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Background: The use of electronic health records (EHR) data to assess drug effectiveness in clinical oncology practice is of great
interest to regulators, clinicians, and payers. However, the utility of EHR data in clinical effectiveness studies may be limited by
missing data, unmeasured confounding, and imperfect outcome surveillance. This study sought to emulate and compare the results of
a randomized controlled trial investigating the efficacy of palbociclib with fulvestrant vs letrozole in advanced breast cancer.
Methods: This was a cohort study using longitudinal EHR data derived from outpatient oncology practices in the United States.
Eligibility criteria from the PARSIFAL trial were emulated as closely as possible. Patients were included if they had hormone-positive,
human epidermal growth factor receptor — 2 (HER-2) negative metastatic breast cancer and had no record of prior treatment for
metastatic disease. Patients initiating first-line treatment with palbociclib and fulvestrant following their first record of metastasis were
compared to those initiating palbociclib and letrozole on the same day. Treatments were ascertained by oncology medication ordering
records in the data source. The primary outcome was death as recorded in the oncologists’ EHR systems.

Results: There were 1886 eligible women in the study cohort. Although the 3-year survival was meaningfully lower in clinical
practice (59%) compared to the randomized trial (78%), the relative effect size was a hazard ratio (HR) of 1.07 (95% CI: 0.86-1.35),
similar to the randomized trial (HR = 1.00; 95% CI: 0.68-1.48).

Conclusion: Despite common challenges encountered in EHR-based studies, it is possible to achieve similar conclusions to emulated
randomized trials with the application of analytic approaches that address missing data, confounding, and selection bias. This is
a promising finding in light of other emulations and ongoing efforts to improve data from clinical practice and causal analytics.
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Introduction

The use of data collected from routine care in clinical oncology practice' to establish drug effectiveness has become of
great interest to regulators, clinicians, and other healthcare stakeholders.> > As the quality and availability of these data
have increased over the past decade, their utility in generating actionable clinical evidence on the effectiveness of
medical products, ie, “real-world evidence” or RWE, has become ever more promising.®’

Databases derived from specialized oncology EHR systems'* contain rich information on patients’ treatments and
health outcomes, critical for successful comparative effectiveness research of oncology medicines.'® They draw upon
several sources of clinical information, including medication and chemotherapy physician ordering systems, physician
notes from outpatient oncology encounters, and molecular diagnostics/biomarkers found in EHRs. Despite advancements
in EHR data quality, there remain limitations to these data that may hamper their utility in generating RWE. Among
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these, missing data, an inability to link records to inpatient records, high-quality tumor registries, or healthcare claims,
and a lack of information captured across the health care continuum (ie, “out-of-network” encounters), present major
challenges for investigators interested in drawing causal conclusions on treatment effects.'®'! The extent of bias that may
result in the context of these limitations and the utility of oncology EHR databases in clinical investigations is unknown.

To clarify whether data collected from routine care (ie, real-world data (RWD)) can be used for effectiveness research,
some investigators have taken the approach of calibrating RWE against randomized clinical trials (RCT).'*'* In our study,
we extend this framework to the oncology setting with the use of a specialized oncology EHR database. In a previous study,
we successfully emulated the reduction in time-to-next treatment (TTNT) estimate (HR: 0.64; 95% CI: 0.52-0.78) reported
in follow-up analysis of the PALOMA-2 trial (NCT01740427) study cohort using oncology EHR data.'”> The generalizable
conclusions of this single trial emulation must be limited due to assumptions made regarding missing data, uncertainty in
accurately identifying the first-line advanced breast cancer population, and the potential for unmeasured confounding and
differential surveillance.

Here, we emulated an alternative randomized clinical trial, the PARSIFAL trial (NCT02491983), which examined the
efficacy of letrozole vs fulvestrant when combined with palbociclib for the first-line treatment of advanced breast
cancer.'® Our emulation of the PARSIFAL trial complements our previous emulation, as it compares two dual-therapy
regimens with similar indications and effectiveness that began being used in practice around the same time. This
mitigates concerns regarding unmeasured confounding, surveillance bias, and differential reasons for missing data that
may have been more likely in our PALOMA-2 emulation. Using EHR data from the US Oncology Network, we sought to
compare estimates of the relative hazard of all-cause mortality, conditional on confounders, among subjects initiating
fulvestrant and palbociclib vs letrozole and palbociclib for first-line treatment of metastatic disease to hazard ratio
estimates obtained from the PARSIFAL trial.

