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Purpose: Type 2 diabetic (T2D) patients have liver and adipose tissue microcirculation disturbances associated with metabolic 
dysfunction and disease progression. However, the potential role of aerobic training on hepatic and white adipose tissue (WAT) 
microcirculation and the underlying mechanisms have not been elucidated to date. Therefore, we investigated the role of aerobic 
training on liver and WAT microcirculation and AGE-RAGE modulation in T2D mice.
Methods: The control group (CTL) was fed standard chow, and T2D was induced by feeding male C57BL/6 a high-fat, high- 
carbohydrate diet for 24 weeks. In the following 12 weeks, mice underwent aerobic training (CTL EX and T2D EX groups), or were 
kept sedentary (CTL and T2D groups). We assessed metabolic parameters, biochemical markers, oxidative damage, the AGE-RAGE 
axis, hepatic steatosis, hepatic stellate cells activation (HSC) and liver and WAT microcirculation.
Results: Hepatic microcirculation was improved in T2D EX mice which were associated with improvements in body, liver and fat 
mass, blood pressure, hepatic steatosis and fibrosis, and decreased HSC and AGE-RAGE activation. In contrast, improvement in WAT 
microcirculation, that is, decreased leukocyte recruitment and increased perfusion, was associated with increased catalase antioxidant 
activity.
Conclusion: Physical training improves hepatic and adipose tissue microcirculatory dysfunction associated with T2D, likely due to 
downregulation of AGE-RAGE axis, decreased HSC activation and increased antioxidant activity.
Keywords: microcirculation, physical training, AGE-RAGE, hyperglycemia

Introduction
Type 2 diabetes (T2D) is a common term for heterogeneous metabolic disorders, and its main characteristic is 
hyperglycemia.1 It is characterized by insulin resistance, and is closely associated with obesity. T2D is strongly 
associated with metabolic disturbances in several tissues, including the liver, leading to the development of non- 
alcoholic fatty liver disease (NAFLD).2 NAFLD, more recently called metabolic dysfunction-associated fatty liver 
disease (MAFLD),3 is found in up to 70% of T2D patients, and is responsible for accelerating disease progression.4,5 

Further, as the disease progresses, the risk of developing macrovascular and microvascular complications increases.6 We 
have shown that type 1 diabetic (T1D) rats have liver microcirculatory dysfunction, which can be prevented by oral 
hypoglycemic agents.7 We also showed that NAFLD is closely related to hepatic microcirculatory abnormalities, such as 
increased leukocyte recruitment and decreased hepatic microvascular blood flow.8–10 Furthermore, patients with T2D 
have disturbances in adipose tissue microcirculation, which is associated with obesity, insulin resistance, hyperglycemia, 
and dyslipidemia.11,12
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Advanced glycation end-products (AGEs) are proteins or lipids non-enzymatically altered by the action of reducing 
sugars. AGEs are produced throughout life and increase under conditions such as oxidative stress and hyperglycemia and 
several studies suggest that AGEs play a role in diabetes-related complications.13,14 For instance, AGEs promote 
intracellular and extracellular dysfunction through their ability to bind collagen and other extracellular matrix proteins 
irreversibly and by binding its receptor, RAGE.15,16 AGE-RAGE binding activates genes involved in oxidative stress, 
inflammation, thrombosis, and leukocyte recruitment16. Therefore, the AGE-RAGE axis is involved in the pathogenesis 
and progression of vascular dysfunction in T2D.

Non-pharmacological interventions, such as diet and exercise training can prevent or delay T2D progression and its 
associated comorbidities17–20 by improving insulin sensitivity, glycosylated hemoglobin, glycemic parameters, lipid 
profile, blood pressure, and body fat.21,22 In T2D/obese mice, exercise training reduced hepatic steatosis, the expression 
of lipogenic genes and liver inflammation, regardless of body adiposity, and increased the phosphorylation of acetyl-CoA 
-carboxylase and oxidative genes, reversing complications caused by T2D in the liver.23 Furthermore, during exercise, 
skeletal muscles act as endocrine-like organs, producing myokines and exerting a multiorgan effect on contractile and 
non-contractile tissues, including liver and adipose tissue.24 Several molecular and metabolic mechanisms seem to be 
involved in the benefic effects of exercise on T2D, but the underlying mechanisms contributing to improvements of 
microcirculation function remain unclear. A possible role of the AGE-RAGE pathway was recently discussed, but the 
data are still controversial.25–28

Therefore, we aimed to investigate the effects of aerobic training on hepatic and adipose tissue microcirculation in 
diabetic C57BL/6 mice. We hypothesize that the underlying mechanism for improving microcirculation by aerobic 
training involves the modulation of the AGE-RAGE pathway, HSC downregulation and oxidative stress.

