
O R I G I N A L  R E S E A R C H

Radiological Features for Outcomes of MOGAD 
in Children: A Cohort in Southwest China
Xiao Fan 1, Qi Li2, Tingsong Li3, Xiaoyan He4, Chuan Feng1, Bin Qin 1, Ye Xu1, Ling He1

1Department of Radiology, the Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and 
Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People’s Republic of China; 2Department of 
Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 3Department of Neurology, the 
Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key 
Laboratory of Child Development and Disorders, Chongqing, People’s Republic of China; 4Center for Clinical Molecular Medicine, the Children’s 
Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of 
Child Development and Disorders, Chongqing, People’s Republic of China

Correspondence: Ling He, Department of Radiology, the Children’s Hospital of Chongqing Medical University, No. 136 Zhongshan Er Road, Yuzhong 
District, Chongqing, People’s Republic of China, Tel +86 13983399138, Email doctorheling@yeah.net 

Background: Studies suggested that myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) are an isolated 
group of diseases that are different from multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD). The 
proportion of individuals with MOGAD is higher among children. However, limited data are available on autoimmune antibodies 
and neuroimaging features in children with MOGAD.
Methods: This study retrospectively reviewed 42 children with MOGAD. The clinical, neuroradiological, and cerebrospinal fluid data 
were compared according to courses and radiological results.
Results: Of the 42 patients, 28 suffered a monophasic course and 14 had a relapsing course. During the follow-up magnetic resonance 
imaging (MRI), 21 patients had a well-resolved brain condition and another 21 patients showed slight improvement with marked 
residuals. Most patients with relapse had cortical lesions and a leukodystrophy-like MRI pattern (all p < 0.05). Children with poor 
radiological outcomes have confluent and hazy lesions that involve both cortexes, white matter lesion of >2 cm, and a leukodystrophy- 
like pattern, as well as cerebral lesions with T1 hypointensity or enhancement and spinal lesions (all p < 0.05). The multivariable 
logistic regression analysis used the aforementioned differential features and showed cerebral enhancement and a leukodystrophy-like 
pattern as the most effective variations associated with poor radiological outcomes of MOGAD with an area under the curve of 0.875.
Conclusion: MOGAD in children have some radiological features suggestive of clinical courses and radiological outcomes. A good 
understanding of these differential features can help to give early warnings of disease recurrence or poor radiological improvement and 
develop subsequent therapeutic strategies.
Keywords: myelin oligodendrocyte glycoprotein, encephalomyelitis, magnetic resonance imaging, demyelination, central nervous 
system

Introduction
Myelin oligodendrocyte glycoprotein (MOG) is a membrane protein that is expressed by oligodendrocyte cell surfaces and 
outermost myelin sheath surfaces. Recent studies suggested the role of immunoglobulin G serum antibodies on myelin 
oligodendrocyte glycoprotein (MOG-IgG) that is detected using a cell-based assay in (mostly recurrent) optic neuritis (ON), 
acute disseminated encephalomyelitis (ADEM)-like presentations, and myelitis, rather than classic multiple sclerosis (MS).1,2 

Some neurological and radiological characteristics overlap, but MOG-IgG is now considered to denote a disease entity in its 
own right, distinct from classic MS and anti-aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders 
(NMOSD), which is currently often referred to as MOG antibody-associated disorders (MOGAD).3–5 A review of 61 studies 
reveals that MOGAD occurs in various age groups, generally ADEM-like or optic-spinal, and that the proportion of 
individuals with MOGAD is higher among children (40%) than among mixed cohorts (29%) and adults (22%).6
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This study summarized a pediatric cohort with MOGAD and obtained an overview of its clinical phenotypes and 
corresponding radiological features to determine if any typical radiological features can help estimate the outcomes of the 
affected children.

Methods
Population
A total of 42 patients in this series were under the care of the Children’s Hospital of Chongqing Medical University (the 
biggest pediatric institution in Southwest China and one of the National Centers for Children’s Health in China) from January 
2018 to December 2019. MOGAD is diagnosed following the Consensus of Chinese Experts.7 All children with MOG-IgG 
detected in their serum were included using a validated live cell-based assay with full-length human antigenic substrates at the 
China branch of Euroimmun Medical Diagnostic Laboratory (EUROIMMUN AG, Lübeck, Germany), and the initial samples 
were obtained before the anti-inflammatory therapy. Serum follow-up MOG samples were tested on 31 children.

The Ethics Committee of the Children’s Hospital of Chongqing Medical University approved this study (No.2017-83). 
This retrospective study complies with the Declaration of Helsinki. A parent or legal guardian provided informed consent 
on behalf of the patients. Clinical and radiological data were blindly and respectively reviewed by two experienced 
neurologists (T Li and X He) and two neuroradiologists (X Fan and Q Li). The consensus was reached through discussion 
if disagreements occur.

