks. The recent uptake in ML has seen it 
applied to a variety of tasks, including stochastic prediction and data classification.50 ML models have proven useful on 
a myriad of data types and tasks.

A range of open-source ML libraries available in various programming languages have been developed. The most 
common is Python, which enables the use of Scikit-learn,51 Keras,52 TensorFlow,42 Facebook AI Similarity Search 
(Faiss)53 and PyTorch.54 Their aptitude for pattern recognition has made these libraries useful in biomedical applications 
including neuroimaging, general pathology, and protein-folding.55–57 Just as there are many applications for ML, there 
are also many different machine models to choose from when performing a task. Types of ML can be broadly and not 
strictly categorised by their functionality, such as classification, prediction, or clustering or by the degree of user input, 
such as supervised, semi-supervised and unsupervised.58,59

ML algorithms do not always provide the optimal solution to a task as some data sets are simply not large enough to 
train an algorithm sufficiently. Sometimes, it is not feasible to analyze all the possible patterns one by one, in this cases, 
instead of getting an absolute deterministic solution, the ML algorithm will apply shortcuts to reduce the space search 
area and provide a good enough solution, like in the case of heuristics.60 Choosing an algorithm(s) for a given application 
is also an exhaustive process, due to the fact that no algorithm will be better than the other in every application and it is 
highly dependent on the particular case. Once the algorithm is selected, it is crucial to select the model that better 
generalizes the data,60 one way to do so is the tuning of the parameters. The influence of the refining can introduce bias if 
not done carefully.

In addition to these selecting and refining steps the hyperparameters of the algorithms can further introduce bias. The 
field of automated ML (auto ML) offers a potential solution to these problems. It utilizes ML techniques to automate data 

Figure 6 Graphical representation of the relationship between Artificial Intelligence, Machine Learning and Deep Learning.
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selection and preparation, model selection and hyperparameter optimisation, potentially reducing bias and allowing 
effective comparisons exploiting many algorithms and configurations.61 ML algorithms can result in overfitting, where 
the models produced fit too closely to the training data and are not representative of the reality. ML practitioners 
implement techniques such as the holdout method and cross validation to reduce the risk of overfitting.62–64 ML models 
are further limited by the available data, the quality of data pre-processing, selection, or reduction, the hyperparameters 
chosen and time constraints.

A common limitation when implementing ML, especially when considering biological data, is the high dimension
ality of them and a low number of observations. Too many features can exponentially increase the computational strain 
involved in training, testing, and implementation. An excess of features can also reduce the effectiveness of an algorithm 
by introducing noise. To reduce the number of features, feature selection, and feature reduction techniques can be 
implemented. Feature selection aims to extract the most relevant features from a dataset.65 This can be manual or 
automatic, with many of the automatic feature selection methods relying on statistical methods. Feature extraction aims 
to reduce the number of features by using the existing features to create new ones, lower in number and more 
representative, and discarding the old ones. Many feature extraction methods are in themselves unsupervised ML 
algorithms, examples include principal component analysis (PCA), Uniform Manifold Approximation and Projection 
(UMAP) and independent component analysis (ICA) (18).

In supervised learning, data is divided into training and test datasets. The performance of algorithms is assessed using 
the test data, which can inform changes to the hyperparameters and features. Testing data cannot be used to improve the 
model performance.50 In the drug discovery field ML algorithms enable searches of large databases for potential 
therapeutic compounds of interest, the results of these algorithms are then used to inform further studies, streamlining 
searches for potential drugs. In drug discovery, there are various possible features, which are often categorised by the 
dimension they describe. For example, 0D descriptors include molecular weight and counts of specific atom types such as 
heavy atoms. 1D descriptors describe the 1-dimensional features of a molecule such as acetyl or hydroxyl functional 
groups; 2-dimensional descriptors include topological features such as polarity number and Wiener index; 3-dimensional 
descriptors include geometrical molecular descriptors and steric properties.66 Other descriptors include stats on their 
simplified molecular-input line-entry system (SMILES).67–69

One of the first tasks when developing an ML algorithm for drug discovery is determining which combination 
of descriptors work most effectively with given datasets. These data are available for both ligands and the 
receptors they bind to, to train the ML algorithm(s) to find any underlying patterns between which molecules 
are likely to bind to each other, and then to test the efficacy of the trained algorithm using methods such as cross 
validation. ML algorithms have found applications alongside classical approaches from the early stages involving 
screening of compounds libraries, to the later phases including clinical trials, enabling improvements in the 
accuracy and speed of the drug discovery process.

