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Background: Sonodynamic therapy (SDT) has been regarded as a novel therapeutic modality for killing tumors. However, the 
hypoxic tumor microenvironment, especially deep-seated tumors distant from blood vessels, severely restricts therapeutic efficacy due 
to the oxygen-dependent manner of SDT.
Methods: Herein, we report a novel ultrasonic cavitation effect-based therapeutic modality that is able to facilitate the hypoxia- 
tolerant SDT for inducing hypoxic tumor death. A tLyP-1 functionalized liposomes is fabricated, composed of hematoporphyrin 
monomethyl ether gadolinium as the sonosentizer and perfluoropentane (PFP) as the acoustic environment regulator. Moreover, the 
tLyP-1 functioned liposomes could achieve active tumor homing and effective deep-penetrating into hypoxic tumors. Upon low 
intensity focused ultrasound (LIFU) irradiation, the acoustic droplet vaporization effect of PFP induced fast liquid-to-gas transition and 
quick bubbles explosion to generate hydroxyl radicals, efficiently promoting cell death in both normoxic and hypoxic microenviron-
ment (acting as deep-penetration nanobomb, DPNB).
Results: The loading of PFP is proved to significantly enhance the therapeutic efficacy of hypoxic tumors. In particular, these DPNB 
can also act as ultrasound, photoacoustic, magnetic resonance, and near-infrared fluorescence tetramodal imaging agents for guiding 
the therapeutic process.
Conclusion: This study is the first report involving that liquid-to-gas transition based SDT has the potential to combat hypoxic 
tumors.
Keywords: tetramodal imaging, low intensity focused ultrasound, sonodynamic therapy, deep-penetration, hypoxic tumors

Introduction
Photodynamic therapy (PDT) has shown great promise in combating tumors, which employs light to activate the photo-
sensitizers and produce highly toxic reactive oxygen species (ROS).1–3 It features the advantages of non-ionization, easy 
controllability, high efficiency, and low cost. However, the efficacy of PDT seriously depends on the penetration depth of 
light.4,5 As a mechanical wave, ultrasound (US) has been widely used in the biomedical field, including diagnostic imaging 
(US imaging) and therapeutic applications (sonodynamic therapy, SDT). Sonosensitizers in SDT generate ROS that promote 
cell apoptosis and necrosis by low-energy ultrasound activation rather than light energy activation. SDT retains traditional 
PDT advantages and has a specific killing effect on deep-seated tumors due to the high-penetration US.6–8 Although 
promising, the dense tumor stroma, increased interstitial fluid pressure, and disordered vasculature in tumors, especially 
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deep-seated tumors, could lead to insufficient nanomedicine accumulation, which is not conducive to initiate SDT for tumor 
therapy.9–11 Moreover, deep-seated solid tumor cells distant from blood vessels often suffer from insufficient oxygen supply 
due to tissue oxygen content’s attenuation.12–14 Considering the highly oxygen-dependent manner of SDT, the therapeutic 
outcome is severely restricted in deep-seated tumors. Therefore, it is necessary, urgent, but challenging to develop a deep- 
penetration system, which can efficiently induce hypoxic tumor cell death.

Many efforts have been proposed to overcome tumor hypoxia, including delivering oxygen into tumors,15–17 in-situ 
oxygen generation,18–20 reducing oxygen consumption,21–23 and hypoxia-activated prodrugs chemotherapy.24–26 

However, most strategies show limited efficacy in hypoxic tumors and encounter tremendous challenges for clinic 
applications. Recently, an oxygen-independent free radicals generation strategy is proposed, which employs thermal 
decomposable initiators (e.g. 2,2-azobis[2-(2-imidazoline-2-yl) propane)] dihydrochloride, benzoyl peroxide, azodiiso-
butyronitrile, etc.) to generate free radicals for eradiating hypoxic tumors.8,27,28 Although promising, low initiator’s 
loading capability and high decomposition temperature unavoidably lead to insufficient free radicals generation and 
diffusion for treating hypoxic tumors. Fortunately, the emergence of ultrasound (US) nanomedicine might provide an 
ideal choice for constructing next-generation nanoagents to achieve efficient hypoxic tumor therapy, which has been 
rarely reported.

In contrast to traditional US microbubbles, perfluoropentane (PFP), as a “liquid-to-gas” phase transitional material, 
was encapsulated in liposomes to prolong their half-life in vivo for effective accumulation in the tumor site.29–31 

Acoustic droplet vaporization (ADV) effect could induce a fast phase-transition manner, converting liquid phase PFP 
into gas phase under ultrasound triggering. We can observe a significantly augmented US and contrast-enhanced 
ultrasound imaging (CEUS) signal intensity.32,33 Generally, the collapse of bubbles under the treatment of US beams 
could induce an inert cavitation effect and enhance the therapeutic impact via inherent physical factors, including sheer 
streets, shock waves, microjets, and ROS production multilevel mechanisms due to their intrinsic mechanical-wave 
nature. Considering microbubbles could increase the efficacy of high-intensity focused ultrasound (HIFU) ablation with 
reduced acoustic energy and enhanced pathological lesion in tumor treatment, the phase transitional material with similar 
therapeutic behavior is anticipated to regulate the acoustic environment in hypoxic tumors.34,35 Notably, the acoustic 
environment’s change has been continuously developed as advanced oxidation processes for wastewater remediation by 
oxidizing hazardous organic compounds, which is featured by more efficient cavitation effect and ROS production in 
anoxic condition with the assistance of N2 than that in the oxic state.36–38 This industrial technology inspires us to 
develop a theranostic system to combat hypoxic tumors; along this line, we anticipate that PFP based cavitation effect 
could serve as a newborn strategy for efficiently inducing hypoxic tumor death without the need to deliver oxygen. 
Moreover, all these approaches still cannot effectively solve deep-seated tumors due to insufficient nanomedicine 
accumulation. CGNKRTR (tLyP-1), a kind of cell-penetrating peptide, has been regarded as a ligand targeted to the 
neuropilin-1 receptor (NPR-1) with high affinity and specificity and can penetrate deep-seated tumor cells effectively 
through endocytic/exocytic transport pathway (CendR pathway).11,31,39 As a result, it is a tendency to integrate deep- 
penetration peptide into a nanomedicine and explore a fresh therapeutic method toward deep-seated hypoxic tumors by 
regulating acoustic tumor microenvironment.40–42