Clinical Data
The literature reported that the involved MOGAD indices were determined and recorded as follows: disease courses (monophasic 
and relapsing), Epstein–Barr virus (EBV) infection, cerebrospinal fluid (CSF) studies (cell count and oligoclonal bands [OCBs]), 
other demyelinating antibodies (AQP4-IgG and anti-myelin basic protein [MBP] antibody), and visually evoked potential, as 
well as clinical phenotypes at the onset. Considering the overlapping symptoms of MS and NMOSD, clinical phenotypes were 
divided into the following six subtypes: (a) ON, (b) ADEM, (c) myelitis, (d) seizures, (e) ataxia, and (f) area postrema syndrome. 
ADEM is diagnosed based on the International Pediatric MS Study Group recommendations, including the first polyfocal, 
clinical central nervous system (CNS) event with a presumed inflammatory demyelinating cause, encephalopathy that cannot be 
explained by fever, systemic illness or postictal symptoms, and an abnormal brain magnetic resonance imaging (MRI) during the 
acute phase compatible with ADEM and not indicative of another CNS disease.8

Blinded Radiological Analysis
All MRI examinations were assessed, including the following sequences: T1 and T2-axial, fluid-attenuated inversion 
recovery-axial, T2 sagittal, and T1 with a contrast medium (0.2 mL/kg, Omniscan, GE, USA) on axial, sagittal, and 
coronal views. A total of 26 patients continued to undergo spinal MRI a week after the onset, with sagittal and axial 
images on T1 and T2; however, only 10 finished the contrast-enhanced examination. Among 42 children, 19 underwent 
MRI using scanners with a field strength of 1.5 T (Signa Horizon Lx; General Electric Medical System, Milwaukee, WI, 
USA) and 23 using a 3.0 T scanner (Philips, Achieva 3T, Netherlands).

MR images of patients at the onset were reviewed, and the lesion distribution was recorded as follows: confluent and 
hazy lesions that involve both the cortex and white matter, cortical lesion, sharply demarcated white matter lesion 
(WML) of >2 cm, WML of <2 cm, and none or nonspecific lesion in the hemispheres, as well as lesions in the basal 
ganglia, thalamus, brainstem, cerebellum, and cerebellar peduncle. Additionally, enhancement, symmetrical distribution, 
and lesion located in the spinal cord were also recorded. Moreover, some specific features related to typical MS were 
estimated, such as T1 hypointensity, Dawson fingers, and tumefactive demyelinating lesions (TDLs), besides a leuko-
dystrophy-like MRI pattern, one special feature suggesting poor outcomes. A leukodystrophy-like pattern is defined as 
extensive and confluent white matter abnormalities, with a largely symmetric distribution.9

A follow-up brain MRI is available for all included patients. Only 14 patients underwent spinal scanning due to previous 
lesions or suspected additional lesions. The initial and follow-up MR images were compared and categorized into the 
following four subgroups to assess the outcomes of MOGAD using MRI: (a) complete resolution (no abnormality), (b) 
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minor residuals (greatly improved [<10% of the lesions remained]), (c) moderate residuals (mildly improved [10–50% of the 
lesions remained]), and (d) marked residuals (multiple abnormal signals [≥50% of the lesions remained], or atrophy).

All data on clinical outcomes (monophasic or relapsing course) and neuroradiological results (from complete 
resolution to marked residuals) were compared to determine the correlation between the initial clinical and neuroradio-
logical characteristics and outcomes in pediatric patients with MOGAD.

Statistical Analysis
The Statistical Package for the Social Sciences statistical software package was used for statistical analyses (SPSS, version 19.0 
for Windows; IBM; NY, USA). First, the Kolmogorov–Smirnov analysis was used to test the normality of continuous variables. 
Normally distributed quantitative data were expressed as mean ± standard deviation and analyzed using the two-independent 
samples Student’s t-test, whereas nonnormally distributed data were presented as median ± interquartile range and assessed using 
the Mann–Whitney U-test. Categorical variables were expressed as numbers and percentages and evaluated using the Chi-square 
test. A two-sided p-value of <0.05 was considered to be significantly different. Clinical and cerebral MRI features that 
significantly differed between the two groups were used to identify the most effective variations to predict poor improvement 
on MRI. The final regression model was selected using the forward condition method, and the area under the receiver operating 
characteristic curve (AUC), accuracy, sensitivity, and specificity was used to evaluate its diagnostic performance.