Materials and Methods

Data Source

The Ontada iKnowMed (iKM) EHR database is a large research database derived from outpatient oncology practices in
the US Oncology Network (USON). The USON is comprised of over 400 practice sites and treats over 1,000,000 patients
annually. Data in the iKM were drawn from structured fields within electronic health records and include key
confounders such as performance status and tumor histology, as well as detailed treatment information (see Data
Source Description and eTable 1 in the Supplement). Patients selected into the database had at least one International
Classification of Diseases (ICD) diagnosis code indicating breast cancer, had at least 3 months of documented medical
history in the database, and were not participants in a clinical trial.

Study Population and Design

Cobhort selection criteria were adapted from the PARSIFAL trial (eTable 2). Women at least 18 years old with a diagnosis
of metastatic breast cancer and no evidence of prior treatment for metastatic disease were included. Patients with
evidence of hormone receptor (HR) negative or human epidermal growth factor receptor-2 (HER-2) positive subtypes of
breast cancer were excluded. In contrast to the trial, several eligibility criteria were not emulated due to incomplete
capture in the database or limited relevance in RWE studies (eg, safety criteria such as hypersensitivity to study drug or
inability to swallow tablets; see details in eTable 2). Follow-up time was initiated on the cohort entry (index) date, which
was the day all eligibility criteria were fulfilled, and the treatments of interest were initiated. The follow-up period
proceeded until the earliest of the following events: (1) outcome occurrence (all-cause mortality); (2) loss to follow-up,
defined by a >90-day period with no treatment, laboratory test result, or vitals recording after last evidence of treatment,
or (3) administrative end of data (March 28, 2021).

Treatment Ascertainment
Prescription drug orders by within-network oncologists and associated prescribing dates were fully captured in the data
resource and drawn from structured fields in the health record system. The primary exposure of interest was treatment
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with palbociclib in combination with fulvestrant, which was compared to palbociclib in combination with letrozole.
Treatment groups were operationalized in the database by identifying the occurrence of physician orders with the generic
names of interest on the same day. All medications were self-administered, oral therapies.

Outcome Measurement

The primary outcome was overall survival, defined as the time from cohort entry to all-cause mortality. Mortality date
was ascertained by provider recording of patients’ vital status as “deceased” in a structured field in the health record
system. The completeness of mortality data in the database has not been formally assessed.

Baseline Patient Characteristics

Patient demographics (age, geographic region), clinical characteristics (smoking status, BMI, tumor stage, diagnosis date,
family history of cancer, Karnofsky/ECOG performance status, site(s) of metastasis, disease-free interval, number of
metastatic sites), medication use (anticoagulant use, bone remineralization therapies, antihypertensives, antidepressants,
anxiolytics, anti-hyperlipidemics, immunizations, anti-diabetics), and comorbidities (anemia, renal disease, anxiety,
arthritis, cardiovascular disease, COPD, diabetes, neutropenia, osteoporosis) were collected to characterize the study
cohort and facilitate comparison with the PARSIFAL trial study population. These variables were all ascertained on or
before the start date of the treatments of interest.

Missing Data

Missing values were present in five confounding variables: body mass index (BMI) (2%), tumor stage (6%), smoking
status (11%), performance status (28%), and number of metastatic sites (63%). Missingness in the data occurred, at least
in part, due to changes in reporting standards among oncology practices over time. Based on this information, we
assumed that missing data followed a missing at random (MAR) mechanism, which permits valid estimation through
imputation-based procedures.'” More specifically, we assumed that the missingness in each variable occurred as
a function of practice identifiers, the outcome, treatment, and all confounding variables modeled in our primary analysis,
described below.

Statistical Analysis
Given our assumption of MAR and the variety of variable types (eg, ordinal, continuous, etc.) with missingness, multiple
imputation with chained equations (MICE) was used to create 50 imputed datasets.'® Predictive mean matching, ordered
logistic regression, and multinomial logistic regression were used to impute continuous, ordinal, and unordered
categorical variables with missing data, respectively. All variables modeled in our outcome regression model were
also placed in our imputation models, including the outcome and exposure, as well as indicators for practices associated
with varying degrees of missingness. Variables were imputed in the order of their relative missingness—from least to
most. The functional forms of the models specified for the imputations are shown in eTable 3. Point and interval
estimates estimated within each of the 50 imputed datasets were pooled together using Rubin’s Rules.'**°