In recent years, photosensitizers have shown great promise in tumor theranostics due to their advantages in 
photoacoustic (PA) imaging and near-infrared fluorescence (NIRF) imaging.43–46 NIRF holds the benefits of monitoring 
the distribution of NPs in the whole body with high sensitivity and short acquisition time. Comparatively, PA can provide 
images with higher contrast and spatial resolution due to the optical absorption. Although promising, the integration of 
PA and NIRF still lacks deep-tissue penetration and detailed anatomic information. Both US and magnetic resonance 
(MR) imaging could achieve deep-seated tumor imaging with high resolution nonradiatively. Simultaneously, the US 
could rapidly diagnose diseases at a low cost, and MR could provide high spatial information without penetration limited. 
Therefore, the integration of all these imaging modalities into a single nanoplatform is highly expected to obtain 
complementary information and achieve “mistake-free diagnosis” in a tailor-made “all-in-one” contrast agent.47,48

Herein, we report, for the first time, a LIFU triggered hypoxic-tolerant sonotherapeutic strategy to combat deep- 
seated hypoxic and normoxic tumors indiscriminately under multimodal imaging guidance. tLyP-1 functionalized 
phase-transition liposomes was successfully prepared in this strategy, which can actively target MDA-MB-231 tumor 
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cells and subsequently penetrate deeply into the tumors. Moreover, hematoporphyrin monomethyl ether gadolinium 
(H(Gd)), as the sonosensitizer, was loaded in phospholipid bilayer (designated as PFP@tLyP-1-LIP-H(Gd)) to initiate 
the SDT process. Notably, PFP, acting as the main functional phase transitional materials to achieve efficient “liquid- 
to-gas” transformation under an ADV mechanism, can serve as ideal materials to exert a “bomb-like” therapeutic 
effect on tumor cells under LIFU irradiation without oxygen-dependence. Because of the excellent targeting abilities 
and deep penetrating capabilities, tLyP-1 functionalized phase transitional nanoparticles performed the functions of 
a “deep-penetration nanobomb” for combating tumors. When irradiated with LIFU, which is targeted and focused, 
PFP@tLyP-1-LIP-H(Gd) could transform from liquid to gas and subsequently achieve contrast-enhanced ultrasound 
imaging and induce cell death via cavitation effect and SDT effect. Therefore, the LIFU activated PFP@tLyP-1-LIP- 
H(Gd) could realize hypoxic-tolerant sonodynamic therapy, which provided a low-cost and efficient approach against 
hypoxic tumors. Unlike other versatile nanoagents that integrate theranostic iron via either encapsulated in the shell 
or modified on the surface of NPs, Gd3+ was previously incorporated into the matallohematoporphyrin monomethyl 
ether. H(Gd) was used as sonosensitizers because of its high potent in PA/MRI dual-modal imaging and NIRF 
imaging was achieved after doping hydrophobic fluoroprobe DiR without additional modifications. Therefore, 
PFP@tLyP-1-LIP-H(Gd), which acts as a “Deep-Penetration Nanobomb” (DPNB), will enable a  US/NIRF/PA/ 
MRI  tetramodal imaging-guided hypoxic-tolerant sonodynamic therapy against hypoxic tumors (Figure 1).

Materials and Methods
Materials
Dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), distearoyl phosphatidyl ethanola-
mine-polyethylene glycol–maleimide (DSPE-PEG3400-mal), and ethanolamine-polyethylene glycol (DSPE-PEG3400) 
were purchased from Avanti Polar Lipids Inc. tLyP-1 was obtained from Chinapeptide. Perfluoropentane (PFP) was 
purchased from Elf Atochem. Dulbecco’s modified eagle medium (DMEM) cell culture medium and fetal bovine serum 
(FBS) were purchased from Sigma-Aldrich Co. (USA). 2-(4-Amidinophenyl)-6-indolecarbamidinedihydrochloride 
(DAPI) was bought from Beyotime Technology. Agarose was purchased from Invitrogen (Thermo Fisher Scientific). 
Calcein AM and propidium iodide (PI) and cell counting kit-8 (CCK-8) assay were obtained from Dojindo (Japan). All 
the chemical reagents in this study were analytical grade and used without any purification.

Figure 1 The generation of ROS and ADV mechanisms for synergistic hypoxia-tolerant sonodynamic therapy against solid hypoxic tumors under multimodal imaging 
guidance. The PFP@tLyP-1-LIP-H(Gd) could actively target the tumor site and penetrate deeply into the tumors, which exerts a “bomb-like” ADV effect and SDT 
mechanisms to destroy tumor cells under the irradiation of low intensity focused ultrasound (LIFU).
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Preparation of PFP@tLyP-1-LIP-H(Gd), PFP@LIP-H(Gd) and PFP@LIP
PFP@tLyP-1-LIP-H(Gd), PFP@LIP-H(Gd), and PFP@LIP were prepared by a facile one-step filming-rehydration method. 
To prepare PFP@tLyP-1-LIP-H(Gd), DSPE-PEG3400-tLyP-1 was firstly synthesized by Chongqing Protein Way 
Biotechnology Co. LTD. via a maleimide-thiol coupling reaction. Briefly, 10 mg DPPC, 4 mg DSPE-PEG3400-tLyP-1, 3 
mg DPPG, 3 mg cholesterol were dissolved in 10 mL trichloromethane and 2 mg H(Gd) was dissolved in 10 mL methyl 
alcohol, and the mixture was transferred into a round-bottomed flask. After rotary vacuum evaporation at 50°C for 1 h, 
a uniform layer film was fabricated. After that, 4 mL PBS was used to rehydrate the film, and 400 μL PFP was added under 
pulsed sonication (100 W, 5 s on, and 5 s off) for 6 min in an ice bath. Finally, the PFP@tLyP-1LIP-H(Gd) was fabricated after 
repeated centrifugation (8000 rpm, 10 min) and stored at 4 °C for further use. To prepare PFP@LIP-H(Gd), DSPE-PEG3400 
was used to replace DSPE-PEG3400-tLyP-1 with the same additive dose. PFP@LIP was ready with the same method except 
for the addition of H(Gd).

Loading Efficiency Calculation of H(Gd)
UV-Vis spectra measured the H(Gd) content and organic aqueous phases in the supernatant after repeated centrifugation. 
The standard curve of H(Gd) was established by detecting the absorbance curves at various concentrations. Loading 
efficiency of H(Gd) was calculated as follows: Loading efficiency (%) = weight of encapsulated H(Gd)/total weight of 
H(Gd) × 100 %.

In vitro US/PA/MRI/NIRF Tetramodal Imaging
To evaluate the US imaging capability of PFP@tLyP-1-LIP-H(Gd) in vitro, a 3 % agar (w/v) gel mold was carried out as 
a test model. First, PFP@tLyP-1-LIP-H(Gd) with the concentration of 0.25 mg mL−1 dispersed in 1 mL of solutions were 
placed and set in the gel. Both B-mode and CEUS-mode were performed to evaluate the imaging properties (Vevo 
LAZR, Canada). After that, the NPs were exposed to the various intensity of LIFU (0, 0.8, 1.6, and 3.2 W cm−2) for 
different times (1, 2, 3, and 4 min). The images of the samples were collected. The signal intensity of each sample was 
determined by the software provided by the imaging system.