Materials and Methods
Study Design and Animals
Male C57BL/6 (8 weeks old) mice were obtained from the central animal care facility of Oswaldo Cruz Foundation (RJ, 
Brazil) and kept in standard cages at controlled room temperature (22 ± 1 °C) and 12-h light-dark cycle (darkness starting 
at 6 pm). They were allocated into two groups: control mice (CTL) receiving a commercial grain-based diet (Nuvilab- 
Quimtia) and diabetic mice (T2D) receiving a high-carbohydrate high-fat diet (HCHF) and 25% fructose in the drinking 
water ad libitum (Figure 1A). The HCHF diet comprised a modified grain-based diet consisting of 55% fat, 35% 
carbohydrate.29 After 24 weeks, mice were further divided into four groups based on exercise: CTL (control diet without 
physical exercise, n=10), CTL EX (control diet and physical exercise, n=10), T2D (HCHF diet plus 25% fructose without 
physical exercise, n=10), and T2D EX (HCHF diet plus 25% fructose physical exercise, n=10). Mice underwent hepatic 
ultrasound, echocardiogram and microcirculatory analysis 24h after the last exercise session, whereas systolic blood 
pressure and oral glucose tolerance test (OGTT) were assessed 48h after the last exercise session. After an overnight fast, 
hepatic and adipose tissue microcirculation was assessed in anesthetized mice (ketamine hydrochloride 100 mg/kg and 
xylazine 10 mg/kg, I.P.), blood was collected by cardiac puncture, and the liver, heart, visceral, and subcutaneous WAT 
depots harvested. Blood serum was obtained by centrifugation (700 × g for 15 min at 4 °C) and aliquots were stored at 
−80 °C for subsequent analysis. The Animal Welfare Committee of the Oswaldo Cruz Foundation approved all 
experiments protocols (license L-0012/18 A1), which were performed following the principles for the care and use of 
laboratory animals.

Maximal Exercise Capacity
Animals were first acclimated to treadmill walking (Hectron Fitness Equipment, Brazil) through one session of 15 min at 
12 m/min for three consecutive days in the 23rd week of study. In the 24th week, the maximal exercise capacity test was 
performed on a treadmill at progressive speed until exhaustion (10 m/min increased by 3 m/min every 3 min). Exhaustion 
was determined when the animal could no longer maintain the pace and remained in the shock grid at the end of the mat 
for at least 5 s. Exercise intensity was determined based on the maximum speed reached during the test.30,31 At the 30th 
week, mice underwent a second test to adjust the exercise training intensity (data not shown).
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Physical Exercise
The physical exercise began in the 24th week of diet feeding and lasted 12 weeks. Animals were exercised in the 
morning (8 am to 12 am) on a treadmill (Hectron Fitness Equipment, Brazil) with 0% incline, three times per week, with 
30 min per session, at 80% of the maximal speed reached in the maximal exercise capacity test (~75 to 80% of maximal 
oxygen uptake). This intensity has been previously demonstrated as capable in restoring cardiac microvascular rarefac
tion in obese animals with metabolic syndrome.31

Blood Pressure
Non-invasive blood pressure measurements were performed on the mouse tail by photoplethysmography with automatic 
data acquisition (Insight, Brazil). Before the first measurement, animals were adapted to the restraint container to 
minimize stress and blood pressure fluctuations. The measurement protocol began with prior warming the animals to 
a temperature of 36 °C for 5 min. Mice were then placed in the device to measure systolic blood pressure, and the result 
was expressed as the average of three measurements.32

Figure 1 Effect of physical exercise on hemodynamic and metabolic parameters in type 2 diabetes (T2D) mice. Study design (A) C57BL/6 mice were randomly divided into 4 
groups: sedentary control group (CTL), which received a grain-based diet throughout the experiment; the sedentary type 2 diabetic group, which had access to a high- 
carbohydrate, high-fat diet throughout the experiment (T2D); the physical exercise control group, which received normal chow and underwent a physical exercise protocol 
(30 min session, 3 times per week, 12 weeks)(CTL EX); and the physical exercise type 2 diabetic group, which had access to a high-carbohydrate, high-fat diet and underwent 
the same physical exercise protocol (T2D EX). At the end of the 36-week protocol, mice underwent in vivo analysis, including systolic blood pressure analysis, liver 
ultrasonography, as well as liver and adipose tissue microcirculation assessments by in vivo microscopy and laser speckle contrast imaging. The following parameters are 
shown: body weight during experimental protocol (B), serum glucose levels during the oral glucose tolerance test (OGTT) (C) and AUC (D) of the CTL, CTL EX, T2D, and 
T2D EX groups. *P < 0.05 T2D vs CTL; **P < 0.01 T2D vs CTL; ***P < 0.001 T2D vs CTL; #P < 0.05 T2D vs T2D EX; ##P < 0.01 T2D vs T2D EX. Figure 1A created with 
BioRender.com.
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Cardiac and Liver Ultrasound
Mice were anesthetized using 2% isoflurane, subjected to abdominal epilation, and placed in the supine position on 
a heated table. Ultrasonography was performed using a sound-conducting gel (Carbogel, Brazil) applied to the middle 
abdomen, and the VEVO 770 system (VisualSonics, Canada) connected to a 30 MHz transducer. Ejection fraction, 
fractional area change, stroke volume, end diastolic and systolic volume were evaluated during the echocardiogram. The 
liver ultrasound assessed the echogenicity of the liver parenchyma. All measurements were determined by a single 
observer who was blinded to the study design.33,34

