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Objective: The authors performed several tree-based algorithms and an association rules mining as data mining tools to find useful 
determinants for neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients as well as to assess the effect of the first-aid 
and basic characteristics in the EMS system.
Patients and Methods: This was a retrospective cohort study. The outcome was Cerebral Performance Categories grading on 
OHCA patients at hospital discharge. Decision tree-based models inclusive of C4.5 algorithm, classification and regression tree and 
random forest were built to determine an OHCA patient’s prognosis. Association rules mining was another data mining method which 
we used to find the combination of prognostic factors linked to the outcome.
Results: The total of 3520 patients were included in the final analysis. The mean age was 67.53 (±18.4) year-old and 63.4% were men. 
To overcome the imbalance outcome issue in machine learning, the random forest has a better predictive ability for OHCA patients in 
overall accuracy (91.19%), weighted precision (88.76%), weighted recall (91.20%) and F1 score (0.9) by oversampling adjustment. 
Under association rules mining, patients who had any witness on the spot when encountering OHCA or who had ever ROSC during 
first-aid would be highly correlated with good CPC prognosis.
Conclusion: The random forest has a better predictive ability for OHCA patients. This paper provides a role model applying several 
machine learning algorithms to the first-aid clinical assessment that will be promising combining with Artificial Intelligence for 
applying to emergency medical services.
Keywords: cardiac arrest, tree-based algorithms, data mining

Introduction
Out-of-hospital cardiac arrest (OHCA) poses a major threat to patient recovery because of the low rate of survival. This 
rate is approximately 2–10% in Asia and 9–15% in Europe and the United States. The survival at discharge rate of 
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patients with OHCA is nearly 7.6% in Taiwan.1 Patients’ survival after an OHCA depends on a series of actions enacted 
by bystanders, first responders, emergency medical service (EMS) personnel, and health-care staff (hospital staff). The 
chain of survival outlined by the American Heart Association includes early EMS activation, cardiopulmonary resuscita
tion, public automated external defibrillator use, high-quality resuscitation, and care after a cardiac arrest; this has been 
explored in several studies.2–6 Factors such as the processing time for each stage, efficiency of emergency medical 
technicians (EMTs), and comorbidities of patients may help predict OHCA prognosis; however, few studies have 
investigated these factors. Thus, obtaining relevant data to improve survival rate and ensure favorable neurological 
outcomes in patients with OHCA remains a challenge.

Conventional statistical models, which can have some degree of sophistication, have been used to identify relevant 
factors and assign scores to predict OHCA prognosis. For instance, the cardiac arrest hospital prognosis score and 
C-GRApH scoring system are used for patients with return of spontaneous circulation (ROSC) after an OHCA to predict 
favorable neurological outcomes.7,8 Because statistical models may be based on unrealistic assumptions for simplicity, 
a statistical model with high predictive ability may be overly complex. Owing to enhanced computational efficiency, 
machine learning (ML) techniques have been widely used in predictive modeling. In OHCA, various ML algorithms 
have been used to predict in-hospital cardiac arrest incidence and favorable neurological outcomes to identify an 
algorithm with enhanced performance and accuracy.9–11 ML algorithms are used to classify patients with OHCA 
based on their care requirement after ROSC; target temperature management or percutaneous coronary intervention 
(PCI) reportedly lead to a better prognosis.12 In Italy, a lower bystander CPR rate and prolonged response time reduced 
the survival of OHCA patients during the COVID-19 epidemic.13 During the epidemic, the dispatch center identified 
OHCA, and EMTs conducted COVID-19 protection for all OHCA patients in Taiwan. Response time increased by 
1 minute, scene time interval increased by 1.5 minutes, and t transport time increased by 0.5 minutes, which are also 
consistent with the previous study. However, bystander CPR decreased by 7%, and the rate of intubation and LMA 
decreased by 15%.1 EMS parameters for OHCA patients have different situations to face the challenge of COVID-19.