To evaluate the PA imaging capability of PFP@tLyP-1-LIP-H(Gd) in vitro, a 3% agar (w/v) gel mold was carried out 
as a test model. Various concentrations (0.15625, 0.3125, 0.625, 1.25, 2.5, and 5 mg mL−1) of PFP@tLyP-1-LIP-H(Gd) 
dispersed in 200 μL of solutions were placed in the gel for PA imaging using the same system at the excitation 
wavelength of 700 nm. The samples’ images were collected, and the imaging system’s software determined the 
corresponding signal intensity.

An MR imaging system (Siemens Medical System, Chongqing People’s Hospital) at 3.0 T was used to examine the 
T1-weighted MRI ability in vitro. 2 mL of PFP@tLyP-1-LIP-H(Gd) (with the Gd3+ concentration of 0.015– 0.1 mM-1) 
samples with various concentrations were placed in 4 mL of Eppendorf tubes. The corresponding T1 relaxation time was 
calculated according to the signal intensity. MR images were obtained using a T1-weighted sequence, and the parameters 
were set as follows: slice thickness = 3 mm, 320×320 matrices, repetition time (TR)/echo time (TE)=790/15 ms.

A Xenogen IVIS Spectrum Imaging System (PerkinElmer, USA) was employed to evaluate the NIRF imaging ability 
in vitro. 200 μL of DiR labeled PFP@tLyP-1-LIP-H(Gd)(0.01– 5 mg mL−1) samples with various concentrations were 
placed in a 96-well plate, and NIRF images were collected at the excitation wavelength of 790 using an 845 nm filter.

Cell Culture and Tumor Xenograft Models
MDA-MB-231 cells and HUVEC cells were obtained from Chongqing Key Laboratory of Ultrasound Molecular 
Imaging, which were approved by committee of Chongqing Medical University. Cells were cultured in a DMEM 
medium supplemented with 10 % fetal bovine serum and 1 % penicillin-streptomycin. Healthy female balb/c nude 
mice (6 weeks old) were purchased from Beijing Huafukang Biotechnology. This study’s protocols were conducted 
following the protocol approved by the department of animal care and use committee of Chongqing Medical University 
according to the guidelines (GB_T 35892–2018). The tumor xenograft models were established by subcutaneous 
injection of MDA-MB-231 cells (2×106 dispersed in 100 μL of PBS solution) into each mice’s right hind limb.
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In vitro Active-Targeting Effect of PFP@tLyP-1-LIP-H(Gd)
MDA-MB-231 cells and HUVEC cells were seeded in CLSM-specific cell culture dishes (1×105 cells per well) and 
cultured for 24 h to adhere to the dish’s wall to investigate the active targeting effect of PFP@tLyP-1-LIP-H(Gd). Then 
PFP@tLyP-1-LIP-H(Gd) or PFP@LIP-H(Gd) dispersed in DMEM (1 mg mL−1) was added into each well and incubated 
various times (0.5, 1, 2, and 4 h). After that, the cells were washed with fresh DMEM three times and incubated with 
DAPI for another 15 min. Finally, the cells were fixed with 4% paraformaldehyde and observed under CLSM (Nikon A1, 
Japan). To build the three-dimensional spheroids, MDA-MB-231 cells (105 mL-1) were seeded into agarose-coated plates. 
10 days later, the spheroids were created for further use. After that, 250 μg mL-1 of DiI-labeled nanoparticles were 
introduced to the plates containing spheroids. After 24 hours of incubation, spheroids were rinsed three times with PBS 
and fixed for 30 minutes with 4 % paraformaldehyde. CLSM was used to observe the fluorescence intensity at different 
depths of spheroids.

To further evaluate the uptake behavior of MDA-MB-231 cells and HUVEC cells, the cells were seeded (1×105 cells 
per well). After 24 h incubation, PFP@tLyP-1-LIP-H(Gd) or PFP@LIP-H(Gd) were added and incubated for different 
times (0.5, 1, 2, and 4 h) respectively. Then the medium was discarded, and the cells were washed with fresh DMEM. 
The intracellular uptake behavior was analyzed with flow cytometry.

In vitro ROS Production Under the Irradiation of LIFU
3 mL of PFP@tLyP-1-LIP at a concentration of 1 mg mL−1 containing methylene blue (10 μg mL−1) was added into an 
eppendorf tube and irradiated with LIFU (1.6 W cm−2) for different time intervals (5, 10, 15, 20, and 25 min) followed by 
observation with a UV-Vis spectrometer ranging from 500–750 nm. Moreover, 3 mL of different NPs at various concentra-
tions containing SOSG (50 × 10−6 M) was added into a cuvette and irradiated with LIFU (1.6 W cm−2) for a different time 
interval followed by observation with a multimode reader. MDA-MB-231 cells were incubated with different NPs (2 mg 
mL−1) for 4 h. Then the cells were incubated with fresh DMEM medium (containing 10 μM of DCFH-DA) at 37°C for 20 
min. Then the cells were exposed to LIFU (1.6 W cm−2, 2 min) and observed by CLSM. The cells were put in a GENbox Jar 
to a hypoxic group until the color of the anaerobic indicator changed from pink to colorless.

In vitro Synergistic Therapeutic Effect Induced by LIFU
MDA-MB-231 cells were seeded in 96-well plates (1×104 per well) and cultured overnight to evaluate the therapeutic 
effect of NPs in both normoxic and hypoxic conditions. Then the medium was replaced by fresh DMEM with various 
concentrations with PFP@tLyP-1-LIP-H(Gd), PFP@tLyP-1-LIP, and tLyP-1-LIP, respectively. The NPs concentrations 
were ranged from 0.375–3.0 mg mL−1. After 4 h incubation, the cells were treated with LIFU (1.6 W cm−2, 3 min) and 
cultured for another 8 h. Cells without irradiation with LIFU were set as controls. For the hypoxic group, the cells were 
treated with identical conditions except for the GENbox Jar treatment. The environment would become hypoxia since the 
indicator’s color changed from pink to colorless. After that, the samples were washed with fresh DMEM three times and 
incubated with 10 μL CCK-8 solution for 2 h. The cell viability was determined according to the results obtained from 
the microplate reader at 450 nm.

