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Abstract: Interleukin-1 (IL-1) is a critical neuroinflammatory mediator in the central nervous 

system (CNS). In this study, we investigated the effect of IL-1 on inducing inflammation-

related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. 

Interleukin-1 beta (IL-1β) is found to be produced by the two microglial cell lines constitutively, 

but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded 

to IL-1β stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of 

astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial 

cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, 

IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated 

by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. 

These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and 

suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple 

responses from different cell types in the CNS to IL-1.

Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene 

expression

Introduction
Interleukin-1 (IL-1) is involved in multiple functions in the central nervous system 

(CNS). In neuroimmune communication, IL-1 induces fever, increased slow wave 

sleep, increased hypothalamic-pituitary-adrenal (HPA) activation, and sickness 

behaviors.1 During brain injury, IL-1 modulates neural inflammation to exacerbate2 

or reduce secondary tissue damage, depending on specific conditions.3 In Alzheimer’s 

disease, IL-1 was implicated as a critical inflammatory cytokine that could contribute 

to the progression of this disease.4 Current literature suggests that IL-1 is involved in 

numerous physiological and pathological processes in the CNS.

The diverse activities of IL-1 in the CNS have been associated with the different 

cell types that IL-1 might act on. For example, IL-1-induced sickness behavior has 

been associated with IL-1’s action on brain endothelial cells;5 IL-1-mediated changes in 

brain tissue injury and recovery have been associated with IL-1’s action on astrocytes;6 

and IL-1-induced changes in brain cytokine levels have been associated with IL-1’s 

action on microglia.7 Whether IL-1 induces distinct effects from these different CNS 

cell types has not been clarified.

In vivo, when IL-1 is injected directly into the cerebral ventricles, many different 

cell types are activated, including neurons, astrocytes, microglia, and endothelial 

cells.8 Activation of these cell types causes discrete patterns of gene expression in 
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different cell types: eg, c-fos in paraventricular nucleus 

(PVN) neurons, glial fibrillary acidic protein (GFAP) in 

astrocytes, IL-1  in microglia, and COX-2  in endothelial 

cells. It is not clear, however, which cells are activated by 

the direct action of IL-1 on the receptors of IL-1 on the cell 

membrane and which cells are activated, not by IL-1 directly, 

but indirectly by other signaling molecules induced by IL-1 

from a different cell type.

Previous studies have attempted to isolate the direct 

action of IL-1 on a specific CNS cell type by examining the 

effects of IL-1, in vitro, in primary cultures.9–11 These primary 

cultures were typically generated from neonatal brains; the 

results generated from these cultures may not reflect IL-1’s 

effect on adult CNS cells.12 More importantly, cells in the 

primary culture are generally not pure, rendering complete 

exclusion of an observed effect from contaminating cell 

types difficult.

In this study, we tested patterns of selected gene 

expression in several CNS cell lines representing different 

cell types of the CNS. In addition, we examined the signal 

transduction pathways mediating IL-1-induced effects in 

these cell types.

Materials and methods
Cell culture
The murine astrocyte cell lines (C8-D1A, C8-D30, and C8-S), 

murine brain endothelial cell line (bEnd.3), and murine 

peripheral endothelial cell line (SVEC4-10) were cultured in 

Dulbecco’s modified eagle medium (DMEM) (supplemented 

with 10% fetal bovine serum [FBS], 100 units/mL penicillin G, 

100 µg/mL streptomycin). The murine microglial cell lines 

(EOC2 and EOC20) were cultured in the growth medium 

(DMEM, 70%; LADMAC [mouse bone marrow, producing 

colony stimulating factor-1]-conditioned media, 20%; and 

FBS, 10%). Cultures were maintained at 37°C with 95% 

humidity and 5% CO
2
. Cells were used at approximately 

90% confluency.

Experimental manipulation
Cells were seeded in 6-well plates with 2 × 106 cells/well. 

Recombinant mouse interleukin-1 beta (IL-1β) (1 ng/mL, 

R&D Systems®, Minneapolis, MN) was used to stimulate the 

astrocytes and brain endothelial cells for 2, 4, or 16 hours. 