One key factor used to identify suitable candidates is the estimation of the pharmacokinetics properties, ie, absorption, 
distribution, metabolism, excretion, and toxicity (ADMET). ADMET provides important insights into the behaviours of 
the compound in the living organism, including bioavailability and toxicity.70 Since the high complexity of biological 
organisms and chemical reactions, the production of a mathematical model capable of correctly taking properties 
represents a very challenging problem. Quantitative structure–activity relationship (QSAR) models, that try to relate 
chemical data to biological properties, and propose mechanisms of interaction among compounds and the target protein, 
were widely used to estimate ADMET properties. Both techniques, usually based on molecular descriptors (including 
fingerprint, 2D and 3D descriptors and steric parameters), have benefited from the introduction of ML approaches. 
Supervised ML methods predict single or multiple properties of the selected compounds from independent variables 
(single and multitask models) to reduce the number of experimental failures. Unsupervised ML models using unlabeled 
data, can be used to identify new scaffolds (scaffold-hopping) or compounds with query-like properties.70,71 Several ML 
algorithms are in use in QSAR and ADMET estimations, including k-nearest neighbour, random forest (RF), support 
vector machines (SVM), principal component analysis and deep networks, to both perform properties predictions and 
similarity analysis to obtain compounds with similar features from large datasets.67,70

https://doi.org/10.2147/IDR.S395203                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2023:16 2330

Boswell et al                                                                                                                                                          Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Multitask Deep Neural Networks (DNNs) are used to infer small-molecules properties and activities and make 
predictions about the readout of a molecule in a new experimental setup.72,73 These methods significantly boosted the 
classical statistical methods used before, due to the fact that they are faster and can efficiently predict relevant 
pharmacological parameters from large datasets, reducing the number of compounds to be tested in virtual screening 
(VS). The scoring functions in molecular docking programs must be able to position the ligands in the best available pose 
(docking power). Subsequently, the scoring function must correctly estimate the binding affinities based on the poses 
obtained (scoring power). Furthermore, it must classify the different compounds as good or bad ligands according to the 
obtained poses (ranking power).71 The classical scoring functions are based on force-fields, empirical-based, or 
knowledge-based. Here, ML approaches are used to improve the accuracy of binding energy predictions in various 
ways: SVM and RF trained on ligand-protein complexes described as geometrical features or chemical descrip
tors, RF-score based on features deriving from different docking programs and SVM to predict IC50 of protein 
inhibitors.71 Also, given a set of bound ligands to a target protein, the ranking power should correctly find the top 
hits among ligand poses. Here, for each experimentally obtained protein-ligand complex and relative binding 
affinity, the features from different scoring functions have been retrieved, the set of ligand-protein featured has 
been used to train 6 ML models able to rank the complexes and predict the highest, median and lowest binding 
affinity.71 Also, a non-parametric ML approach was proposed to build target-specific scoring functions, this 
method is considered useful in lead optimization and prediction of the best novel ligands. The docking power 
identifies the best binding pose of a ligand given a set of poses. The most stable complexes reside in the minimum 
of energy; different methods to search in the space are used to reach these configurations: Steepest descendant 
optimization, simulated annealing, stochastic approaches (Monte Carlo) and Molecular Dynamics. In this field 
SVM and RF insensitive to the docking pose accuracy has been proposed.71 Further improvements in ML 
approaches in docking power will improve the effectiveness and accuracy of docking simulations. Finally, the 
screening power is the ability to identify molecules that can effectively bind the target among random molecules. 
Here, scaffold hopping techniques are used to identify novel ligands based on similar chemical positioning. In ML 
aided VS approaches, an interesting procedure was used to build a discriminating SVM model, based on extended- 
connectivity fingerprints (ECFPs) and physical properties, to discern putative inhibitors of c-Met to other 
compounds from large libraries, the virtual screening carried only on the putative inhibitors revealed the better 
performance and more accurate compound selection for downstream analysis.74

ML has also been applied to compound synthesis after dereplication. Reaction condition recommendation 
remains an indispensable aspect for achieving computer-assisted synthesis. Accurate reaction conditions are 
needed for experimental validation and exert a significant effect on the success or failure of an attempted 
transformation. De novo condition selection has traditionally relied on chemists’ background knowledge and 
expertise. Neural-network models are being exploited to predict the chemical context (ie, catalyst(s), solvent(s), 
reagent(s)), in addition to the optimal temperature for any given organic reaction.75,76 Pairing chemistry and ML, 
via data-driven analyses, neural network predictions and monitoring of chemical systems, is adding to (i) our 
understanding of the complexity of chemical data and (ii) experimental design and streamlining.76