MDA-MB-231 cells (1×104 per well) were seeded in CLSM-specific plates and cultured for 12 h to adhere to the 
plate. PFP@tLyP-1-LIP-H(Gd), tLyP-1-LIP-H(Gd), and PFP@LIP-H(Gd) were added respectively and coincubated for 4 
h and exposed to LIFU (1.6 W cm−2, 3 min). After another 6 h, the cells were stained with Calcein-AM and PI for 15 min 
and imaged by CLSM.

In vivo NIRF/US/PA/MRI Tetramodal Imaging
The MDA-MB-231 tumor-bearing mice were intravenously injected with DiR labeled-PFP@tLyP-1-LIP-H(Gd) or 
PFP@LIP-H(Gd). The images were collected at different times (0, 2, 6, 12, and 24 h) postinjection. Moreover, major 
organs (including heart, liver, spleen, lungs, kidneys, and brain) were collected at 24 h postinjection. The images were 
observed using a Xenogen IVIS Spectrum Imaging System. The biodistribution of NPs was quantified by the software 
provided by the Xenogen IVIS Spectrum Imaging System.
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For US and PA imaging, the tumor-bearing mice were intravenously injected with PFP@tLyP-1-LIP-H(Gd) or 
PFP@LIP-H(Gd). The images were collected at different times (0, 2, 6, 12, and 24 h) postinjection. The images were 
observed using a PA imaging system (Vevo LAZR, Canada). The tumor-site accumulation of NPs was quantified by the 
software provided by the PA Imaging System. At 2 h postinjection, LIFU was performed to the tumor-site and imaged 
using the B-mode and CEUS-mode in the PA Imaging System.

For T1-weighted imaging, the tumor-bearing mice were intravenously injected with PFP@tLyP-1-LIP-H(Gd). The 
mice injected with identical concentrations of PFP@tLyP-1-LIP were set as a control. The images were observed using 
a 3.0 T MRI imaging system (Siemens Medical System, Chongqing People’s Hospital) at different times (4, 6, 12, and 24 
h) postinjection. The tumor-site accumulation of NPs was quantified by the software provided by the exact MR Imaging 
System.

In vivo Synergistic Tumor Therapy and Biocompatibility Evaluation
When the tumors grew to about 80 mm3 in volume, the tumor-bearing mice were randomly divided into 6 groups (n=6 in 
each group). The groups were set as follows: 1) Control group, 2) LIFU only group, 3) tLyP-1-LIP+LIFU group, 4) tLyP- 
1-LIP-H(Gd) + LIFU group, 5) PFP@tLyP-1-LIP-H(Gd) group, 6) PFP@tLyP-1-LIP-H(Gd) + LIFU group. The power 
intensity of LIFU was set as 1.6 W cm−2, 3 min. The tumor size and body weight were recorded every other day. The 
representative mice were sacrificed at 1 d post-treatment. The H&E, PCNA and TUNEL staining of tumors were 
performed to evaluate the therapeutic effect. The biocompatibility was evaluated by H&E staining of the major organs 
(heart, liver, spleen, lungs, kidneys, and brain). To further assess the in vivo tumor-site accumulation of PFP@tLyP- 
1-LIP-H(Gd) and PFP@LIP-H(Gd), the tumor-bearing mice were intravenously injected with DiI labeled-PFP@tLyP- 
1-LIP-H(Gd) or PFP@LIP-H(Gd). The mice were sacrificed at different times (1, 2, 6, 12, and 24 h) postinjection. The 
tumor-site accumulation of NPs was imaged using CLSM.

Results and Discussion
Preparation and Characterization of PFP@tLyP-1-LIP-H(Gd) NPs (DPNB)
The synthesis scheme of PFP@tLyP-1-LIP-H(Gd) NPs as “DPNB” was shown in (Figure 2A). Our study prepared 
PFP@tLyP-1-LIP-H(Gd) NPs in a simple one-step emulsion method with a typical core-shell structure with lipid(LIP)/ 
H(Gd) shell and PFP as the core; tLyP-1 was modified on the surface via a maleimide-thiol coupling reaction as the 
targeting component for active targeting and deep penetration. After sonication in an ice bath and subsequent centrifuga-
tion to remove the excess gradients, transmission electron microscopy (TEM) images were obtained. A uniformly 
distributed core-shell structure of PFP@tLyP-1-LIP-H(Gd) NPs was observed (Figure 2B). The absorbance spectra of 
H(Gd) with different concentrations were obtained. According to the UV-Vis absorbance values at the wavelength of 411 
nm (Figure 2C and D), H(Gd) ‘s loading efficiency was determined to be 93.3 ± 3.1 % by comparing unloaded H(Gd) to 
the pre-established standard curve (Figure S1). Moreover, the UV-Vis spectra demonstrated that both PFP@tLyP-1-LIP- 
H(Gd) and PFP@LIP-H(Gd) retain the absorption peak of H(Gd) at around 400 nm and several specific wavelengths 
between 450 and 650 nm (Figure 2E). In comparison, PFP@LIP showed a smooth UV-Vis spectrum between 300 and 
700 nm without a prominent absorption peak, further indicating the success loading of H(Gd) (Figure 2E). The average 
diameter of the PFP@tLyP-1-LIP-H(Gd) was 260.9 ± 4.3 nm (PDI=0.016), and the zeta potential was −15.7 ± 2.2 mV 
according to the dynamical light scattering (DLS) results (Figure 2F and G and Figure S2), which is following the TEM 
results. Moreover, the zeta potential changed from −29.2 mV to −15.7 mV after decoration with positive potential tLyP-1. 
These results suggest the successful construction of PFP@tLyP-1-LIP-H(Gd) and meet the criterion for subsequent 
applications.

In vitro Cell Uptake Behavior of PFP@tLyP-1-LIP-H(Gd)
It has been demonstrated that the cell-penetrating peptide tLyP-1 was responsible for the specific adhesion nature to 
specific cells that overexpressed NPR-1. The tLyP-1 functionalized nanoplatform could target specific tumors through the 
endocytic/exocytic transport pathway (CendR pathway). As a result, PFP@tLyP-1-LIP-H(Gd) 's dynamic targeting effect 
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against MDA-MB-231 cells was evaluated using human umbilical vein endothelial cells (HUEVC) as the control. As 
shown in (Figure 3A), MDA-MB-231 cells showed a much higher fluorescence than that in HUEVC cells in 4 
h observation after co-incubation with PFP@tLyP-1-LIP-H(Gd), indicating the specific targeting effect of PFP@tLyP- 
1-LIP-H(Gd) to MDA-MB-231 cells. Additionally, compared to PFP@LIP-H(Gd) group, PFP@tLyP-1-LIP-H(Gd) group 
displayed more vigorous fluorescence intensity due to the active targeting effect in the presence of tLyP-1 (Figure 3A). 
Similarly, it was found that MDA-MB-231 cells exhibited stronger fluorescence in the PFP@tLyP-1-LIP-H(Gd) group 
than that in PFP@LIP-H(Gd) group; the fluorescence in MDA-MB-231 cells is higher than that in HUEVC cells when 
treated by PFP@tLyP-1-LIP-H(Gd) with identical treatment as determined by flow cytometry (Figure S3). All these 
results indicated the active targeting effect of PFP@tLyP-1-LIP-H(Gd) against MDA-MB-231 cells.