Culture medium (MC) was used as control. In signal trans-

duction blockade experiments, SP600125 (JNK inhibitor II, 

40  µM, Calbiochem®, EMD Chemicals Inc, Gibbstown, 

NJ), PD98059 (MEK1  inhibitor, 20  µM, Calbiochem®), 

SB203580 (p38 MAPK inhibitor, 20 µM, Calbiochem®), 

or BAY11-7082 (NF-κB pathway inhibitor 5 µM, Biomol®, 

Enzo Life Sciences, Plymouth Meeting, PA) was first 

dissolved in dimethyl sulfoxide (DMSO) and then added to 

the culture medium 1 hour before IL-1β stimulation. Cells 

were harvested 2 hours after IL-1β stimulation.

RNA isolation and cDNA preparation
Cells were harvested and mRNA was isolated (Qiagen 

RNeasy® Mini Kit, Valencia, CA) from both IL-1β- treated 

cells and control cells. The RNase-Free DNase Set (Qiagen, 

Valencia, CA) was used to digest DNA during RNA 

purification. To generate cDNA, 1 µg of RNA was mixed 

with 300 ng of random primer (Invitrogen™, Carlsbad, CA) 

and 1 µL of 10 mM dNTPs for each sample. The mixture was 

incubated at 70°C for 5 minutes and then chilled on ice. Then, 

the mixture was incubated with 2 µL reverse transcription 

buffer and 1µL M-MuLV reverse transcriptase (New England 

Biolabs®, Ipswich, MA) at 37°C for 1  hour. Finally, the 

resulting cDNAs were heated to 95°C for 5 minutes to inac-

tivate the enzyme and were stored at -20°C until use.

Real-time polymerase chain reaction
Polymerase chain reaction (PCR) analyses were performed 

to detect the expression of iNOS, Cox-2, TNF-α, IL-6, 

IL-1β, IL-1R1, MCP-1, CXCL-1, VCAM-1, ICAM-1, and 

G3PDH (as an internal control). PCR primers used in this 

study are listed in Table 1 (TNF-α primers were obtained 

from Applied Biosystem TaqMan® gene expression assay, 

Carlsbad, CA). The expression of IL-1 receptor, type I 

(IL-1R1) gene was detected by SYBR® green PCR system 

(Applied Biosystem, Carlsbad, CA), while the expression 

of all other genes was detected by the iCycler iQ real-time 

system (Bio-Rad, Hercules, CA). Real-time PCR results 

were expressed as relative levels of RNA over that of the 

G3PDH. The detection limit of real-time PCR was set 

by the threshold cycle number of a PCR, which detects a 

single copy of a given sequence. A sample was deemed 

undetectable if the threshold PCR cycle number was over 

the detection limit.

ELISA
ELISA kits for MCP-1, VCAM-1, COX-2 (R&D Systems®, 

Minneapolis, MN, catalog number: MEJ00, MVC00, and 

KCB4198, respectively), and IL-6 (BD Biosciences, San 

Diego, CA, catalog number 555240) were used. Protein 

levels of MCP-1, VCAM-1 and IL-6 were measured in cell 

supernatant according to the manufacturer’s instructions. 

A measure of 2.0  ×  106 C8-S, C8-D1A, C8-D30, or 
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Table 1 PCR primers for real-time PCR measurement of target genes