Intravital Microscopy
The left lateral lobe of the liver and epididymal fat pad were exteriorized by laparotomy followed by microcirculation 
analysis. A monitor displayed the images for analysis using a 10x objective for intravital microscopy (Olympus 
BX150WI, EUA). To examine the interaction between leukocytes and the endothelium, the number of labeled leukocytes 
(0.3 mg/kg rhodamine 6G, i.v.) rolling or adhering to the sinusoidal and postsinusoidal venules were counted. Leukocytes 
were counted for 30s in a 170 μm2 area. Leukocytes with a velocity less than that of blood flow were classified as rolling, 
and those that remained stationary were classified as adherent cells.35,36

Laser Speckle Contrast Imaging (LSCI)
LSCI (Pericam System PSI, Sweden) assessed liver and epididymal fat microvascular blood flow.37 LSCI provides 
a microcirculation perfusion index corresponding to the average blood cell concentration and velocity, while assessing micro
vascular blood flow in real time.10 Mice were kept on a stable platform in a room with a constant temperature of 25 °C and placed 
under a laser light system with an image contrast wavelength of 785 nm to measure continuous blood perfusion using the surgical 
technique used for intravital microscopy. Blood perfusion was measured and expressed in arbitrary perfusion units (APUs).

Oral Glucose Tolerance Test (OGTT)
At the end of 36 weeks, glucose (2 g/kg) was administered by orogastric gavage after 6 h of fasting. Tail blood glucose 
levels were measured using an automated glucose monitor (Roche, Brazil) before glucose and 15, 30, 60, and 120 min 
after oral glucose administration.38

Insulin Quantification and Homeostasis Model Assessment-Estimated Insulin 
Resistance (HOMA-IR)
Plasma insulin levels were measured using an enzyme-linked immunosorbent assay (ELISA) kit (Millipore, USA), 
following the manufacturer’s instructions. HOMA-IR calculations was based on the following equation: fasting blood 
glucose (mmol/l) × fasting insulin (μU/mL)/ 22.5.7

Histopathology
The left lateral liver lobe sample were collected, fixed (formalin 4% w/v, 0.1 M phosphate buffered, pH 7.2), and 
processed according to routine histological procedures. The samples were then embedded in paraffin and sectioned at 5 
μm thickness. Sections were stained with hematoxylin and eosin (H&E) and observed under a light microscope (Nikon 
Instruments, USA) to evaluate steatosis. Digital images were analyzed using the stereological method of point counting 
to estimate volume density (STEPanizer stereology tool, version 1.0, USA).39,40 Masson’s trichrome was used to detect 
and evaluate fibrosis via collagen quantification using ImageJ (ImageJ, USA).41

Biochemical Evaluation
Serum total cholesterol, HDL, LDL, triglycerides, ALT and AST activity, and hepatic total cholesterol and triglycerides 
were measured and analyzed spectrophotometrically using commercial kits (Bioclin, Brazil). Liver samples (50 mg) were 
homogenized in 1 mL of isopropanol and centrifuged at 2000 × g for 10 min for lipid extraction, and cholesterol and 
triglyceride were determined in the supernatant.42
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Advanced Glycation/Lipoxidation End Product (AGE/ALE) Levels
Liver, fat, and serum fluorescent AGEs were quantified using the Nakayama method.8,10,43 Sample fluorescence was 
measured against blank (0.1N NaOH) at an emission wavelength of 440 nm and an excitation wavelength of 370 nm 
using a SpectraMax M5 ELISA microplate reader (Molecular Devices, USA). One fluorescence unit was equivalent to 
the fluorescence intensity of 1 mg/mL of native bovine serum albumin (BSA) and expressed as arbitrary units (AU).