In vitro, three-dimensional tumor spheroid is a classical model to mimic the microenvironment of solid tumors. In this 
study, we established three-dimensional spheroids of MDA-MB-231 cells. After co-incubation with PFP@tLyP-1-LIP-H(Gd) 
or PFP@LIP-H(Gd) for 24 h, we found that the red fluorescence of PFP@tLyP-1-LIP-H(Gd) distributed more evidently than 
that of PFP@LIP-H(Gd) in the spheroids. The PFP@tLyP-1-LIP-H(Gd) could reach more than 90 μm away from the bottom 
of the tumor spheroids, whereas PFP@LIP-H(Gd) only in the surface layer of the tumor spheroids. The above results indicated 
that tLyP-1 peptide could facilitate the transport of NPs into the deep-seated region of tumors (Figure 3B).

Figure 2 Characterization of PFP@tLyP-1-LIP-H(Gd). (A) Schematic illustration of PFP@tLyP-1-LIP-H(Gd) preparation process. (B) TEM images of PFP@tLyP-1-LIP- 
H(Gd). The scale bar is 500 nm, and the insertion scale bar is 200 nm. (C) Calibration curve of H(Gd) based on UV-Vis spectra. (D) UV-Vis spectra of H(Gd) at different 
concentrations of H(Gd). (E) UV-Vis spectra of H(Gd), PFP@LIP, PFP@LIP-H(Gd) and PFP@tLyP-1-LIP-H(Gd). (F) Particle sizes of PFP@LIP, PFP@LIP-H(Gd) and 
PFP@tLyP-1-LIP-H(Gd). (G) Zeta potential of PFP@LIP, PFP@LIP-H(Gd), and PFP@tLyP-1-LIP-H(Gd).
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In vitro ROS Generation of PFP@tLyP-1-LIP-H(Gd)
PFP@tLyP-1-LIP-H(Gd) includes a core of the PFP molecule, which could undergo a fast liquid-to-gas transition under 
LIFU irradiation. Notably, the acoustic environment’s change has been continuously developed as advanced oxidation 
processes for wastewater remediation by oxidizing hazardous organic compounds, which is featured by more efficient 
cavitation effect and ROS production in anoxic condition with the assistance of N2 than that in the oxic state.[14] 

Therefore, we anticipate the gaseous PFP could combat hypoxic tumors by assisting ROS production in anoxic condition. 
Subsequently, the ROS generation of PFP@tLyP-1-LIP and tLyP-1-LIP in the hypoxia conditions was evaluated by 
methylene blue, whose fluorescence decreased sharply in the presence of ROS. The ROS generation of PFP@tLyP- 
1-LIP-H(Gd) was performed in distilled water, which is an environment lack of different kinds of gas and can act as 
hypoxia conditions. As shown in (Figures 4A and B), PFP@tLyP-1-LIP showed potent ROS generation, in sharp contrast 

Figure 3 Internalization of PFP@tLyP-1-LIP-H(Gd) in different cell lines. (A) Uptake of PFP@tLyP-1-LIP-H(Gd) and PFP@LIP-H(Gd) by MDA-MB-231 cells or HUVEC cells 
at different incubation times observed by CLSM. (B) Three-dimensional reconstruction of the MDA-MB-231 spheroids model incubated with PFP@tLyP-1-LIP-H(Gd) or 
PFP@LIP-H(Gd). The scale bar is 50μm.
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to single tLyP-1-LIP, indicating that PFP can induce ROS generation by cavitation effect in a hypoxia environment. 
Therefore, we anticipate that PFP based cavitation effect could serve as a newborn strategy for efficiently inducing 
hypoxic tumor death without the need to deliver oxygen.

The SDT efficiency of PFP@tLyP-1-LIP-H(Gd) was then confirmed with singlet oxygen sensor green (SOSG) as the 
ROS indicator in vitro, whose fluorescence increased sharply in the presence of ROS. First, the ROS production was 
determined by testing fluorescence intensity at various concentrations and prolonged LIFU irradiation duration. We found 

Figure 4 Evaluation of ROS generation. (A) PFP@tLyP-1-LIP and (B) tLyP-1-LIP. (C) Fluorescence spectrum of SOSG under different PFP@tLyP-1-LIP-H(Gd) concentra-
tions at a fixed LIFU intensity (1.0 MHz, 1.6 W cm−2, 120 s). (D) Quantitative results of the fluorescence of DCF after different treatment in normoxia and hypoxia and (E) 
corresponding CLSM images. (F) ROS production and hypoxia status of MDA-MB-231 cancer cells incubated with PFP@tLyP-1-LIP-H(Gd) with/without LIFU. The scale bar 
is 50 μm. (group 1: Control, group 2: tLyP-1-LIP(hypoxia), group 3: PFP@tLyP-1-LIP(hypoxia), group 4: PFP@tLyP-1-LIP-H(Gd)(normoxia), group 5: PFP@tLyP-1-LIP-H(Gd) 
(hypoxia)).(***p < 0.001 compared by one-way ANOVA analysis, n=5).
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that the SOSG fluorescence in PFP@tLyP-1-LIP-H(Gd) NPs exhibits a concentration-dependent manner at selected time 
points after LIFU irradiation (Figure 4C). Interestingly, PFP@tLyP-1-LIP-H(Gd) also showed an irradiation duration- 
dependent ROS generation manner at a fixed concentration of PFP@tLyP-1-LIP-H(Gd) (Figure S4), which could benefit 
the precise control of SDT efficiency for personal requirements. The highly efficient ROS production of PFP@tLyP- 
1-LIP-H(Gd) in solution inspired us to investigate the cellular level’s SDT efficiency further under hypoxic conditions. 
2’-7’-dichlorodihydrofluorescein diacetate (DCFH-DA) was used as the indicator, whose fluorescence would be turned 
on and produce fluorescence DCF by ROS, to evaluate SDT efficacy. As shown in (Figure 4D and E), compared to 
PFP@tLyP-1-LIP, PFP@tLyP-1-LIP-H(Gd) showed a more remarkable ROS production ability with higher DCF 
fluorescence, which can ascribe to the SDT effect after loading H(Gd). Moreover, PFP@tLyP-1-LIP showed an enhanced 
ROS production compared to tLyP-1-LIP, confirming ROS generation of PFP@tLyP-1-LIP originated from the cavitation 
effect during the phase-transition process in the presence of PFP. To estimate the ROS production in a hypoxia 
environment, we evaluated the SDT efficiency under the same conditions. After LIFU irradiation, a comparable green 
fluorescence was observed in hypoxia compared to that in normoxia, confirming the ROS generation by PFP@tLyP- 
1-LIP-H(Gd) is hypoxia-tolerant (Figure 4D and E). In the groups without LIFU irradiation, no noticeable fluorescence 
could be observed under the same condition. These results revealed that NPs alone without LIFU irradiation could not 
induce ROS generation, indicating the controlled ROS release ability of PFP@tLyP-1-LIP-H(Gd). These results showed 
PFP@tLyP-1-LIP-H(Gd) potential as sonosensitizers and cavitation nuclei to achieve hypoxia-tolerant sonodynamic 
therapy against cancer cells. A hypoxia/oxidative stress detection kit confirmed the hypoxic environment in vitro and 
intracellular ROS generation (Figure 4F).