Name Forward Reverse Probe

IL-1R1 5′-GTCCCTGACTTCAAGAATTACC 5′-CTCCAAGACCTCAGGCAACAG NA
CXCL-1 5′-CTGCACCCAAACCGAAGTC 5′-AGCTTCAGGGTCAAGGCAAG 5′-CACTCAAGAATGGTCGCGAGGC
MCP-1 5′-TTGGCTCAGCCAGATGCA 5′-CCTACTCATTGGGATCATCTTGC 5′-AACGCCCCACTCACCTGCTGCTAC
ICAM-1 5′-CACAGAACTGGATCTCAG 5′-GAGCTTTGGGATGGTAGCTG 5′-TGGCATTGTTCTCTAATGTCTCCGAGGC
VCAM-1 5′-CGATTGCTCAAATCGGTGAC 5′-GTCTATCTGGGTTCTCCATG 5′-TCCATGGCCCTCACTTGCAGCA
COX-2 5′-CAGCCAGGCAGCAAATCC 5′-TCAAATCCTGTGCTCATACATT 5′-TGCTGTTCCAATCCATGTCAAAAC
IL-1β 5′-GGCCTCAAAGGAAAGAATCTATACC 5′-GTATTGCTTGGGATCCACACTCT 5′-ATGAAAGACGGCACACCCACCCTG
IL-6 5′-TATGAAGTTCCTCTCTGCAAGAGA 5′-TAGGGAAGGCCGTGGTT 5′-CCAGCATCAGTCCCAAGAAGGCAA
iNOS 5′-CAGCTGGGCTGTACAACCTT 5′-TGAATGTGATGTTTGCTTCGG 5′-CGGGCAGCCTGTGAGACCTTTGAT
G3PDH 5′-GGCAAATTCAACGGCACAGT 5′-GGGTCTCGCTCCTGGAAGAT 5′-AAGGCCGAGAATGGGAAGCTTGTCATC

Markers IL-1β

Astrocytes Brain endo.

C8-D1A C8-S C8-D30 bEnd.3

CXCL-1 + + + + + + + + + + +
MCP-1 + + + + + + + + +
ICAM-1 - - - + + +
VCAM-1 + + - + + + + +
COX-2 + - - + + +
IL-6 - - - + + +
 IL-1β/BAY11-7082
CXCL-1 + - + +
MCP-1 + - + +
ICAM-1 - - - -
VCAM-1 + - - +
COX-2 - - - + + +
IL-6 - - - -
 IL-1β/SB203580
CXCL-1 + + + + + + + + + + +
MCP-1 + + + + + + + + +
ICAM-1 - - - + + +
VCAM-1 + + - + + + + +
COX-2 + - - -
IL-6 - - - + + +

Note: IL-1R1 is measured by the SYBR green method, which does not require a probe.
Abbreviation: PCR, polymerase chain reaction.

bEnd.3  cells were stimulated by 1  ng/mL of IL-1β for 

4  hours. Culture medium was used as control. Cell 

supernatant samples were centrifuged to remove particulates 

and were aliquoted and stored at -20°C before use. Protein 

levels were calculated using standard curves generated from 

reference proteins provided in the ELISA kits.

COX-2, an intracellular protein, was measured by a cell-

based ELISA. A total of 20,000 C8-S, C8-D1A, C8-D30, 

or bEnd.3 cells were seeded into each well of the 96-well 

microplate overnight. Cells were treated with 1 ng/mL of 

IL-1β for 4 hours or with control medium. Then, the cells 

were fixed in 4% formaldehyde, quenched with a wash buffer 

containing 0.6% H
2
O

2
 and blocked with a blocking buffer 

containing 10% FBS (these buffers were provided in the kit). 

Cellular COX-2 and GAPDH were detected by a mouse 

anti-COX-2 and a rabbit anti-GAPDH. The anti-COX-2 

antibody was labeled by a secondary antibody conjugated 

with horse radish peroxidase (HRP) and visualized by a 

fluorescence substrate (F1, detectable at 600 nm) and the 

anti-GAPDH antibody was labeled by a secondary antibody 

conjugated with alkaline phosphatase (AP) and visualized by 

a different fluorescence substrate (F2, detectable at 450 nm). 

Control wells, with no primary antibody added, were 

included to establish background fluorescence. Background 

fluorescence was subtracted from the fluorescence in sample 

wells. COX-2 protein levels were calculated by dividing 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2011:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

14

An et al

the COX-2-detecting fluorescence at 600 nm in each well 

by the GAPDH-detecting fluorescence at 450 nm in each 

well to obtain relative fluorescence unit (RFU).