In the primary analysis, we estimated the relative hazard of all-cause mortality among patients treated with
palbociclib and fulvestrant vs palbociclib and letrozole under the assumption of a Cox proportional hazards model.”’
The model was adjusted for 18 pre-exposure risk factors for death that were potential confounding variables. These
variables were chosen for inclusion in the model because they were available in our data source and deemed to be
prognosticators of survival (eTable 4).>? Notably, not all aforementioned patient baseline characteristics could be adjusted
for in the analysis because they did not occur in a high enough frequency in the study population and led to problems
with convergence of the statistical model. Schoenfeld residual plots were used to check the proportional hazards
assumption. Lastly, using the first imputed dataset, a Kaplan—Meier plot was created in the inverse probability of
treatment (IP) weighted study population for qualitative comparison to the overall survival curve reported in the
PARSIFAL trial. The distribution of IP weights was evaluated by treatment group to check for the presence of any
practical positivity violations, which can result in extreme weights.*
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Non-Randomized Study Vs Randomized Trial Agreement

To assess the compatibility of our study result with the PARSIFAL trial, standardized difference was calculated to
compare the log hazard ratios of overall survival from both studies.**** This measure was chosen because it permits
assessment of the magnitude and direction of any difference between the two studies’ estimates to facilitate interpretation
in the presence of any potential sources of bias. A standardized difference of greater than 1.96 was chosen as a marker of
incompatibility of the two study results in alliance with convention in regulatory decisions.?’

Sensitivity Analyses

We assessed the sensitivity of our results to modeling assumptions made in the primary analysis in several ways. First, the
primary analysis was repeated among patients that had no missing data, often called complete case analysis.*® This was done
to indirectly evaluate our MAR assumption, since analyses of complete cases would likely differ from the multiple
imputation-based analysis under the MAR assumption but may be similar if the data follow a missing completely at random
(MCAR) mechanism. Next, an [P-weighted Cox proportional hazards model was fit to the complete cases. [P-based estimates
(marginal treatment effects) make different modeling assumptions than multivariable-adjusted models (conditional treatment
effects) with respect to the relationships between the exposure, outcome, and confounders and also generally target different
measures.”’ Furthermore, the marginal treatment effect may resemble the randomized trial result, which was not conditional
on all of our measured confounders. Therefore, deviations in IP-based estimates and our primary analysis might indicate
a sensitivity of our results to these different modeling approaches or may reflect these different analyses are estimating
different effect measures.”® Note that we refer to a hazard ratio as an “effect measure” even though it is not a causal effect
except under the null or other restrictive conditions that are not guaranteed even in a randomized trial with no loss to follow-
up. We report hazard ratios here to match what was reported in the PARSIFAL trial. >*~°

In addition to testing our assumptions on modeling and missingness, we conducted a sensitivity analysis to assess the
potential influence of data discontinuity on our estimate. Data discontinuity occurs when patients seek out-of-network
care that may not be recorded in our data source, which exclusively contains outpatient records from the US Oncology
Network. Encounters occurring outside of the iKM system may result in misclassification bias if they entail new
diagnoses, treatments, or procedures.'’ To account for this, a previously validated prediction rule for discontinuity
(eTable 5) was applied in the one-year period before cohort entry to characterize study patients in terms of their predicted
EHR-continuity.'" Then, the primary analysis was repeated among patients in the top 25th, 50th, and 75th percentile of
predicted EHR-continuity.

Lastly, differential surveillance may indicate the presence of differences in the clinical care of patients between
treatment groups and the presence of confounding, which may not be directly observed in the data. To explore the
possibility of differential surveillance, the mean rate of imaging procedures and office visits per patient-day were
calculated by treatment group as a proxy for unmeasured confounding.

Results

Study Population

Following the application of all study eligibility criteria, 1886 patients were selected into the study cohort—462 initiators
of palbociclib and fulvestrant and 1424 initiators of palbociclib and letrozole (eTable 2; Table 1). Relative to the
PARSIFAL trial, patients in our study tended to be older, have fewer metastatic sites, a less favorable performance status
among palbociclib-fulvestrant initiators, and a more favorable performance status among palbociclib-letrozole users. All
these patterns were maintained following missing data imputation. Upon cohort entry, patients in the palbociclib-
letrozole group had a median time since initial diagnosis with breast cancer of 1.1 years (IQR: 0.1 years — 8.1 years),
while palbociclib-fulvestrant initiators had a median of 4.8 years (IQR: 1.4 years — 9.5 years) since initial diagnosis.