Although ML-based models yield satisfactory predictions of survival or favorable neurological outcome in patients 
with OHCA, improper model application is sometimes unavoidable because EMS systems differ between countries.14 

Moreover, most studies have used ML techniques to emphasize prediction accuracy rather than interpretability. 
Therefore, in the present study, we used ML algorithms as data mining tools to identify the effective predictors of 
favorable neurological outcomes in patients with OHCA and evaluate the effects of first-aid treatment and basic EMS 
parameters on patient survival during the COVID-19 epidemic. We used several tree-based algorithms and association 
rule mining (ARM) to determine an optimal combination of the predictors of neurological outcomes in patients with 
OHCA.

Materials and Methods
Study Setting and Databases
This retrospective study was conducted using data obtained from the EMS database of Taoyuan, Taiwan, per the Utstein 
style between January 2020 and December 2021. Taoyuan, which has both urban and rural areas, has the third-highest 
rate of OHCA among municipalities in Taiwan. Our study obtained approval to access the EMS database utilized in the 
study. The resuscitation team must be dispatched with at least three EMTs and a mechanical cardiopulmonary resuscita
tion (CPR) device when attending to a patient with OHCA.

The EMS database is a local prospective registry maintained by the Taoyuan Fire department; the emergency 
departments of a total of 13 first-aid hospitals use this database to report cases. Patient data are collected by the EMS 
personnel and hospital staff (upon arrival at the emergency department). These data include the medical history of 
patients, age, sex, event location, witness status (ie, whether the incident was witnessed by others [positive or not]), CPR 
by bystanders, prehospital ROSC, initial rhythm (shockable or not), EMS parameters (EMT certification level, airway 
device, response time, scene time interval [STI], and transport time), outcome parameters evaluated using the Cerebral 
Performance Category (CPC) scale and survival at discharge. Furthermore, the hospitals’ medical records included data 
on the patients’ consciousness level and vital signs upon their arrival at the emergency department.
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Patient Inclusion, Data Collection, and Outcome Measurement
The study included patients with nontraumatic OHCA who were managed and transported to the hospital by the EMS 
personnel. Patients were excluded if they had a do-not-resuscitate order, were pronounced dead at the scene, were 
pregnant, or had missing data on outcomes (Figure 1). The outcome assessed in this study was the neurological recovery 
of patients with OHCA. At discharge, the patients were evaluated using the CPC scale. Five grades can be assigned based 
on the CPC score. A favorable condition is indicated by a CPC grade of 1 (good cerebral performance and mild or no 
neurological disability) or 2 (moderate cerebral disability and consciousness and ability to function independently); 
a CPC grade of 5 indicates death. To simplify the evaluation of neurological recovery levels, three categories were 
defined based on CPC grading: good CPC (gCPC; CPC grades 1 and 2), severe cerebral damage (SCD; CPC grades 3 
and 4), and death (CPC grade 5).

Data Processing
If a variable had missing values for <10% of its data points, these missing values were taken to be the mean for 
continuous and mode for categorical variables, respectively. If a variable had missing values for >10% of its data points, 
such as vital signs upon arrival at the hospital, it was excluded from the analysis. After the missing data were processed, 
the data were randomly split into training (80%) and testing (20%) data sets.

Statistical Analysis with Tree-Based ML
Decision tree–based models are common in supervised learning used for classification. For data analysis, we used three 
tree-based algorithms: C4.5, classification and regression tree (CART), and random forest (RF). The C4.5 algorithm 
follows the principle of maximum information entropy gain to help determine the best feature for splitting a dataset. It 

Figure 1 Flow diagram of patient enrollment. 
Abbreviation: DNR, do-not-resuscitate.
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can do multi-splits at once. CART is based on the Gini index, which indicates impurity. It only computes two splits at 
once. We respectively chose the optimal tree models with these two algorithms by achieving the highest accuracy in the 
testing dataset as well as lower pessimistic model error rate for reference. RF, as suggested by its name, comprises 
several decision trees and uses the bagging and random feature sampling techniques to reduce bias and increase precision 
for prediction. The other analysis is listed in Supplementary Figure S1 and S2.