Statistical analysis
All the data are presented as mean  ±  standard error of 

the mean (SEM). Variations in mRNA expression levels 

were evaluated by one-way analysis of variance (ANOVA) 

followed by post-hoc analysis (Tukey test). All tests were 

considered significant if P , 0.05.

Results
Figure  1  shows that IL-1R1 was detectable in all three 

astrocyte cell lines and the brain endothelial cell line; it was 

not detected in the two microglial cell lines (data not shown). 

We also detected IL-1R1 in the peripheral endothelial cell 

line, SVEC4-10, which is known to express IL-1R1, to verify 

our analysis (Figure 1). In the astrocyte lines, IL-1β induced 

increased expression of MCP-1, CXCL-1, and VCAM-1 

(Figure  2). Increased expression of MCP-1 was found in 

all three astrocyte lines, with the highest induction levels 

occurring at 2 hours after the IL-1β stimulation and the level 

of induced MCP-1 declining precipitously at 4 and 16 hours 

post-IL-1β stimulation. The strongest induction occurred in 

the C8-D30 line and the weakest in the C8-S line. Similarly, 

CXCL-1 was induced by IL-1β in all three astrocyte lines; the 

strongest induction occurred again in the C8-D30 line, but 

the weakest induction was found in C8-D1A cells. VCAM-1 

was not induced in C8-S cells, but in both C8-D1A and 

C8-D30 cells, with the stronger induction in C8-D1A cells. 

IL-1β did not induce the expression of ICAM-1, COX-2, 

iNOS, TNFα, IL-1β, and IL-6  in these astrocyte lines 

(data not shown).

IL-1β-induced gene expression in the brain endothelial 

cell line is shown in Figure 3. The endothelial genes that 

were induced by IL-1β include MCP-1, ICAM-1, CXCL-1, 

VCAM-1, IL-6, and COX-2, whereas the expression of 

iNOS, TNFα, and IL-1β was not induced by IL-1β (data not 

shown). Again, peak induction levels were seen at 2 hours 

post-IL-1β stimulation. Whereas MCP-1, ICAM-1, CXCL-1, 

VCAM-1, and COX-2 mRNA expression gradually declined 

thereafter, the IL-6 expression abruptly returned to the basal 

level at 4 hours post-IL-1β stimulation.

Previous studies have shown that the microglial cell is 

a major producer of inflammatory mediators. In addition, 

cells with very low expression of IL-1R1 were known to 

respond to IL-1β stimulation.13 Therefore, we examined 

IL-1β-induced gene expression in the two microglial cell 

lines, although IL-1R1 mRNA was not detected in either line. 

Figure 4 shows that TNFα, IL-1β, MCP-1, and iNOS were 

constitutively expressed in the EOC2 cells (Figures 4A–D). 

After IL-1β stimulation, the expression of these genes was not 

changed at 2, 4, and 16 hours post stimulation. Similarly, in 

EOC20 cells, TNFα, IL-1β, and MCP-1 were constitutively 

expressed and their expression was not altered after the IL-1β 

stimulation (Figures 4A–C).

Next, we used specific inhibitors of signal transduction to 

determine the signaling pathways that mediate IL-1β-induced 

gene expression. NF-κB pathway inhibitor (BAY11-7082), 

JNK pathway inhibitor (JNK inhibitor II), ERK pathway 

inhibitor (PD98059), or p38 MAPK inhibitor (SB203580) 

was used. Because the highest gene expression occurred 
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at 2 hours after IL-1β stimulation, we pretreated cells with 

an inhibitor for 1 hour and stimulated cells with IL-1β for 

2 hours. Figure 5 shows that in astrocyte lines, the induced 

expression of MCP-1, VCAM-1, and CXCL-1 can all be 

completely inhibited by the NF-κB inhibitor, BAY11-7082. 

Other inhibitors did not alter IL-1β-induced gene expres-

sion in these astrocyte lines. Figure 6 shows that in the brain 

endothelial cell line, pretreatment of BAY11-7082 abrogated 

the induction of MCP-1, CXCL-1, VCAM-1, ICAM-1, and 

IL-6. Other inhibitors did not alter IL-1β-induced expression 

of these genes (data not shown). In contrast, IL-1β-induced 

COX-2 expression was not inhibited by BAY-11-7082, but 

by SB203580.