Comparison of Overall Survival in Non-Randomized Study vs PARSIFAL Trial
In the primary analysis, the hazard ratio for overall survival was 1.07 (95% CI: 0.86—1.35), which was congruent with the
clinical trial result (HR: 1.00; 95% CI: 0.68-1.48) (Table 2). The crude (unadjusted) hazard ratio was 1.24 (95% CI:
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Table | Patient and Demographic and Clinical Characteristics at Cohort Entry

Characteristic Emulation Study® Imputed Data® PARSIFAL Trial
Palbociclib- Palbociclib- Palbociclib- Palbociclib- | Palbociclib- Palbociclib-
Fulvestrant Letrozole Fulvestrant Letrozole Fulvestrant Letrozole
(n = 462) (n = 1424) (n = 462) (n = 1424) (n =243) (n =243)
Age®
Median (range) - yr 69 (32-85) 66 (25-85) 69 (32-85) 66 (25-85) 64 (25-88) 62 (35-90)
ECOG performance status or
Karnofsky equivalent - no. (%)
0 178 (52.8) 587 (57.2) 241 (52.2)¢ 789 (55.4)° 151 (62.1) 124 (51.0)
| 134 (39.8) 381 (37.1) 187 (40.5)° 545 (38.3)° 80 (32.9) 107 (44.0)
2 25 (7.4) 59 (5.7) 34 (7.4)° 90 (6.3)° 12 (4.9) 12 (4.9)
Data missing 125 (27.1) 397 (27.9) 0 (0.0 0 (0.0 0 (0.0 0 (0.0)
Recurrence type - no. (%)
Recurrent 384 (83.1) 929 (65.2) 384 (83.1) 929 (65.2) 141 (58.0) 147 (60.5)
De Novo 78 (16.9) 495 (34.8) 78 (16.9) 495 (34.8) 102 (42.0) 96 (39.5)
Disease site - no. (%)
Visceral 43 (93) 275 (19.3) 43 (9.3) 275 (19.3) 115 (47.3) 118 (48.6)
Non-visceral 87 (18.8) 470 (33.0) 87 (18.8) 470 (33.0) 128 (52.7) 125 (51.4)
Unknown 332 (71.9) 679 (47.7) 332 (71.9) 679 (47.7) 0 (0.0 0 (0.0)
No. of disease sites - no. (%)
<3 91 (85.0) 500 (84.6) 394 (85.3)° 1230 (86.4)° 141 (58.0) 133 (51.4)
>3 16 (15.0) 91 (15.4) 68 (14.7) 194 (13.6)° 102 (42.0) 110 (48.6)
Data missing 355 (76.8) 833 (58.5) 0 (0.0 0 (0.0 0 (0.0 0 (0.0)
Previous treatment in early setting
Chemotherapy 65 (14.1) 142 (10.0) 65 (14.1) 142 (10.0) 98 (40.3) 92 (37.9)
Tamoxifen only 30 (6.5) 125 (8.8) 30 (6.5) 125 (8.8) 48 (19.8) 59 (24.3)
Aromatase inhibitors only 129 (27.9) 167 (11.7) 129 (27.9) 167 (11.7) 26 (10.7) 21 (8.6)
Tamoxifen and aromatase inhibitors | 54 (11.7) 47 (3.3) 54 (11.7) 47 (33) 39 (16.0) 31 (12.8)

Notes: *135 (9%) of palbociclib-letrozole initiators and 57 (12%) of palbociclib-letrozole initiators in emulation study had missing or incomplete biomarker data. *Ages were
not available for subjects 285 years to preserve privacy. Calculations assume these subjects are 85 years old. “Provided as average values over 50 imputed datasets. Totals
may not add to 100% due to rounding. “For missing data, percentages are based on total subjects in the treatment arm.