Metrics for Model Performance Evaluation
To evaluate ML models, the accuracies of multicategory outcome (gCPC/ SCD/death) prediction were compared in terms 
of discrimination performance. The metrics used in this study included testing accuracy, kappa, multiclass area under the 
curve, precision, recall, and F1 score. The formula for these metrics are listed in Supplementary Table S1. Using RF, we 
ranked the prognostic factors based on their importance. The model performance in the three subgroups are listed in 
Supplementary Table S3.

Class Imbalance Problem
During our analysis, highly imbalanced outcome classes were noted in our data because of the low survival rate in 
patients with OHCA, which resulted in a high accuracy. To overcome this problem, data resampling was performed to 
retrain the models. Oversampling through the bootstrap method was applied to the tree-based ML algorithm described in 
the previous paragraph.

Other Statistical Analyses and ARM
Descriptive data for patient characteristics are presented as the mean ± standard deviation or median and interquartile 
range for continuous data; by contrast, frequency and percentage were used to present categorical data. Tree models help 
determine the possible paths for linking outcomes. Another data mining technique, ARM, was used to determine the rules 
for gCPC. An apriori algorithm was used to identify the rules for support, confidence, and lift of factor combinations. 
Downsampling was performed if no rules for gCPC could be identified using ARM. All statistical analyses were 
performed using R (version R i386 4.1.1). The main packages used for ML analyses were RWeka, rpart, caret, e1071, 
randomForest, and pROC.

Results
Among the patients with OHCA who were managed by the EMS personnel, 3520 were included in the final analysis. The 
mean age was 67.53 ± 18.4 years, and 63.4% were men. This cohort was divided into two samples: an 80% sample 
comprising a total of 2816 patients for training a predictive model for CPC-3 grade in patients with OHCA and the 
remaining 20% sample comprising a total of 704 patients for testing. The data on patient characteristics and their 
neurological outcomes are presented in Table 1. In the training cohort, the proportion of patients with gCPC was 4.7%, 
which was similar to that noted for all study participants, including the testing cohort. No significant differences were 
observed between the training and testing cohorts except in the following variables: CPR by bystanders and presence of 
hypertension and cancer in the patient.

Decision Tree
We used the C4.5 and CART algorithms to develop single-tree models. In C4.5 analysis, several combinations of the 
variables (ie, M = 2–15 with possible pruning during splitting; Supplementary Table S2) were used to determine the 
highest accuracy of the testing set. The highest accuracy that could be achieved using the C4.5 algorithm was 90.63% 
(parameter setting: M = 2, 3, and 13); however, the tree size was 79 with the lowest error rate (ie, M = 2), resulting in 
a more complex tree. In the CART analysis, we also considered the complexity penalty for pruning. Figure 2 shows the 
tree model developed using CART; the highest accuracy was 90.77% with a tree size of 13. The optimally pruned tree 
model decreased one split, where splitting stopped at the node of an STI of <16.5 min, remaining 90.34% for accuracy 
(Supplementary Figure S3). In RF analysis, top 10 factors were ranked based on their importance (Figure 3). The top five 
important factors were as follows: achievement of prehospital ROSC, age, EMS response time, STI, and transport time.
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Model Performance
Table 2 shows the overall performance of models developed using the three tree-based algorithms. No statistically 
significant difference was noted among the algorithms in terms of the model performance metrics. In the oversampling 

Table 1 Baseline Characteristics of the Study Population

All OHCA 
N=3520

Training Set 
N=2816

Testing Set 
N=704

p-value

Age 67.53 ± 18.40 67.51 ± 18.35 67.62 ± 18.61 0.883

Sex=M 2232 (63.4%) 1801 (64.0%) 431 (61.2%) 0.178

Location 0.808
Public 787 (22.4%) 632 (22.4%) 155 (22.0%)