To examine whether the distinct induction patterns 

observed at the mRNA level are mirrored at the protein 

level, we measured IL-1β-induced MCP-1, VCAM-1, IL-6, 

and COX-2 protein levels in the three astrocyte cell lines and 

brain endothelial cell line (Figure 7). MCP-1 protein was 

induced in all four cell lines, with the lowest induction in the 

C8-S cells (Figure 7A). VCAM-1 was induced in C8-D1A, 

C8-D30, and brain endothelial bEnD.3 cells, but not in C8-S 

cells (Figure 7B). The strongest induction occurred in the 

bEnD.3 cells withVCAM-1 in bEnD.3 more than seven times 

higher than those in the other cells. Whereas IL-6 was not 

induced in C8-S and C8-D1A cells, it was dramatically 

induced in both C8-D30 and bEnD.3  cells (Figure  7C). 

COX-2 was not induced in all three astrocytes, but was 

induced in the brain endothelial cells (Figure 7D).

Discussion
IL-1R1 is expressed at very different levels in the tested brain 

endothelial, astrocyte, and microglial cell lines. The highest 

expression of IL-1R1 is found in brain endothelial cells 

(Figure  1). This is consistent with previous studies that 

showed brain endothelial cell as the major cell type that 

carries CNS IL-1R1.14–16 In addition, endothelial IL-1R1 has 

been shown to mediate fever, brain endothelial COX-2 

expression, and CNS leukocyte infiltration induced by 

intracerebral IL-1β injection.5 In addition, our real-time PCR 

assay also detected IL-1R1 in a peripheral endothelial cell 

line, SVEC4-10, confirming the ability of the assay to detect 

known IL-1R1 expression.17
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Intermediate levels of IL-1R1  mRNA were detected 

in the three astrocyte lines and IL-1R1  mRNA was not 

detected in the two microglial cell lines. In vivo microglial 

and astrocyte expression of IL-1R1 was not found in many 

studies in the normal adult brain by in situ hybridization or 

by immunohistochemistry.14–16 After brain injury, however, 

IL-1R1 expression in astrocytes and microglia near the site 

of injury has been reported.18 In vitro, IL-1 can directly alter 

the phenotype of astrocytes19 and induce the expression of 

proMMP9,20 S100B,9 and EP3 receptors on astrocytes;21 

direct action of IL-1 on primary (postnatal) mouse microglial 

culture has been shown to induce the expression of 

IL-17.7 Thus, IL-1R1 may be expressed in activated astrocytes 

and microglia or it may be expressed in these cell types dur-

ing development. The astrocyte and microglial cell lines used 

in the present study may represent only part of the in vivo 

phenotype spectrum of these cell types.

The three astrocyte cell lines used in the present study 

represent the type 1 (C8-D1A), type 2 (C8-S), and type 

3 (C8-D30) astrocytes. In culture, C8-D1A and C8-S 
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a cell adhesion molecule, VCAM-1, in C8-D30 and C8-D1A 