Table 2 Parameter Estimates of Cox Proportional Hazards Model by Method of Data Analysis

Parameter 95% Confidence Interval | Standardized
Estimate Difference®
PARSIFAL Trial Result 1.00 (0.68, 1.48) -
Following Multiple Imputation (Adjusted by Stratification) 1.07 (0.86, 1.35) 0.04
Following Multiple Imputation (Adjusted by IP-Weighting) 1.13 (0.87, 1.48) 0.07
Complete Cases Only (Adjusted by Stratification) 1.56 (0.98, 2.47) 0.20
Complete Cases Only (Adjusted by IP-Weighting) 1.23 (0.73, 2.09) 0.09

Note: *Comparing PARSIFAL Trial Result (top row) to real-world evidence analyses (remaining rows).

1.02—1.51), which was aligned with our observation of more negative prognosticators in the palbociclib-fulvestrant arm
with respect to performance status, disease recurrence, number of metastatic sites, and age. We observed a substantially
higher mortality rate in the RWD study than in the randomized trial. In our study, the 3-year overall survival was 59.5%
(95% CI: 55.5-63.7) vs 57.7 (95% CI: 49.6-67.1) in the palbociclib/letrozole and palbociclib/fulvestrant groups,
respectively (Table 3). This is compared to a 3-year overall survival of 77.1% (95% CI: 70.2-82.5) and 79.4 (95% CI:
73.1-84.4) in the palbociclib/letrozole and palbociclib/fulvestrant arms of the PARSIFAL trial, respectively (Table 3).
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Table 3 Estimates of 3-Year Overall Survival

Palbociclib + Letrozole

Palbociclib + Fulvestrant

PARSIFAL Trial
Number of Subjects
Number of Deaths, n (%)

243
51 (21.0)

243
51 (21.0)

Follow-up Time, median days (IQR)

960 (726-1191)

3-Year Survival Probability (95% CI)
Real-World Evidence Study

Number of Subjects

Number of Deaths, n (%)

Follow-up Time, median days (IQR)

3-Year Survival Probability (95% CI)

a

a

79.4 (73.1-84.4)

1424
372 (26.1)
511 (231-909)
59.5 (55.5-63.7)

77.1 (70.2-82.5)

462
136 (29.4)
507 (213-880)
57.7 (49.6-67.1)

Notes: *Kaplan—Meier estimate of survival probability at 3 years in the first imputed dataset, adjusted by inverse probability

of treatment weights. Estimates from the remaining imputed datasets were very similar.

Kaplan—Meier survival estimates over the study period were aligned between the randomized'® and non-randomized

studies (Figure 1).

Sensitivity Analyses

Relative to our primary analysis, our complete case analyses had point and interval estimates further from the

randomized trial result (Table 2) and did not appear to be aligned regardless of adjustment method (ie, IP-weighting

or stratification). However, our imputation-based analysis using IP-weighting for confounding adjustment did agree with

the trial result (Table 2). In our analysis, adjusting for data continuity, point estimates grew further from the null with

wider confidence intervals as higher levels of restriction by continuity ratio were imposed (Table 4). There was no

evidence of surveillance bias in our estimates based on the observed rates of imaging procedures over the study period or

Palbociclib-

Palbociclib-

Strata Letrozole = Fuivestrant

1.00

0.751
g Wl‘*ﬁw
2 b
3
5 - %
IS
(0]
>
)

0.251

0.001

0 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440 1530 1620
Days
Number at risk
Palbociclib-
£ tewome 1438 1343 1154 1030 924 790 681 589 498 425 364 313 254 215 180 150 110 88 72
G Polbocili 446 408 346 299 267 243 198 174 149 126 107 92 81 67 56 40 29 23 18
0 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440 1530 1620
Days

Figure | Kaplan-Meier estimates of overall survival by treatment group.
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Table 4 Parameter Estimates of Cox Proportional Hazards Model by Varying Levels of Restriction by Continuity Ratio

Hazard Ratio | 95% Confidence Standardized
Interval Difference®
PARSIFAL Trial Result 1.00 (0.68, 1.48) -
Following Multiple Imputation and Restriction to Top 25th Percentile CR 1.35 (0.87, 2.11) 0.14
Following Multiple Imputation and Restriction to Top 50th Percentile CR .16 (0.82, 1.65) 0.08
Following Multiple Imputation and Restriction to Top 75th Percentile CR 1.08 (0.85, 1.37) 0.05
Following Multiple Imputation (Not Restricted by CR) 1.07 (0.86, 1.35) 0.04

Notes: All estimates were adjusted by stratification (ie, multivariable adjustment only). *Comparing PARSIFAL Trial Result (top row) to real-world evidence analyses
(remaining rows).

office visits in each treatment arm (eTable 6). Notably, imaging frequency data were missing in approximately 83% of
patients in either study arm.