Residential 2733 (77.6%) 2184 (77.6%) 549 (78.0%)

Witness 1482 (42.1%) 1182 (42.0%) 300 (42.6%) 0.759
Bystander CPR 2271 (64.5%) 1841 (65.4%) 430 (61.1%) 0.033

Number of EMT members 0.190
1~2 446 (12.7%) 364 (12.9%) 82 (11.6%)

3~4 2532 (71.9%) 2033 (72.2%) 499 (70.9%)

5~6 542 (15.4%) 419 (14.9%) 123 (17.5%)
Response time 6 (5 ~ 8) 6 (5 ~ 8) 6 (5 ~ 8) 0.921

Scene time interval 13 (10 ~ 17) 13 (10 ~ 17) 13 (10 ~ 17) 0.183

Transport time 6 (4 ~ 9) 6 (4 ~ 9) 6 (4 ~ 9) 0.155
EMS total time 27 (23 ~ 32) 27 (23 ~ 32) 26 (22 ~ 31) 0.099

Use mechanical CPR 2930 (83.2%) 2340 (83.1%) 590 (83.8%) 0.652

Airway 0.723
BVM 2656 (75.5%) 2119 (75.2%) 537 (76.3%)

Igel/LMA 626 (17.8%) 502 (17.8%) 124 (17.6%)

Intubation 238 (6.8%) 195 (6.9%) 43 (6.1%)
AED Rhythm 0.848

Non-shockable 3008 (85.5%) 2408 (85.5%) 600 (85.2%)

Shockable 512 (14.5%) 408 (14.5%) 104 (14.8%)
Epinephrine medication times 0.181

0 2736 (77.7%) 2182 (77.5%) 554 (78.7%)

1 226 (6.4%) 186 (6.6%) 40 (5.7%)
2 231 (6.6%) 181 (6.4%) 50 (7.1%)

3 205 (5.8%) 160 (5.7%) 45 (6.4%)

4 122 (3.5%) 107 (3.8%) 15 (2.1%)
Amiodarone medication (1+) 26 (0.7%) 21 (0.7%) 5 (0.7%) 0.922

Glasgow Coma Scale 0.834

3 3452 (98.1%) 2760 (98.0%) 692 (98.3%)
4~8 20 (0.6%) 17 (0.6%) 3 (0.4%)

9~15 48 (1.4%) 39 (1.4%) 9 (1.3%)

Patients’ History
DM 924 (26.3%) 741 (26.3%) 183 (26.0%) 0.863

HTN 1260 (35.8%) 1038 (36.9%) 222 (31.5%) 0.008

Stroke 266 (7.6%) 215 (7.6%) 51 (7.2%) 0.726
CAD 865 (24.6%) 709 (25.2%) 156 (22.2%) 0.096

Cancer 337 (9.6%) 285 (10.1%) 52 (7.4%) 0.027

CPC category 0.280
Good CPC (1 2) 160 (4.5%) 131 (4.7%) 29 (4.1%)

Severe Cerebral Damage (3 4) 205 (5.8%) 172 (6.1%) 33 (4.7%)

Death (5) 3155 (89.6%) 2513 (89.2%) 642 (91.2%)

Abbreviations: CPR, cardiopulmonary resuscitation; EMS, emergency medical service; BVM, bag valve mask; LMA, laryngeal mask airway; 
AED, automated external defibrillator; DM, diabetes mellitus; HTN, hypertension; CAD, coronary artery disease; CPC, cerebral 
performance category.

International Journal of General Medicine 2022:15                                                                             https://doi.org/10.2147/IJGM.S384959                                                                                                                                                                                                                       

DovePress                                                                                                                       
7399

Dovepress                                                                                                                                                               Lin et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 2 Tree model plot by classification and regression tree (CART). 
Abbreviations: gCPC, Good Cerebral Performance Category; SCD, severe cerebral damage; GCS, Glasgow coma scale; ROSC, return of spontaneous circulation; AED, 
automated external defibrillator.