LIFU Activated SDT and “Bomb-Like” Cavitation Effect of PFP@tLyP-1-LIP-H(Gd)
Having proved the hypoxia-tolerant ROS generation based on the cavitation effect in the presence of PFP, the therapeutic 
efficacy of PFP@tLyP-1-LIP-H(Gd) was evaluated by a standard CCK-8 assay. MDA-MB-231 cells were chosen as the 
representative cell line to assess the cytotoxicity of PFP@tLyP-1-LIP-H(Gd) under normoxia and hypoxia environment. 
First, the biocompatibility of PFP@tLyP-1-LIP-H(Gd), PFP@LIP-H(Gd), and PFP@LIP NPs were tested, and negligible 
cytotoxicity was observed (Figure S5), indicating the high biocompatibility of the NPs. Subsequently, the antitumor 
efficacy of PFP@tLyP-1-LIP-H(Gd), tLyP-1-LIP-H(Gd), and tLyP-1-LIP were assessed after treatment with LIFU under 
normoxic and hypoxic condition. As expected, PFP@tLyP-1-LIP showed enhanced cytotoxicity compared to tLyP-1-LIP, 
indicating the cavitation effect of PFP@tLyP-1-LIP post “liquid-to-gas” phase-transitional process could induce cell 
death more efficiently under our testing conditions (Figure 5A and B). Moreover, the PFP@tLyP-1-LIP + LIFU group’s 
cell viability was significantly lower than that in the PFP@tLyP-1-LIP-H(Gd) + LIFU group at the same concentration, 
indicating the SDT effect in the presence of H(Gd). Furthermore, the SDT effect of PFP@tLyP-1-LIP-H(Gd) was higher 
than that of PFP@LIP-H(Gd) due to the active targeting efficacy originated from tLyP-1 as mentioned above (Figure S6). 
Notably, for the PFP@tLyP-1-LIP groups, both hypoxia and normoxia environments showed comparable therapeutic 
efficacy in MDA-MB-231 cells, indicating the hypoxia-tolerant therapeutic process induced by the cavitation effect 
(Figure 5A and B). To examine the therapeutic effect of LIFU more intuitively, CLSM was carried out, and minimal cell 
death was observed for all groups without LIFU irradiation (Figure 5C). Moreover, the tLyP-1-LIP-H(Gd)+LIFU group 
showed minimal therapeutic effect under hypoxia. In contrast, PFP@tLyP-1-LIP-H(Gd) showed the most cell death in 
both hypoxia and normoxia conditions after LIFU irradiation, further proving the hypoxia-tolerant therapeutic efficacy of 
SDT in inducing cell death against hypoxic tumors, which was following the CCK-8 results.

In vitro US/NIRF/PA/MRI Tetramodal Imaging Capability
PFP is a “liquid-to-gas” phase transitional material and acoustic droplet vaporization effect could induce a fast phase- 
transition manner, converting liquid phase PFP into gas phase under ultrasound triggering. Herein, the cavitation effect 
induced by the acoustic droplet vaporization effect was intuitively observed by a microscope (Figure 6A). PFP@tLyP- 
1-LIP-H(Gd) includes a core of the PFP molecule, which could undergo a fast liquid-to-gas transition under LIFU 
irradiation. After LIFU irradiation, PFP@tLyP-1-LIP-H(Gd) realized a gradual increase in size compared to the control 
NPs for a prolonged duration of 1–4 min at the power intensity 1.6 W cm−2. In vitro therapeutic efficacy of PFP@tLyP- 
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1-LIP-H(Gd) has demonstrated the inert cavitation effect enhanced sonodynamic therapy at the cellular level in both 
normoxia and hypoxia. The produced microbubbles contribute to an enhancement in US imaging, which could be 
examined using both B-mode and contrast-enhanced ultrasound (CEUS)-mode ultrasound imaging. As expected, we 
observed an intensified signal increase in both B-mode and CEUS-mode with the increasing irradiation duration in 4 min 
observations (Figure 6B–D), indicating the presence of phase-transition effect and the formation of gaseous PFP. In 
contrast, the microbubbles could be further exploded at a higher intensity of LIFU, and a decreased imaging signal was 
observed due to the sputtering of microbubbles. As a control, tLyP-1-LIP-H(Gd) without the encapsulation of PFP 
showed no noticeable change in ultrasound signal under ultrasound treatment, suggesting PFP could induce a phase- 
transition behavior. These results supported the powerful ADV effect and the liquid-gas transition of PFP@tLyP-1-LIP- 
H(Gd) for US imaging under LIFU irradiation.

To further evaluate the NIRF imaging properties of PFP@tLyP-1-LIP-H(Gd), the various concentration of DiR-labeled 
PFP@tLyP-1-LIP-H(Gd) were placed in a 96-well plate. The fluorescence of PFP@tLyP-1-LIP-H(Gd) increased in the range of 
0.01 mg mL−1–0.3125 mg mL−1; however, the fluorescence remains unchanged in the field of 0.3125 mg mL−1– 5 mg mL−1 due 
to the self-quenching effect of DiR, indicating the effectiveness of PFP@tLyP-1-LIP-H(Gd) as a NIRF contrast for imaging 
applications (Figure 6E). Moreover, considering the PA signal of H(Gd), we evaluated the PA signal of PFP@tLyP-1-LIP-H(Gd), 
and it increased linearly with the increasing concentration of PFP@tLyP-1-LIP-H(Gd) (Figure 6F and Figure S7). As classical 
MRI imaging agents, Gd3+ has been widely used as a contrast agent for T1-weighted MRI of tumors in the clinic. Thus, the MRI 
imaging of PFP@tLyP-1-LIP-H(Gd) was measured quantitatively. As shown in Figure 6G, a linearly brightening effect was 

Figure 5 In vitro cell experiments. LIFU induced therapeutic efficacy of PFP@tLyP-1-LIP-H(Gd), PFP@tLyP-1-LIP, and tLyP-1-LIP in MDA-MB-231 cells under (A) normoxia 
and (B) hypoxia. (C) CLSM images of MDA-MB-231 cells were costained with Calcein AM (green fluorescence) and PI (red fluorescence) after different treatments in 
normoxia and hypoxia. The scale bar is 50 μm. (**p < 0.01, ***p < 0.001 compared by one-way ANOVA analysis, n=5).
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observed, and the relaxation time was calculated to be 21.29 mM−1 s−1. Therefore, the above results demonstrated PFP@tLyP- 
1-LIP-H(Gd) potential as contrast agents for US/NIRF/PA/MRI tetramodal imaging.