Nitrite (NO2−) Concentration
Nitrite concentration was measured using Griess reagent (Sigma, EUA), according to the manufacturer’s instructions. 
Samples were homogenized in an ice bath by a buffer solution of 10 mM Tris-HCl, pH 7.4, 2% polyvinylpolypyrrolidone 
(PVPP) (w/v), and centrifuged at 15,000 × g for 10 min at 4 °C. After, 100 μL of the solution was mixed 1:1 with 
modified Griess reagent in a 96-well microplate and incubated at room temperature for 15 min in the dark. Absorbance 
was measured at 540 nm using a microplate reader (Molecular Devices, USA). NO2 concentration was calculated using 
a standard curve prepared with sodium nitrite (NaNO2) dissolved in 10 mM Tris-HCl (pH 7.4).44

Thiobarbituric Acid Reactive Substance (TBARS)
Liver and fat oxidative damage were determined by quantifying the thiobarbituric acid reactive substance (TBARS), 
using a spectrophotometric method based on malondialdehyde (MDA) concentration, a product of lipid peroxidation. 
Tissue was homogenized in butylated hydroxytoluene (BHT) (final concentration 0.2%) in cold phosphate–buffered 
saline (PBS, pH 7.4). Each tube was sealed and incubated at 96 °C for 30 min after adding an equal volume of 0.67% 
thiobarbituric acid (Sigma, USA) to the samples (0.5 mL). For spectrophotometric measurements, 200 μL of each sample 
was measured at 535 nm using a SpectraMax Plus Reader (Molecular Devices, USA). Malondialdehyde values (MDA, ε 
= 1.56×105 M−1cm−1) were used to calculate the results.45

Superoxide Dismutase (SOD) and Catalase (CAT) Antioxidant Activity
SOD activity was determined by monitoring the inhibition of epinephrine autooxidation (Sigma, USA) using 
a spectrophotometer (Molecular Devices, USA) at a wavelength of 530 nm.46 CAT activity was measured spectro
photometrically (Molecular Devices, USA) by decreasing the concentration of hydrogen peroxide (H2O2) (Sigma, USA). 
For this purpose, measurements were performed for 3 min at 30 °C at a wavelength of 230 nm.47

Western Blot
Western blotting assessed the liver and WAT RAGE protein expression. All primary antibodies were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Liver and WAT samples were homogenized in lysis buffer (20 mM Trizma, 137 mM 
NaCl, 10% glycerol, 1% Nonidet P-40, 2 mM EDTA) and centrifuged at 14,000 × g for 45 min at 4 °C. Protein content was 
determined by the bicinchoninic acid method (Thermo Scientific, USA), and BSA (Sigma, USA) as a standard. Next, 30 μg of 
protein per lane was resolved on a 12% sodium dodecyl sulfate gel and transferred to a PVDF membrane (Bio-Rad Laboratories, 
Germany). After 5% BSA blocking, membranes were incubated overnight at 4 °C with the primary antibodies (1:500), and 
a secondary RDye 680RD donkey anti-goat antibody was used for detection. Finally the bounded complex was detected using an 
Odyssey Infrared Imaging System (Li-Cor, USA). Images were analyzed using Image Studio Lite version 4.0.21 software (Li- 
Cor, USA) to obtain integrated intensities, which were normalized to GAPDH as the internal control (Fitzgerald Industries 
International, USA), followed by a secondary IRDye 800CW anti-mouse anti-goat antibody (Li-Cor, USA).

Immunohistochemistry
Immunohistochemistry for liver alpha smooth muscle actin (α-SMA) was performed to determine hepatic stellate cells (HSC) 
activation. Deparaffinized sections were treated with 3% H2O2 and then blocked with 5% nonfat dry milk and 5% BSA. Sections 
were then washed with PBS and incubated overnight in a humidified chamber at 4 °C with a primary monoclonal antibody 
against mouse α-SMA (1:500, sc-32251, Santa Cruz Biotechnology, USA). The slides were washed in PBS and treated with 
a biotinylated secondary antibody, followed by incubation with streptavidin peroxidase. Diaminobenzidine (DAB) was used as 

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15                                               https://doi.org/10.2147/DMSO.S365496                                                                                                                                                                                                                       

DovePress                                                                                                                       
2995

Dovepress                                                                                                                                                Lino Rodrigues et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


the chromogen. The slides were counterstained with Mayer’s hematoxylin. The ImageJ software was used for immunostaining 
quantification (ImageJ, USA).

Statistical Analysis
Data are reported as mean ± SEM. The normal distribution of variables was tested using the Shapiro–Wilk test and confirmed 
by Q-Q plots. Comparisons between groups were made by two-way analysis of variance (ANOVA) and Bonferroni post hoc 
test (GraphPad InStat 8.0, USA). The Pearson correlation coefficient was used to analyze the association between AGE levels 
and metabolic, laboratory, cardiac, and microcirculatory parameters (R Studio, version 4.0.2). Statistical significance was set 
at P < 0.05.