Integration of ML in Screening of Marine Natural Products
Examination of marine compounds active against SARS-CoV-2 proteins via virtual screening with ML-integrated 
approaches presents a novel and viable approach. Firstly, we need to consider available databases containing 
marine compounds to screen. Genomic databases could be considered in the future if a family of related 
compounds are identified. An example of how this might be achieved for natural products, ie, identifying 
biosynthetic signatures in genomic data, predictions of what structures will be created from those genomic 
signatures, and the types of activity one might expect from those molecules is reviewed by Prihoda et al.77

Today, available resources for marine compounds are limited to five commercial or free of charge databases of marine 
natural compounds. The two commercial databases are MarinLit78 and the Dictionary of Marine Natural Products.79 Both 
databases are the most comprehensive marine natural compounds databases available, containing data from publications, 
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synthesis, organisms, and biological activities.80 According to MarinLit, the database contains >35,000 articles. The open 
databases available are highlighted in Table 2.

● The Seaweed Metabolite Database (SWMD) contains 1110 compounds from Brown, Green and Red algae.81

● MarinChem3D contains more than 30,000 compounds with defined 3D structures and molecular descriptors.82

● The Comprehensive Marine Natural Products Database (CMNPD) contains more than 32,000 marine compounds 
with various physicochemical and pharmacokinetic properties and biological activity data.38

In addition to these databases, MetaboLights83 for metabolomics experiments, contains compounds from many 
sources, reducing the research only to the species of interest. Structural databases including ChEMBL, ZINC,84 

PubChem,84 DrugBank85 and ChemSpider86 include several molecules including already patented drugs, natural 
compounds, bioactive compounds and related properties. In addition, MoleculeNet87 is a benchmark designed for 
testing ML methods of molecular properties. It contains features for >700,000 molecules. MoleculeNet, developed 
the python library DeepChem,87 containing several ML and DL algorithms, and tools to retrieve descriptors and 
allow preprocessing of data. The direct connection of DeepChem to the MoleculeNet datasets, including toxicol
ogy, solubility and biological activities makes DeepChem an important tool in ML aided drug-design. Considering 
retrieving data from one of the two largest free databases (MarinChem3D or CMNPD), a dataset of >30,000 
compounds will be available that can reach higher numbers if added with inhibitors of the SARS-CoV-2 target- 
proteins (ie, 159 for the 3CLpro), according to ChEMBL, ID: CHEMBL3927 (Figure 7).

To reduce virtual screening times, and the number of false hits due to compounds with bad pharmacokinetic 
properties or toxic effects, integrating supervised and unsupervised ML approaches offers an advantage. Screens 
can focus on those compounds that demonstrate structural or pharmacokinetic similarities with already known 

Figure 7 Compounds with associated activities specifically against 3CLpro of SARS-CoV-2. ID: CHEMBL3927. Creative commons. Available from: https://www.ebi.ac.uk/ 
chembl/g/#browse/activities/filter/target_chembl_id%3ACHEMBL3927.
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drugs. To focus research on new molecular scaffolds with suitable pharmacophoric properties, a multitask DNN 
could be utilized to learn a model predicting multiple pharmacokinetics properties (including absorption, dis
tribution, metabolism, excretion, and toxicity) from physicochemical properties.70,72

The prediction of important pharmacokinetic properties will reduce the number of molecules to be screened and focus the 
analysis on those compounds with optimal pharmacophoric characteristics, reducing the risk of finding high affinity but 
unsuitable compounds. Furthermore, the model trained based on physicochemical properties will allow research unaffected by 
pre-existing structural patterns and scaffolds. On the other hand, including already known inhibitors and descriptors (pharma
cophore and structural fingerprints) allows for unsupervised approaches to group the datasets based on the similarity among the 
compounds and the inhibitors.69 A fuzzy clustering will provide overlapping clusters, the molecules can be classified in multiple 
clusters, to better represent the similarity relationships in the dataset. The selection of the clusters containing the inhibitors will 
make the virtual screening focused only on molecules that share similarities and, probably, similar binding affinities.