Figure 3 The top 10 of parameter importance ranked by the random forest (RF). 
Abbreviations: ROSC, return of spontaneous circulation; GCS, Glasgow coma scale; AED, automated external defibrillator.
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analysis, the metrics of the model developed using RF were slightly higher than those of the models developed using 
the other algorithms. Specifically, the overall accuracy, weighted precision, weighted recall, and F1 score were 91.19%, 
88.76%, 91.20%, and 0.9, respectively. Thus, RF had a better predictive ability for CPC-3 grade in patients with 
OHCA.

ARM
The apriori algorithm was used to determine the rules for gCPC in patients with OHCA. However, all rules led to death 
because of the highly imbalanced distribution of outcomes (Supplementary Table S4). Therefore, we performed 1:1 
resampling to determine the outcomes of patients with gCPC versus the others. The rules determined under the 
conditions of a minimum support value of 0.2 and a minimum confidence value of 0.7 are presented in Table 3. Event 
witness status or prehospital ROSC were highly correlated with good OHCA prognosis. For instance, a patient with 
OHCA for whom the EMS response time is 1–5 min and whose OHCA event is witnessed by others may have 
a favorable prognosis.

Discussion
We used several data mining techniques to develop an optimal model for predicting patients’ neurological outcomes after 
an OHCA. RF was used to rank the prognostic factors based on their importance. In our study, the model developed using 
RF had better accuracy, precision, and recall than the others, particularly in the oversampling analysis, for survival and 

Table 2 Evaluation Results for Tree-Based Model Performances

Overall 
Performance

C4.5 CART RF

Original 
Dataset

Over- 
Sampling

Original 
Dataset

Over- 
Sampling

Original 
Dataset

Over- 
Sampling

Accuracy 90.62% 81.68% 90.77% 80.82% 90.91% 91.19%
Kappa 0.384 0.221 0.353 0.328 0.341 0.434

Multi-class AUC 64.67% 70.19% 64.46% 76.66% 65.15% 71.47%

Weighted Precision 88.55% 85.30% 90.77% 80.82% 88.13% 88.76%
Weighted Recall 90.63% 81.68% 88.67% 88.01% 90.91% 91.20%

F1 score 0.896 0.834 0.897 0.843 0.895 0.900

Note: Weighted metrics are calculated by the summation of the proportion (subgroup numbers/ total) multiplying the subgroups’ metrics. 
Abbreviations: CART, classification and regression tree; RF, random forest.

Table 3 Rules for Good CPC by 1:1 Resampling for Association Rules Mining

{Conditions} ≤{Outcome} Support Confidence Lift

{Witness=Y} ≤ {CPC=gCPC} 0.425 0.720 1.439

{Ever ROSC=Y} ≤ {CPC=gCPC} 0.344 0.917 1.833

{Mechanical CPR =N} ≤ {CPC=gCPC} 0.203 0.730 1.461
{Witness=Y, Cancer=N, Epinephrine=0} ≤ {CPC=gCPC} 0.338 0.715 1.430

{Gender=M, Witness=Y} ≤ {CPC=gCPC} 0.309 0.712 1.424

{AED Rhythm=Shockable} ≤ {CPC=gCPC} 0.275 0.807 1.615
{Location=Public} ≤ {CPC=gCPC} 0.250 0.755 1.509

{Hospital Level=CAC, Witness=Y} ≤ {CPC=gCPC} 0.244 0.736 1.472

{Response Time=1~5 mins, Witness=Y} ≤ {CPC=gCPC} 0.219 0.700 1.400
{Witness=Y, Bystander CPR=Y, Airway=BVM, Cancer=N} ≤ {CPC=gCPC} 0.219 0.707 1.414

{Age=45~65 y/o, Witness=Y} ≤ {CPC=gCPC} 0.209 0.761 1.523

Notes: Model setting: min support=0.2, min confidence=0.7; listing in the raw output with original variable names from the dataset. 
Abbreviations: gCPC, Good Cerebral Performance Category; ROSC, return of spontaneous circulation; CAC, cardiac arrest center; AED, 
automated external defibrillator; BVM, bag valve mask; CPR, cardiopulmonary resuscitation.
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favorable neurological outcomes after an OHCA. The top five important prognostic factors identified were prehospital 
ROSC, age, EMS response time, STI, and transport time.