In vivo Active-Targeting Capability and US/NIRF/PA/MRI Tetramodal Imaging
PFP@tLyP-1-LIP-H(Gd)’s targeting effect in vitro inspired us to further examine tumor-specific accumulation in tumor- 
bearing mice. Fluorescence imaging was first performed to evaluate the bio-distribution in the whole body using DiR- 
labeled PFP@LIP-H(Gd) as a contrast agent. After intravenous injection of PFP@tLyP-1-LIP-H(Gd) or PFP@LIP- 
H(Gd), prominent fluorescence was observed in the PFP@tLyP-1-LIP-H(Gd) group at 2 h postinjection and remain 
steady at the tumor-site in 24 h observation (Figure 7A). However, no obvious fluorescence signal was found in the 
PFP@LIP-H(Gd) group, which could be ascribed to the enhanced tumor-specific targeting of PFP@tLyP-1-LIP-H(Gd) 
endowed by tLyP-1. Moreover, the fluorescence signal of tumor ex vivo was also improved in PFP@tLyP-1-LIP-H(Gd) 
group. Simultaneously, a decreased liver accumulation was observed (Figure 7B and C), which further supported the 
feasibility of decorating tLyP-1 for tumor-specific accumulation.

Figure 6 Multimodal imaging capability in vitro. (A) Optical microscopy images of LIFU-responsive phase-transition process of PFP@tLyP-1-LIP-H(Gd) at prolonged 
irradiated durations. (B) B-mode and CEUS-mode ultrasound images of PFP@tLyP-1-LIP-H(Gd) under LIFU irradiation with different intensities at different times. 
Corresponding quantitative echo intensity of (C) B-mode and (D) CEUS-mode. (E) In vitro FL images, (F) PA images, and (G) MR images at different concentrations.
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The integration of multimodal imaging to achieve a clinical diagnosis, therapeutic guidance, and outcome monitoring 
is highly desired in tumor theranostics. Considering the US/PA/MRI capability of PFP@tLyP-1-LIP-H(Gd) in vitro, we 
examined the multimodal imaging capability in vivo. First, PFP@tLyP-1-LIP-H(Gd) was intravenously injected into 
tumor-bearing mice. The PA intensity in the tumor site is higher postinjection than preinjection (Figure 7D and E). At 2 
h postinjection, the PA signal within the tumor increased significantly and remain steady during 24 h observation. 
Moreover, there was no noticeable change in the PA signal in tumor-bearing treated by intravenous injection of 
PFP@LIP-H(Gd), indicating the PFP@tLyP-1-LIP-H(Gd)) could accumulate selectively at the tumor site effectively 
and achieve PA imaging. Second, the MRI imaging capability was then evaluated in tumor-bearing mice. Like PA 
imaging, the MRI signal intensity in the tumor site showed a noticeable brightening effect 24 h after intravenous injection 
of PFP@tLyP-1-LIP-H(Gd) (Figure 8A). The quantitative analysis of tumor-site signal intensity showed positive signal 
enhancement (Figure 8B). As a contrast, minor enhancement in MR imaging was observed after injection of PFP@LIP- 
H(Gd); therefore, the as-prepared PFP@tLyP-1-LIP-H(Gd) could act as an ideal MRI contrast agent for T1-weighted 
MRI in vivo.

As for ultrasound imaging, both the B-mode ultrasound and CEUS-mode were evaluated. The results showed a slight 
enhancement in images at 2 h postinjection of PFP@tLyP-1-LIP-H(Gd), indicating a slight phase-transition of NPs happened 

Figure 7 FL and PA imaging capability in vivo. (A) In vivo and ex vivo FL images of MDA-MB-231 tumor-bearing mice and ex vivo FL images of major organs (including heart, 
liver, spleen, lungs, kidneys, and brain). Corresponding quantitative FL intensities are postinjection of different NPs (B) in vivo and (C) ex vivo. (D) PA images of MDA-MB 
-231 tumor-bearing mice and (E) corresponding quantitative PA intensities postinjection of different NPs. (ns means p>0.05, ***p < 0.001 compared by one-way ANOVA 
analysis, n=3).
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(Figure 8C). However, the echo signal showed a noticeable enhancement after LIFU irradiation (Figure 8D and E), suggesting that 
PFP@tLyP-1-LIP-H(Gd) could accumulate into the tumor region effectively and trigger phase-change via ADV effect as 
discussed above. Therefore, PFP@tLyP-1-LIP-H(Gd) could realize ultrasound imaging and show better enhancement as 
ultrasound contrast agents, while the decoration of tLyP-1 might be extensive both the imaging and therapeutic effect for 
advanced applications. Based on the above results, NIRF provided information about NPs distribution in the whole body with high 
sensitivity in real-time; US and MR imaging could achieve deep-seated tumor imaging with high resolution; while PA could 
provide higher contrast images of the optical absorption. To sum up, PFP@tLyP-1-LIP-H(Gd) served as a NIRF/US/PA/MRI 
tetramodal imaging contrast agent for providing multi-hierarchy and multi-attribute information comprehensively to achieve 
a mistake-free diagnosis and real-time monitoring/guidance.