cells. Interestingly, the highest induction of VCAM is seen in 

the C8-D1A cells (VCAM-1/G3PDH = 0.0018 ± 0.0002), not 

C8-D30 cells (VCAM-1/G3PDH = 9.8 × 10-4 ± 6 × 10-4). It is 

possible, the type 1 astrocytes (C8-D1A) are more associated 

with the brain blood vessels in vivo than the type 3 astrocytes 

(C8-D30) and, therefore, are more involved in vascular 

leukocyte infiltration that requires the presence of cell adhe-

sion molecules at the blood brain barrier.25 It is striking that 

no VCAM-1 expression was induced in the C8-S cells. This 

is consistent with the notion that these type 2 astrocytes may 

be similar to the fibrous astrocytes in vivo, which are mainly 

present in the white matter as structural glial cells.26

The broadest and the strongest induction of gene 

expression by IL-1β in the present study was found in the 

endothelial cell line. IL-1β induced the expression of both 

chemokines (MCP-1 and CXCL-1), both adhesion molecules 

(ICAM-1 and VCAM-1), a cytokine (IL-6), and an inflam-

matory mediator (COX-2) expression. The IL-1β-induced 

expression levels of MCP-1, CXCL-1, and VCAM-1  in 

the endothelial cells were all significantly higher than their 

counterparts found in any of the three astrocytes. Thus, IL-1β 

acting directly on brain endothelial cells may be the dominant 

action during neuroinflammation. This is consistent with the 

observation that direct injection of IL-1β into the cerebral 

ventricles induces significant endothelial expression of a 

large number of inflammation related genes.8 In addition, 

the induction of COX-2 and IL-6 by IL-1β is only observed 

in the brain endothelial cells, not in the astrocytes. Thus, 

astrocytes may contribute to a smaller set of gene expression 

during IL-1β-induced neuroinflammation.

The two microglial cell lines tested did not respond to 

IL-1β stimulation, consistent with the fact that IL-1R1 could 

not be detected on these cells in the present study. Because 

previous studies showed that IL-1  may exert powerful 

effects on cells carrying very little IL-1R1,13 we stimulated 

these microglial cells with IL-1β in case our method was 

not sensitive enough to detect minute amounts of IL-1R1. 

IL-1β stimulation did not induce mRNA expression in any of 

the genes tested. Interestingly, in EOC2 cells, TNFα, IL-1β, 

MCP-1, and iNOS are constitutively expressed, whereas in 

EOC20 cells, only TNFα, IL-1β, and MCP-1 are constitu-

tively expressed. Therefore, EOC2 and EOC20 may represent 

microglial cells that are at different activation states. Previous 

studies showed that microglia is a major cellular source of 

the proinflammatory cytokines IL-127–29 and TNFα30,31  in 

the CNS. The present results confirm this notion, but they 

also show that microglia may not be the responder cells to 
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stimulation. *Indicates significant increase of an mRNA level after IL-1β stimulation 
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have small somata while C8-D30 has a large somata and 

no processes. C8-D1A contains multiple short processes 

while C8-S has only two processes with one of them being 

very thin and long. These cells may resemble different 

subtypes of astrocytes in vivo. Thus far, C8-D1A has 

been used most frequently in the analysis of astrocyte 

functions in vitro.22,23 It is interesting to note that C8-S, 

which has the morphology of structural fibrous astrocytes 

in vivo, expresses the least amount of IL-1R1 (IL-1R1/

G3PDH = 4.1 × 10-5 ± 2 × 10-5), whereas C8-D30, which 

has morphology resembling a phagocytic or reactive 

astrocyte in tissue,24 expresses the highest amount of 

IL-1R1 (IL-1R1/G3PDH = 2.8 × 10-4 ± 8.4 × 10-5).

IL-1R1 is not detected in the two microglial cell lines. 

These cells may resemble themicroglia in vivo that have not 

been activated to the state of IL-1R1 expression.

In the three astrocytes, IL-1β induced significant expres-

sion of MCP-1, a monocyte chemokine, and CXCL-1, a 

neutrophil chemokine, with the strongest induction seen in 

the C8-D30 cells (MCP-1/G3PDH = 0.069 ± 0.006; CXCL-1/

G3PDH  =  0.046  ±  0.004). These results suggest that the 

activated astrocytes may contribute to chemotaxis when they 

are stimulated by IL-1β. IL-1β also induced the expression of 
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Cell type-specific actions of IL-1

IL-1. This is different from some peripheral monocytes in 

which IL-1 induces its own expression.32 Therefore, unless 

microglia is activated to the state of an IL-1R1-expressing 

cell, it is not likely to trigger self-amplifying neuroinflam-

mation in the brain.

IL-1β-induced expression of MCP-1, CXCL-1, and 

VCAM-1 in the astrocytes is blocked by the inhibitor of 

NF-κB, not the inhibitors of ERK, JNK, and p38 MAPK, 

demonstrating that IL-1β induces the expression of these 

genes exclusively via the NF-κB pathway in astrocytes. 