Patients with ROSC after an OHCA were reported to have a better (almost eight-fold) chance of survival at discharge 
than those without it.15 In our study, this factor represented the first important branch node in the decision tree. In contrast 
to the OHCA patients without ROSC, it has >80% mortality rate.

A previous study reported that the average duration from call to hospital arrival was approximately 30 min for gCPC; 
every 1-min increase in the response time was associated with a 3% decrease in the probability of favorable neurological 
outcomes.16 Through ARM, we found that the presence of a witness at the scene and a response time of <5 min lead to 
favorable neurological outcomes in patients with OHCA. Similarly, another study reported that a response time of <4 min 
results in a better ROSC rate and survival in the first year after the event. Moreover, prolonged CPR (>30 min) results in 
poor prognosis.17 Holmén et al showed that patients for whom the response time is <6 min have a survival probability 
6% and 11% higher than that of those for whom the response time is 7–9 and >15 min, respectively. If the patient’s 
rhythm is nonshockable, a prolonged response time leads to a decrease in survival probability by 10%–19%.18

We found that patients with OHCA with a shockable rhythm achieved prehospital ROSC. However, they were still 
comatose and had an on-spot first-aid time of >16.5 min (STI > 16.5); these patients had a lower (one-fifth fold) 
probability of achieving favorable neurological outcomes than those with an on-spot first-aid time of <16.5 min. Coute 
et al reported that the probability of achieving favorable neurological outcomes rapidly decreases in patients with OHCA 
with a shockable rhythm when the STI is >20 min; however, to the best of our knowledge, no such finding has been 
reported in patients with a nonshockable rhythm. This finding is consistent with our finding obtained using the decision 
tree–based model.19

In their retrospective study conducted in South Korea using the data of patients with OHCA, Kim et al concluded that 
a prolonged STI leads to poor prognosis in patients with OHCA; the cutoff point reported in their study was 8 min, which 
is shorter than the node split observed in our model developed using the CART algorithm.19 They further stated that if an 
EMT performs on-spot CPR for >8 min in a patient without ROSC, the probability of survival is low after arrival at the 
hospital.20

Chien demonstrated that the prognosis of patients with OHCA with a shockable rhythm who are directly transported 
to a cardiac arrest center is not affected the transport time. However, when the transport time is >14 min, the probability 
of survival is lower than the average.1 Patients receive definitive treatments, such as target temperature management, 
PCI, and extracorporeal membrane oxygenation (ECMO)-CPR, at a cardiac arrest center.1 In their meta-analysis, Geri 
et al reported that prolonged transport time is not correlated with survival and neurological outcomes.21 Nonetheless, 
transport time is an important factor as per the ranking based on RF. Currently, we lack clarity on the suitable transport 
time (to definitive care hospitals) for patients with OHCA.

In our study, among comatose patients with ROSC, with a shockable rhythm, and with an STI of <16.5 min, patients 
aged <65 years exhibited better neurological outcomes in CART analysis. ARM suggested that a combination of factors 
such as middle age and positive witness status leads to favorable neurological outcomes. In a study by Okabayashi et al, 
the patient population was divided into three groups based on age: 65–74 [reference group], 75–84, and >85 years; the 
probability of favorable neurological outcomes was 46% and 69% lower in patients aged 75–84 and 85 years, 
respectively, than in those aged 65–74 years.22 However, on the basis of an age-based analysis, Tsai et al2 reported 
only a 2–3% difference in terms of survival and neurological outcomes among the age groups, which was not as 
significant as that reported by Okabayashi.22 In another previous study, age was included as a confounding factor in 
outcome evaluation, but the findings remained nonsignificant.1