Datasets of protein-ligand complexes, obtained from PDB (https://www.rcsb.org/), can be used to train ML models to better 
estimate ligand–protein interactions, binding energies and rankings, improving performance and accuracy of the molecular 
docking analysis.71 Once obtained the top hits from the molecular docking process, ligand-protein complexes should be validated 
using MD simulations. These analyses are based on force fields to approximate the intra- and inter-molecular interactions among 
solvent, protein, and ligand. Despite the high computational costs, MD makes it possible to study numerous factors such as 
optimization of the poses, the stability of the complexes, interactions, and binding energies. Since MD simulations require high 
computational costs, ML approaches have been proposed to replace or work with MD simulations based on force-fields. Starting 
from a dataset containing well-defined ligand and protein sequences, added with the fingerprints relative to the ligands, some ML 
models have been trained to predict the binding pose and energy of the ligand-protein complexes.88–90

These models are designed to work in the very initial stages of the drug-design process, the robustness highly 
depends on the variety and quality of the training datasets. Similar ML approaches can be used to reduce the 
number of compounds to be screened and eventually, depending on the robustness of the model, be used to skip 
docking and MD simulations. Also, several ML approaches have been proposed to enhance the speed and 
accuracy of force-fields and scoring functions, cutting the time required for MD simulations.91–93 These ML 
models have been trained on 3D properties (X-Ray, ab-initio MD) and features deriving from already existing 
scoring functions. Finally, to reduce the number of MD runs needed to retrieve the best pose, a probabilistic ML 
model based on the Best Arm Identification (BAI) has been proposed.94 This approach does not replace or 
enhance the MD analyses but selects the most promising poses to reduce the number of runs and therefore the 
calculation costs where these are limited. Figure 8 summarizes the options for integrating ML approaches into the 
drug-design workflow. The choice of the optimal route depends on the available data (number of compounds to be 
screened, known inhibitors, available features), characteristics of the target proteins (similarity to other known 
viral proteins, the distinctiveness of the active site and finally the computational resources).

Information captured for different natural product including spectra (eg, MS, NMR, etc.), binding affinities 
with protease targets, presence/absence component molecules and their respective anti-viral activity, are poten
tially relevant features for discovering natural products with a high probability of SARS-CoV-2 inhibition. 
Although such features when considered simultaneously may provide insight into candidates with the greatest 
likelihood of success for inhibition. Furthermore, identification of key features or combinations of features likely 
to have strong inhibitory effects can be used in screening newly discovered natural products.

A recent success was a study aiming to discover potential inhibitor(s) of Transmembrane protease, serine 2 
(TMPRSS2) via virtual screening against a homology model of TMPRSS2 using the library of marine natural 
products (MNPs).95 Molecular docking, binding affinity analysis using MM-GBSA and ADME evaluations were 
carried out to explore the inhibitory activity of MNPs against TMPRSS2 and determine their pharmacokinetic 
properties. Seven MNPs inhibited TMPRSS2 and one in particular, MNP-10 or Watasenia β-D- Preluciferyl 
glucopyrasoiuronic acid, was the optimal inhibitor of TMPRSS2 with acceptable pharmacokinetic properties. 
This MNP holds promise as a novel TMPRSS2 blocker to combat SARS-CoV-2.
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Conclusion
Viral structural proteins are most vulnerable to the host immune defense and are therefore subject to stronger selection pressure 
and mutate more frequently than intracellular viral proteins. From the perspective of therapeutic intervention the fact that 
intracellular viral proteins are better conserved makes them better targets for broad-spectrum therapeutic intervention. 
Molecular docking determines the interaction of a ligand with a drug target. The powerful computational ability afforded by 
molecular docking, ML and databases of marine natural products will help the identification of broad-spectrum inhibitors for 
SARS-CoV-2 and other betacoronaviruses. ML algorithms facilitate searches of large databases for potential therapeutic 

Figure 8 Typical in-silico drug-design workflow. In green are highlighted ML approaches that can be exploited to improve speed, accuracy, and performances of the analyses.
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compounds of interest, the results subsequently inform further studies, and streamlining searches for potential drugs. The natural 
world is likely to be a source of useful small molecule antivirals against RNA viruses like coronaviruses that utilize papaine-like 
proteases and RdRp for replication. In-vitro-only high throughput screening of natural product extracts is an inefficient and 
expensive strategy. In-silico augmentation of drug discovery is at the cutting edge of SARS-CoV research and pharmaceutical 
research in general. ML algorithms have found applications alongside traditional approaches from the initial stages involving 
compounds library screening, to the later phases including clinical trials, enabling improvements in the accuracy and speed of the 
drug discovery process.
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