In the brain endothelial cells, IL-1β-induced expression 

of MCP-1, CXCL-1, VCAM-1, ICAM-1, and IL-6 was 

also blocked by the inhibitor of NF-κB, not the inhibitors 

of other signal transduction pathways. On the other hand, 

IL-1β-induced expression of COX-2 is not blocked by the 

inhibitor of NF-κB, but by the inhibitor of p38 MAPK 

in the brain endothelial cells. This is surprising because 

IL-1β-induced COX-2 expression has been shown to be 

mediated by ERK, JNK, p38, and NF-κB in fibroblasts,33 

and by NF-κB in epithelial cells34 in the literature. 

Therefore signaling pathways that mediate IL-1-induced 

COX-2 expression and the expression of other inflamma-

tory genes may be segregated as a unique feature of brain 

endothelial cells. This has important implications in how 

IL-1-induced neuroinflammation and neural signaling may 

be separately regulated. Previously, studies have shown that 

in vivo COX-2 expression in brain endothelial cells is an 

intermediate step in transmitting peripheral IL-1  signals 

to the brain,5,35 and brain endothelial NF-κB activation is 

associated with CNS IL-1-mediated neuroinflammation.8 

Interestingly, both CNS and peripheral IL-1 can induce 

brain endothelial COX-2 expression, but only CNS IL-1 

can induce neuroinflammation that is characterized by 

leukocyte infiltration into the brain.8 It is intriguing to specu-

late that IL-1-induced neuroinflammation, via endothelial 

NF-κB, and IL-1-induced neural signaling, via endothelial 

COX-2, could be separated due to the fact that the different 

endothelial signal transduction pathways are operative for 

these two different functions.

The distinct cell type-specific induction patterns caused 

by IL-1β stimulation occurred at both mRNA and protein 

levels. Results presented in Figure 7  show IL-1β-induced 

protein expression of MCP-1, VCAM-1, IL-6, and COX-2 in 

different cell lines largely resembles the patterns found for 

the expression of mRNAs of these molecules. For example, 

VCAM-1 mRNA was induced by IL-1β in both C8-D1A 

and C8-D30  cells, but not in C8-S cells (Figure  5). 

Similarly, VCAM-1 protein was induced in the C8-D1A and 

C8-D30 cells, but not in C8-S cells (Figure 7). In addition, 

COX-2 protein was induced only in the brain endothelial 

cell line, not in the astrocyte cell lines. This result parallels 

the results of COX-2 mRNA induction patterns described 

in Figures  2 and 3. Among the three astrocyte cell lines, 

C8-S was the least responsive to IL-1β stimulation in terms 

of induction of MCP-1, VCAM-1, and IL-6 at both mRNA 

and protein levels. The only disparate induction patterns 

between mRNA and protein levels were found in IL-6 

expression levels in C8-D30 cells. In these cells, IL-1β did not 

induce increased IL-6 mRNA expression (data not shown), 

but induced significant IL-6 protein expression (Figure 7). 

It is known that in certain cell types, IL-1 can induce 

increased production of IL-6 without increased transcription 

of IL-6 mRNA via a mechanism of mRNA stabilization.36 

It is possible, that in C8-D30 cells, IL-1β induces increased 

IL-6 protein levels via this mechanism.

In summary, IL-1 acting directly on astrocytes, microglia, 

and endothelial cells induces cell type-specific responses. 

Microglial cells tested in the present study constitutively 

expressed IL-1, but did not respond to IL-1. The astrocyte 

responses to IL-1 can be differentiated by the subtype of 

astrocytes tested, with the reactive astrocytes exhibiting 

the strongest induction of neuroinflammatory genes and the 

structural astrocytes the weakest induction of these genes. 

The strongest responders to IL-1 were the brain endothelial 

cells, which used NF-κB-mediated pathways to express 

genes related to leukocyte infiltration, but p38 MAPK to 

express COX-2.
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