Multiple factors are correlated with favorable neurological outcomes, including witness status and the patient’s initial 
shockable rhythm. In our resampling analysis, a positive witness status and response time of >5 min was correlated with 
a favorable neurological outcome of 0.700. This finding is consistent with our results related to the important prognostic 
factors ranked using RF. A positive witness status and bag-valve-mask ventilation performed by bystanders to rescue 
patients with OHCA without cancer was associated with a favorable neurological outcome of 0.707 in our study. 
Reynolds et al also demonstrated that in patients with OHCA whose cardiac event is witnessed by others, who receive 
CPR from the bystanders, and who have a modified Rankin Scale score of 0–3 had a two-fold higher survival than those 
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whose cardiac event is unwitnessed and who receive no CPR from the bystanders.23,24 In the Çinier’s study, primary 
percutaneous coronary intervention (PPCI) for STEMI patients had a longer ischemic time and door-to-balloon time 
prolonged by 28 minutes, which does not affect in-hospital mortality risk.25 In the COVID-19 pandemic, the EMS total 
time was extended by 3 minutes, but the survival to discharge rate was similar.

Because the probability of survival is low after an OHCA, highly imbalanced outcome categories may result in high 
accuracy because of the incorporation of highly correlated factors in the model; however, these factors do not reflect 
the model’s advantages. Resampling techniques can be used to evaluate these ML techniques. Single-tree models can 
be developed using the C4.5 and CART algorithms, which helps determine the rules that can predict patients’ 
neurological outcomes. Although CART is used more often than C4.5 algorithm in medical studies, both are similar 
in terms of overall accuracy (81.68% vs 80.82%, respectively; resampling analysis). Conversely, RF is an ensemble 
learning approach, which combines multiple weak learners to construct a robust model. The top 10 prognostic factors 
ranked in our study based on their importance may serve as a reference for relevant studies in the future. Due to 
artificial intelligence (AI) technology, we should use AI to predict disease prognosis. Hayıroğlu’s study used the 
electrocardiographic diastolic index (EDI) to create a new scoring system to indicate diastolic dysfunction (DD).26 Our 
study identified critical prognostic factors using Decision tree-based models and association rules mining. We should 
use survival factors to build scoring systems to predict the survival rate in OHCA patients during the covid-19 
pandemic.

Strengths and Limitations
We evaluated factors associated with neurological recovery in patients with OHCA to evaluate the effects of first-aid 
treatment and basic EMS parameters on patient survival. However, no in-hospital factors, such as ECMO-CPR, PCI, and 
target temperature management, were analyzed in the present study. Hence, further studies are warranted in the future to 
combine in-hospital and out-of-hospital data for predicative models developed based on tree-based algorithms 
and ARM.

Conclusions
RF has a better predictive ability for CPC-3 grade in patients with OHCA. In decision tree, ARM, and RF analyses, the 
key prognostic factors in an out-of-hospital setting were prehospital ROSC, age, response time, STI, and transport time. 
The model developed in this study using several ML algorithms to evaluate the effects of first-aid treatment may be 
combined with artificial intelligence to enhance the EMS system.
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OHCA, out-of-hospital cardiac arrest; EMS, emergency medical service; EMTs, emergency medical technicians; CPR, 
cardiopulmonary resuscitation; ML, machine learning; ECMO, extracorporeal membrane oxygenation; PCI, percuta
neous coronary intervention; BVM, bag valve mask; LMA, laryngeal mask airway; AED, automated external defibril
lator; DM, diabetes mellitus; HTN, hypertension; CAD, coronary artery disease; CPC, Cerebral Performance Category; 
gCPC, Good Cerebral Performance Category; ROSC, return of spontaneous circulation; CAC, cardiac arrest center; 
BVM, bag valve mask; AI, artificial intelligence; EDI, electrocardiographic diastolic index; dd, diastolic dysfunction; 
GCS, Glasgow coma scale.
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