Results
Effect of Physical Exercise on the Metabolic Profile Induced by T2D
Metabolic parameters were assessed in sedentary and trained control (CTL) and T2D mice (Figure 1A). TD2 EX mice exhibited 
a lower physical capacity than CTL EX (Supplementary Table 1). During the first 24 weeks, T2D mice showed a gradual increase 
in body weight (BW) compared with CTL (Figure 1B). However, at 36 weeks, T2D mice undergoing physical training showed 
decreased BW compared to CTL mice (Figure 1B). Furthermore, we observed that T2D mice displayed glucose intolerance 
assessed by OGTT (Figure 1C and D) and a higher OGTT area under the curve (Figure 1D) than CTL mice. We also observed 
hyperglycemia, insulin resistance, hepatomegaly, and decreased HDL cholesterol in T2D mice compared to CTL mice, which 
was not observed in the T2D EX group (Table 1). T2D and T2D EX had increased insulin, total cholesterol, LDL, liver 
cholesterol, liver triglycerides, AST activity, and subcutaneous and visceral fat depots compared to CTL and CTL EX groups 
(Table 1). ALT (Table 1) and heart weight (Table 2) were not altered among groups. Increased systolic blood pressure observed in 
T2D mice was reverted by exercise training (Table 2). Echocardiography showed that T2D mice had a reduced stroke volume 
and ejection fraction compared to CTL mice, which were not affected by physical training (Table 2).

Table 1 Effect of Physical Training on Metabolic Parameters in T2D Mice

Parameters CTL CTL EX T2D T2D EX

Tissue weight

Liver, g/cm 0.06 ± 0.001 0.05 ± 0.004 0.08 ± 0.004* 0.07 ± 0.004
Subcutaneous WAT, g 0.50 ± 0.04 0.42 ± 0.03 4.24 ± 0.19*** 3.81 ± 0.25***

Visceral WAT, g 1.38 ± 0.11 1.18 ± 0.12 5.05 ± 0.25*** 4.76 ± 0.20***

Glucose metabolism
Blood glucose, mmol/L 5.41 ± 0.53 5.99 ± 0.97 8.09 ± 0.56* 7.94 ± 0.42

Insulin, μU/mL 0.9 ± 0.01 0.8 ± 0.004 1.0 ± 0.01*** 1.0 ± 0.01***

HOMA-IR 0.3 ± 0.009 0.3 ± 0.02 0.5 ± 0.02** 0.4 ± 0.02
Lipid metabolism

TC, mg/dL 109.90 ± 12.12 122.83 ± 9.28 201.60 ± 11.17*** 175.44 ± 10.84**

LDLc, mg/dL 3.38 ± 0.69 2.97 ± 0.29 10.42 ± 0.58*** 10.75 ± 0.80***
HDLc, mg/dL 24.46 ± 0.95 24.03 ± 2.22 16.20 ± 1.63* 19.65 ± 1.51

Hepatic metabolism

AST (U/L) 13.40 ± 1.09 15.60 ± 1.69 20.76 ± 1.92 17.60 ± 1.87
ALT (U/L) 6.73 ± 1.15 7.38 ± 1.31 13.85 ± 1.35** 12.20 ± 1.25*

Liver CT, mg/dL 9.76 ± 1.20 6.45 ± 1.87 32.41 ± 2.57*** 26.5 ± 2.51***
Liver TG, mg/dL 26.24 ± 3.75 22.98 ± 2.91 46.55 ± 2.97*** 46.44 ± 1.58***

Notes: Data as mean ± SEM. Statistical analysis: *P < 0.03 vs CTL. **P < 0.002 vs CTL. ***P < 0.001 vs CTL. Groups: CTL, 
control diet without physical exercise. CTL EX, control diet and physical exercise. T2D, diet-induced type 2 diabetes 
without physical exercise. T2D EX, diet-induced T2D and physical exercise. Diabetogenic diet: high-carbohydrate, high-fat 
diet plus 25% fructose in the drinking water ad libitum. 
Abbreviations: HOMA-IR, homeostasis model assessment of insulin resistance; SBP, systolic blood pressure; WAT, white 
adipose tissue; TC, total cholesterol; LDLc, low-density lipoprotein cholesterol; HDLc, high-density lipoprotein choles
terol; AST, aspartate aminotransferase; ALT, alanine aminotransferase.
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Effect of Physical Exercise on T2D-Induced Hepatic Steatosis
T2D mice showed expressive liver steatosis (Figure 2A and B), as evidenced by both small and large intracellular lipid 
vesicles, indicating the presence of mixed microvesicular, and macrovesicular steatosis. Steatosis was accompanied by 
hepatic fibrosis (Figure 2A and C) and an increase in the echogenicity of hepatic parenchyma compared to CTL mice 
(Figure 2D). Exercise reduced hepatic steatosis and fibrosis of T2D mice by 4.9% and 691%, respectively (Figure 2A and C).