In vivo Programmed Therapeutic Assay
LIFU utilizes ultrasound to induce tumor cell death with both ADV and SDT mechanisms. Oxygen is essential during 
SDT because the ROS generation is highly oxygen-dependent, reacting with DNA breaks and preventing the damage 
from repairing in tumor cells. Thus, the SDT therapeutic efficacy was strictly restricted in hypoxic tumor cells. Bubbles 

Figure 8 MRI and US imaging capability in vivo. (A) MR images of MDA-MB-231 tumor-bearing mice and (B) corresponding quantitative MR intensities postinjection of 
different NPs. (C) B-mode and CEUS-mode ultrasound imaging at tumor-site before and after intravenously injecting PFP@LIP-H(Gd) or PFP@tLyP-1-LIP-H(Gd). After 2 
h postinjection, the tumors were exposed to LIFU, and US images were obtained in both B-mode and CEUS-mode. Corresponding quantitative US signal intensities in both 
(D) B-mode and (E) CEUS-mode. (***p < 0.001 compared by one-way ANOVA analysis, n=3).

https://doi.org/10.2147/IJN.S361648                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2022:17 4560

Luo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


are essential to LIFU irradiation because they can enhance the SDT efficacy with highly hypoxia-tolerance, thus 
enhancing SDT-induced hypoxic tumor therapy. Hence, we evaluated in vivo tumor therapy using the MDA-MB-231 
xenograft tumor model (Figure 9A). Tumor-bearing mice were intravenously injected with saline, tLyP-1-LIP, tLyP- 
1-LIP-H(Gd), and PFP@tLyP-1-LIP-H(Gd), and a part of them was exposed to LIFU at 0 d, 4 d and 8 d postinjection 

Figure 9 In vivo antitumor and therapeutic evaluation of PFP@tLyP-1-LIP-H(Gd). (A) Schematic illustration of the in vivo SDT process. (B) Pictures of representative mice 
in 14 days after different treatments. (C) Relative tumor volume changes of the mice after various treatments. (D) Tumor inhibition rate of the mice after multiple 
treatments. (E) Bodyweight changes of the mice after different treatments. (F) H&E staining results of major organs (including heart, liver, spleen, lungs, kidney, and brain) in 
various groups (magnitude of enlargement: 100X). (Group 1: Control, Group 2: LIFU, Group 3: tLyP-1-LIP+LIFU, Group 4: tLyP-1-LIP-H(Gd)+LIFU, Group 5: PFP@tLyP- 
1-LIP-H(Gd), Group 6: PFP@tLyP-1-LIP-H(Gd)+LIFU). (***p < 0.001 compared by one-way ANOVA analysis, n=5).
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(1.6 W cm−2, 3 min). The body weight and tumor size were measured every other day, and we recorded the mice’s 
images in each group. Only moderate tumor inhibition was observed in the LIFU only group, PFP@tLyP-1-LIP-H(Gd) 
group, and tLyP-1-LIP+LIFU group compared to the control group (Figure 9B and C).

In contrast, the tLyP-1-LIP-H(Gd)+LIFU group showed an enhanced therapeutic effect compared to the tLyP-1-LIP 
+LIFU group, confirming the therapeutic effect originated from the H(Gd) induced SDT. Moreover, PFP@tLyP-1-LIP- 
H(Gd)+LIFU showed the maximum tumor inhibition at the end of the therapeutic process, suggesting the ideal 
therapeutic outcome against hypoxic tumors. The tumor inhibition rate was also calculated, further confirming the 
combination of ADV effect and SDT could inhibit tumor growth (Figure 9D). No apparent change in body weight was 
observed during the therapeutic process, indicating the therapeutic doses and LIFU intensity in our study were well- 
tolerated (Figure 9E). The path morphology analysis of heat, liver, spleen, lungs, and kidneys was observed, and no 
apparent tissue damage was found in all treatment groups (Figure 9F). Furthermore, complete blood count, liver and 
kidney function markers all showed negligible difference among the groups at different therapeutic times in 14 days at 
our tested doses (Figure S8).

To further test the programmed therapeutic effect against hypoxic tumors, tumor slices were collected from different 
groups of mice at 24 h after the last treatment. The slices were stained with hematoxylin and eosin (H&E) and 
Proliferating Cell Nuclear Antigen (PCNA) to observe the change in tumor cell morphologies, cell proliferation, and 
apoptosis levels. In the PFP@tLyP-1-LIP-H(Gd) + LIFU group, a large number of cell apoptosis and necrosis was 
observed by H&E staining. Moreover, the maximum expression of TdT-mediated dUTP Nick-End Labeling (TUNEL) 
and the minimal expression of PCNA were observed in the PFP@tLyP-1-LIP-H(Gd)+LIFU group (Figure 10A), further 
indicating the high therapeutic efficacy of PFP@tLyP-1-LIP-H(Gd). After a 4 h post intravenous injection, PFP@tLyP- 
1-LIP-H(Gd) can be detected away from the tumor blood vessels (labeled with CD31), while PFP@-LIP-H(Gd) without 
tLyP-1 mainly accumulate around the blood vessels (Figure 9B). These results indicated that the tLyP-1 could afford 
superior tumor penetration in tumors. To sum up, the above results were in accordance with the multimodal imaging 

Figure 10 In vivo pathological results of tumors. (A) H&E, TUNEL and PCNA staining of tumor sections after different treatments. (B) Fluorescent staining of tumor 
sections at various times after intravenous injection of DiI labeled PFP@LIP-H(Gd) or PFP@tLyP-1-LIP-H(Gd).
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capability and confirmed the deep-penetration effect of PFP@tLyP-1-LIP-H(Gd) as “nanobombs” for efficient tumor 
theranostics (Figure 10B).

Conclusions
In summary, we have successfully developed an acoustic tumor microenvironment regulating theranostic strategy based on 
a “liquid-to-gas” phase transition NPs to combat hypoxic tumors. The LIFU-responsive nanoplatform was constructed by 
incorporating PFP, acting as phase-transition materials, in the tLyP-1 functionalized liposomes, which could target deep-seated 
tumor cells efficiently and subsequently exert a violent “liquid-to-gas” phenomenon. tLyP-1, a short peptide for targeting nutrient 
deprivation tumor cells through an NRP-1-dependent endocytic/exocytic transport pathway, achieved effective deep-seated tumor 
infiltration. Moreover, lipid was featured with high hydrophobic agent loading efficiency and facile PFP encapsulation; thus, 
H(Gd) was encapsulated to perform “bomb-like” ADV effect and SDT. After low intensity focused ultrasound (LIFU) irradiation, 
the ADV effect of PFP@tLyP-1-LIP triggered a sharply “liquid-to-gas” phenomenon for applications in both theranostic “bomb- 
like” effect and ROS generation, which showed comparable therapeutic efficacy under both normoxia and hypoxia. In addition to 
the therapeutic applications, the prepared PFP@tLyP-1-LIP-H(Gd) could act as a US/PA/NIRF/MRI tetramodal imaging agent 
for guiding therapy. Therefore, this work pioneers a field to achieve hypoxia-tolerant sonodynamic therapy for synergistic deep- 
seated tumor therapy and offers a tetramodal imaging strategy for theranostic applications.

Supplementary Materials
Supplementary figures and tables.
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