Discussion

In this non-randomized study comparing the association of palbociclib and fulvestrant to palbociclib and letrozole on
overall survival, we found very similar estimates and reached the same clinical conclusion as a recently completed
randomized Phase 2 trial. This finding not only lends support to the utility of RWE in examining oncology treatment
effectiveness but also confirms the findings of the PARSIFAL Trial. Our study had 3.8 times more patients than the trial
leading to more precise estimates and was representative of clinical practice in the US. An array of sensitivity analyses
lends support to the validity of our statistical modeling assumptions and the mechanisms of missing data. A major
strength of this study was that it compared the outcomes of two regimens that had an equivalent evidence base for their
use in the first-line advanced breast cancer setting. Consequently, provider prescribing preference is thought to be
a stronger deciding force of treatment choice than patient characteristics and disease severity, resembling random
treatment allocation of randomized trials. This can reduce the potential for unmeasured confounding and differential
treatment of patients by design, which is supported by the non-differential rate of imaging procedures observed between
the treatment groups. Despite an element of randomness being potentially introduced to treatment selection in routine
practice, it should be noted that some providers might prefer to initiate treatments that their patients have not previously
failed. Particularly, patients receiving fulvestrant/palbociclib may have been more likely to have progressed while
receiving adjuvant aromatase inhibitor.

This study had a similar result to our previous emulation of the PALOMA-2 trial with fewer indicators of potential
bias. Both trial emulations exhibited some differences between the randomized trial and EHR study populations. These
differences, however, did not appear to influence the observed estimates, assuming the trial estimate was unbiased. One
reason for this could be that baseline characteristics in the RWD are poorly captured in structured fields, leading to
apparent discrepancies in study populations when they were in fact similar. Alternatively, it is possible that the patient
characteristics that did differ were not strong effect measure modifiers. In fact, there was no evidence of strong effect
measure modification in the PARSIFAL trial in any pre-specified subgroups.'® This context could explain why our results
were so similar to the PARSIFAL trial’s results.

Our study has several limitations. First, due to the non-randomized nature of our study, unmeasured or residual
confounding always remains a possibility, particularly for non-oncology related prognosticators of survival that were
poorly captured in our database. We estimated that an unmeasured confounder would have to have an independent
association of 1.64 or 0.61 with both the exposure and outcome to explain our null finding if the true hazard ratio for
overall survival was 1.36 or 0.85, respectively, beyond the bounds of the 95% confidence interval of the primary
analysis results.*'*? Despite this possibility, we believe that an unmeasured confounder of this magnitude is unlikely,
particularly because its association with the outcome and exposure would have to be this strong independent of all
other measured confounders. Second, some types of measurement error, such as non-differential exposure misclassi-
fication, can result in a bias towards the null. Although this could also explain our observed result, our prior
emulation of the PALOMA-2 trial demonstrated a consistent conclusion for a non-null estimate, which strengthens
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our confidence in this study’s findings. Third, our study only investigated effectiveness measures in the first-line
advanced breast cancer population, limiting the generalizability of our study’s results to this setting. It is possible that
studies investigating different treatment settings and/or outcomes may have a greater sensitivity to confounders that
were not measured in this study, for example cardiovascular morbidity, rendering our conclusions less relevant to
those contexts. In particular, this may be more important in studies of earlier-stage disease, where cancer may not be
the most probable cause of death for patients. Furthermore, our analytic strategy may also not be generalizable to
studies that employ alternative data sources, such as unstructured data (eg, physician notes), as the quantity and
mechanism of missing information may vary. Lastly, exposures could only be ascertained in the data through
physician ordering. Thus, it cannot be confirmed whether patients were actively taking their therapies as medication
administration was not captured. Although the extent of exposure misclassification due to this fact is unknown, it may
be less extreme in this study due to the life-threatening nature of breast cancer.

Conclusions

Common challenges of using EHR databases for comparative effectiveness research are highlighted by our study. Despite
these challenges, we demonstrated that it may be possible to achieve similar conclusions to randomized trials in line with
several other emulation projects when we apply analytic tools and rigorous study designs that address missing data,
confounding, and selection bias. As more RCT emulation studies with oncology EHR data are becoming available, we
will gain confidence in RWE studies in oncology and will be able to differentiate how to conduct such studies and when
they will likely be leading to valid findings.
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