Table 2 Effect of Physical Training on Cardiac Parameters in T2D Mice

Parameters CTL CTL EX T2D T2D EX

Heart weight, g/cm 0.01 ± 0.001 0.01 ± 0.001 0.01 ± 0.001 0.01 ± 0.001
SBP, mmHg 135.0 ± 0.92 126.0 ± 0.83 155.4 ± 2.80*** 141.1 ± 1.05###

Ejection Fraction (%) 56.52 ± 3.12 65.12 ± 1.76 41.06 ± 3.01** 43.04 ± 1.84

Fractional Area Change (%) 44.62 ± 4.26 54.27 ± 4.09 35.60 ± 3.32 33.20 ± 5.40
Stroke Volume (uL) 43.81 ± 2.74 41.80 ± 1.98 29.99 ± 2.44** 28.02 ± 2.26

Diastolic volume (uL) 77.82 ± 4.40 64.21 ± 2.85 73.14 ± 3.73 64.93 ± 4.02

Systolic volume (uL) 34.01 ± 3.51 22.41 ± 1.64 43.14 ± 3.35 36.92 ± 2.39

Notes: Data as mean ± SEM. Statistical analysis: **P < 0.002 vs CTL. ***P < 0.001 vs CTL. ###P < 0.001 vs T2D. Groups: CTL, 
control diet without physical exercise. CTL EX, control diet and physical exercise. T2D, diet-induced type 2 diabetes without 
physical exercise. T2D EX, diet-induced T2D and physical exercise. Diabetogenic diet: high-carbohydrate, high-fat diet plus 
25% fructose in the drinking water ad libitum.

Figure 2 Effect of physical exercise on liver steatosis and fibrosis in type 2 diabetes (T2D) mice. Representative images of liver samples stained with hematoxylin and eosin 
and Masson’s trichrome (A) quantitative assessment of liver steatosis (B) and fibrosis (C); ultrasound analysis of the liver (D) in the sedentary/exercised control mice (CTL/ 
CTL EX) and in the sedentary/exercised type 2 diabetic mice (T2D/T2D EX). **P < 0.01; ***P < 0.001.
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Effect of Physical Exercise on Hepatic and Adipose Microcirculatory Disturbances 
Associated with T2D
T2D mice showed increased leukocyte rolling and adhesion in the liver and adipose tissue microcirculation, as evidenced 
by intravital microscopy and LSCI (Figure 3A–D). Furthermore, basal hepatic and adipose tissue microvascular blood 
flow was decreased in T2D mice compared to CTL mice (Figure 3E–H). Increased activation of HSCs was found in T2D 
mice compared to CTL, as evidenced by the decrease in the number of vitamin A-positive cells and increased expression 
of α-SMA protein in the liver tissue (Figure 3I–L). Physical training reversed all microcirculatory abnormalities 
associated with T2D (Figure 3A–L).

Role of Physical Exercise on Oxidative Damage and AGE Levels in T2D-Induced Mice
T2D and T2D EX mice showed an increase in hepatic lipid peroxidation, evidence by increased MDA levels 
(Figure 4A), and increased antioxidant enzyme catalase activity (Figure 4C) and nitrite levels (Figure 4J) compared 
to those in the CTL mice. Liver and adipose tissue SOD enzyme activity (Figure 4B and E, respectively), adipose tissue 
MDA (Figure 4D), and serum and adipose tissue AGE levels (Figure 4G and I, respectively) were similar among groups. 
T2D showed an increase of 68% in hepatic AGE deposition and of 100% in RAGE protein expression compared to CTL 
group, which was negatively modulated by physical training (Figure 4H and K, respectively). CAT activity in the 
adipose tissue increased in T2D mice compared to CTL, as well as in T2D EX compared with that in T2D mice 
(Figure 4F).

The correlations between hepatic AGE levels and metabolic and microcirculatory parameters was assessed. A strong 
positive correlation was observed between liver AGE and liver fibrosis, α-SMA-positive area, and RAGE expression 
(Figure 4N, P, and M). Further, a moderate positive correlation was found between liver AGE, and liver steatosis, 
leukocyte rolling and adhesion (Figure 4O, R, and S). Finally, a moderate negative correlation was observed between 
hepatic AGE levels and vitamin A-positive cells (Figure 4Q). In adipose tissue, a moderate positive correlation was 
observed between AGE levels and microcirculatory parameters (Figure 4T and U).

Discussion
In the present study, we investigated the effect of aerobic exercise on the metabolic and microcirculatory abnormalities in 
a mouse model of T2D induced by an HCHF diet and fructose, as well as its underlying mechanistic features, including 
modulation of the AGE-RAGE pathway and oxidative stress. To do so, we developed a preclinical model of T2D 
reflecting the clinical signs of the disease, as C57BL/6 mice fed a HCHF and fructose for 36 weeks exhibited obesity 
(increased fat depots and body weight), hypertension, impaired glucose metabolism, insulin resistance, and cardiac 
dysfunction. In addition, as T2D is closely associated with liver complications,48,49 we examined the liver parameters of 
mice fed an HCHF diet and observed hepatic steatosis, fibrosis, increased AST, and hepatomegaly. Further, HCHF-fed 
mice showed increased serum and liver cholesterol and triglyceride levels. The observed metabolic, hemodynamic, and 
cardiac abnormalities indicate that 36-week HCHF-fed C57BL/6 mice are a reliable preclinical model for studying T2D- 
associated complications.

Similar to previous studies,50–52 12 weeks of aerobic exercise training reduced body weight, blood pressure, liver 
steatosis, and fibrosis in T2D mice. However, our exercise training protocol did not affect glucose metabolism, insulin 
resistance, adiposity, lipid profile, cardiac function and liver enzymes, which may be due to the low volume of the 
exercise training presently adopted. Some authors argue that the benefits of exercise training on these outcomes mainly 
depend on exercise training volume, understood as the interaction between frequency and duration of exercise.53,54 For 
instance, Machado et al demonstrated that unlike training five times per week, training three times a week did not 
improve insulin resistance and adiposity in rats with metabolic syndrome.31 Furthermore, it is well established that the 
mainstay of treatment for metabolic diseases remains lifestyle modification associated with diet and physical training.55 

Hence, interventions combining diet and physical training are more effective than the same interventions alone.56 Our 
data corroborate these findings, and suggest that low-volume training without dietary intervention is not able to restore 
glucose metabolism, insulin resistance, cardiac function and adiposity in T2D mice.
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Figure 3 Effect of physical exercise on the microcirculatory changes in type 2 diabetes (T2D). Quantification of leukocyte bearing and adhesion in the microcirculation of 
the liver (A and B) and adipose tissue (C and D). Representative images of hepatic and fat tissue microvascular blood flow evaluated by laser speckle contrast imaging (LSCI) 
and the setting of the region of interest (ROI, white circle) (E and F). Liver and adipose tissue microcirculatory basal blood flow by LSCI expressed as arbitrary perfusion 
units- APU (E and H). Representative images and quantification of vitamin A-positive cells (I and J), and the percentage of α-SMA expression in the hepatic tissue (K and L) 
of sedentary/exercised control (CTL/CTL EX) and sedentary/exercised type 2 diabetic mice (T2D/T2D EX) groups. *P < 0.05; **P < 0.01; ***P < 0.001.
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In our preclinical model of T2D, we observed increased leukocyte rolling and adhesion in the endothelium along with 
decreased hepatic blood flow. Our previous studies have shown that a high-fat diet can impair hepatic 
microcirculation.8,10 In addition, Rosenstengel et al found a relationship between levels of microvascular blood flow 
and the degree of steatosis in rats of different strains fed a high-fat diet for three weeks.57 Passarin et al showed that 
Wistar rats fed a cafeteria diet for one month exhibited hepatic endothelial dysfunction before the onset of fibrosis and 

Figure 4 Effect of physical exercise on oxidative damage and the AGE-RAGE pathway in T2D mice. Quantification of thiobarbituric acid reactive species, malondialdehyde 
levels (MDA), the enzymatic activity of superoxide dismutase (SOD), and the enzymatic activity of catalase (CAT) in the liver (A–C) and adipose tissue (D–F). Quantification 
of fluorescent AGE levels in the serum, liver and adipose tissue (G–I). Levels hepatic nitric oxide (NO) by quantification of nitrite (J), and protein expression of RAGE in the 
liver and adipose tissue (K and L) of sedentary/exercised control (CTL/CTL EX), sedentary/exercised type 2 diabetic mice (T2D/T2D EX) groups. Pearson´s correlation 
analyses between hepatic AGEs and protein expression of RAGE, hepatic fibrosis, hepatic steatosis, α-SMA expression in the liver, vitamin A-positive cells and hepatic 
microcirculatory parameters (M–U). *P < 0.05; **P < 0.01; ***P < 0.001.
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inflammation.58 We observed that exercise improved T2D-associated microcirculatory dysfunction including leukocyte 
recruitment and tissue perfusion. Concurrently, in the liver, increased vitamin A deposition and decreased expression of 
alpha-SMA induced by exercise were indicative of decreased HSC activation. HSC activation may lead to increased 
fibrogenesis stimulated by connective tissue growth factors and increased inflammation and matrix degradation, con
tributing to the development of liver fibrosis. As fat accumulation in hepatocytes is accompanied by an increase in cell 
volume, the decreases in hepatic sinusoids diameters may lead to partial or complete sinusoidal obstruction. Thus, 
beneficial effects of exercise may also be attributed to the decrease in visceral adiposity, steatosis, and fibrosis in the 
liver.59 Further, physical exercise may trigger vasodilatory signals, improve capillary density, and thus improve micro
circulatory blood flow.25,60–63

Hyperglycemia, dyslipidemia, inflammation and microcirculation abnormalities may increase the production of 
reactive oxygen species (ROS), triggering oxidative stress, which is responsible for the oxidation of carbohydrates, 
lipids, and proteins.64–66 Oxidation of polyunsaturated fatty acids increases the production of malondialdehyde (MDA), 
4-hydroxy-nonenal (HNE), and 4-oxy-2-nonenal (ONE), and an increase in these markers correlates with microvascular 
and macrovascular damage in T2D67. In parallel, the antioxidant defense system responds by reducing oxidative damage. 
To evaluate the redox status, lipid peroxidation and the activities of the enzymes CAT and SOD were analyzed.68 In the 
livers of T2D mice, the MDA and CAT levels increased and was not affected by exercise, whereas SOD was not altered 
among groups. We also observed that exercise training did not affect NO production in the liver, which could be 
beneficial as several studies have shown increased exercise-related stress in the liver.69 In turn, liver NO metabolites were 
increased in T2D mice, which could contribute to T2D70 as NO is involved in modulating hepatic microcirculatory 
perfusion and oxygenation in hepatic steatosis.71 The antioxidant and anti-inflammatory hepatic effects described herein 
could be attributed to the moderate exercise protocol used.72

The mechanism by which exercise training benefits T2D is not fully understood, as multiple molecular and metabolic 
pathways may be involved.22,73 Some studies suggest that the AGE-RAGE pathway contributes to chronic stress 
conditions, injury, and inflammation in T2D.13,74,75 Our group has previously demonstrated an increase in AGE 
deposition and the expression of RAGE in obese and diabetic rats, which may play an essential role in T2D.7,10 

Monitoring serum AGE levels has recently been reported to help in the early diagnosis of T2D and in predicting the 
severity of its late complications.76 Therefore, the AGE-RAGE signaling pathway was examined in the liver of T2D mice 
to determine its involvement in the exercise-mediated improvement of microcirculation. T2D mice exhibited increased 
AGE-RAGE levels, which were negatively affected by aerobic exercise. Further, there was a significant correlation 
between AGE levels and RAGE expression, microcirculatory abnormalities, the degree of steatosis and fibrosis, and HSC 
activation, which suggests that downregulation of both AGE-RAGE and HSC activation are molecular and cellular 
mechanisms involved in exercise-induced amelioration of microvascular damage associated with T2D. We have 
previously shown that rats with NAFLD and obesity have increased AGE levels and HSC activation, whereas inhibition 
of AGEs by pyridoxamine negatively modulate these parameters.8 Similar to our results, Lafoz et al showed that 
exercise-induced attenuation of liver fibrosis is associated with decreased HSC activation.77 Further, Gu et al showed 
that the activity of key enzymes in AGE formation, concentration of highly reactive intermediates, expression of RAGE, 
oxidative stress, and inflammation in the aortas of aged rats could be reduced by physical training.78 Further, Gu et al 
showed that the activity of key enzymes in AGE formation, concentration of highly reactive intermediates, expression of 
RAGE, oxidative stress, and inflammation in the aortas of aged rats could be reduced by physical training.8 Further, Gu 
et al showed that the activity of key enzymes in AGE formation, concentration of highly reactive intermediates, 
expression of RAGE, oxidative stress, and inflammation in the aortas of aged rats could be reduced by physical 
training.10 Further, Gu et al showed that the activity of key enzymes in AGE formation, concentration of highly reactive 
intermediates, expression of RAGE, oxidative stress, and inflammation in the aortas of aged rats could be reduced by 
physical training.76–78

To date, few studies have examined the content of AGEs in WAT; to our knowledge, this is the first study to examine 
the AGE-RAGE axis in pre-clinical models of T2D.79–81 Although we did not find significant differences in AGE-RAGE 
axis activation among the groups, we observed a positive correlation between AGE levels and microcirculatory changes 
in WAT, suggesting that AGEs could be involved in developing adipose tissue microcirculation dysfunction in T2D. 
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Exercise significantly decreased WAT leukocyte recruitment and increased microvascular blood flow in T2D mice. These 
data are consistent with those of Sousa et al, who demonstrated the important role of exercise in improving femoral artery 
microvascular dysfunction induced by perivascular adipose tissue in obese mice.82 This effect is thought to be attributed 
to the ability of exercise to modulate the circulating levels of mediators involved in the inflammatory cascade83 and 
presently was associated with increased catalase antioxidant activity.25 The increased CAT enzyme activity induced by 
exercise in T2D mice can be an adaptive response counteracting the increase in other oxidative stress metabolites that 
were not evaluated in the present study and could be a contributor in the microcirculations parameters improvements 
described in the present study.84–87

In summary, physical exercise reduced body and fat mass, blood pressure, liver weight, hepatic steatosis, fibrosis, and 
increased vascular function of liver and WAT in T2D mice. The improvements in hepatic microcirculatory function could 
be attributed to reductions in hepatomegaly, liver damage, and activation of HSC and AGE-RAGE, while in WAT due to 
decreased leukocyte recruitment and greater redox status. Thus, physical training may be a potential non- 
pharmacological treatment for microcirculatory dysfunction and oxidative parameters associated with T2D.
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