Results
Patients
A total of 42 children diagnosed with MOGAD (23 females) were estimated, with a mean age of 94.67 ± 31.79 months 
(range, 19–146 months) and a median MRI follow-up length of 5.5 months (range, 21 days to 28.5 months). The MOG- 
IgG titers in serum ranged from 1:32 to 1:320, with the cut-off value 1:32 (1:32 n = 29, 1:100 n = 10, 1:320 n = 3). 
MOG-IgG was detected in the CSF samples of 32 patients (titers range: 1:10–1:320), seven were negative, and three 
patients refused the test. None of them had AQP4 or MBP antibodies in the serum or CSF. Only two patients had OCBs 
with weak positive in their CSF samples (one was monophasic course and another was relapsed), eight patients refused to 
test OCBs, and the rest of the 32 patients were negative for OCBs in their CSF and serum samples. Generally, 28 
pediatric patients suffered a monophasic course, whereas 14 had relapsed. During the last follow-up MRI, seven patients 
had completely resolved status and 14 had minor brain residues. Conversely, only nine patients had a slightly improved 
status and 12 had radiologically marked residuals. Regarding the statistical requirement, the former two subgroups were 
combined as the good improvement group (n = 21) and the other two subgroups were categorized into the poor 
improvement group (n = 21). All patients received persistent treatment with prednisolone and regular tapering under 
the professional guidance of a specialist neurologist in our institution.

Among 42 patients with MOGAD, 23 (54.8%) experienced an ADEM-like attack at onset, which was the most 
frequent, followed by 11 (26.2%) with ON (6 with bilateral ON) and 10 (23.8%) with myelitis. Surprisingly, 9 (21.4%) 
children had seizures, which was the only symptom in five patients. Ataxia occurred in only 4 (9.5%) patients. None of 
MOGAD manifested area postrema syndrome. Combined symptoms were manifested in 11 patients (7 with ADEM-like 
attack and myelitis, two with ADEM-like attack, myelitis, and ON, and four with ADEM-like attack and seizures). The 
MRI revealed the most common lesions in the thalamus (n = 23), followed by WML of <2 cm (n = 21), BA (n = 21), and 
the cortex (n = 20).

Then, the clinical phenotypes and corresponding radiological features were compared between different courses and 
radiological results, which are summarized in Tables 1 and 2. No significant differences were observed in age, gender, 
clinical, and CSF data between different disease courses or between radiological results (all p > 0.05). Only cell counting 
was positive for CSF testing, so the data were recorded. The MRI revealed the majority of pediatric patients with a 
relapsing course to have cortical lesions (Figure 1) and a leukodystrophy-like pattern (all p < 0.05). Other neuroradio-
logical features had no significant differences between the courses (all p > 0.05).

Regarding radiological outcomes, children with poor improvement (Figure 2) have confluent and hazy lesions that 
involve both the cortex and white matter, WML of >2 cm, and a leukodystrophy-like pattern (all p < 0.05). Moreover, 
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cerebral lesions with T1 hypointensity or enhancement were significantly different between these two groups (all p < 
0.05). Patients with poor radiological improvement were more likely to have spinal cord lesions than those with good 
improvement although few patients had the spinal cord data (n = 26) (p = 0.045).

Multiparametric Logistic Regression Analysis
Multiparametric analysis showed that cerebral enhancement and a leukodystrophy-like pattern were the most effective 
variations for predicting poor improvement for the model with clinical and cerebral MRI findings that significantly 
differed between the two radiological groups, with a diagnostic accuracy of 85.7%. The logistic regression function (P = 
1/(1 + e (1.558–3.062 * cerebral enhancement–21.601 * leukodystrophy-like pattern))) obtained an AUC of 0.875 (95% confidence 
interval: 0.762–0.989; p < 0.001). We use a cut-off p-value of ≥0.496 for predicting poor improvement, with sensitivity 
and specificity of 81.0% and 90.5%, respectively.

Table 1 Comparison of the Clinical and Corresponding Radiological Data Between Different Courses

Clinical and Radiological Data Monophasic (n = 28) Relapsed (n = 14) P-value

Agea(months) 97.86 ± 34.66 88.29 ± 25.01 0.364b

Gender (F/M) 15 (53.6%)/13 (46.4%) 8 (57.1%)/6 (42.9%) 0.826c

CSF pleocytosis (> 5 cells/mm3) 14 (50.0%) 11 (78.6%) 0.075c

EBV IgGd 17 (60.7%) 6 (42.9%) 0.273c

VEP 9 (21.1%) 5 (35.7%) 1.000c

Clinical phenotypes ON 7 (25.0%) 4 (28.6%) 1.000c

ADEM 16 (57.1%) 7 (50.0%) 0.661c

Myelitis 7 (25.0%) 3 (21.4%) 1.000c

Seizures 5 (17.9%) 4 (42.9%) 0.172c

Ataxia 4 (14.3%) 0 (0.0) 0.353c

Area postrema syndrome 0 0 /

Radiological features

Distribution

Brain CHL 4 (14.3%) 6 (42.9%) 0.096c

Cortex 10 (39.3%) 10 (71.4%) 0.029c

WML of > 2 cm 6 (21.4%) 6 (42.9%) 0.147c

WML of < 2 cm 15 (53.6%) 6 (42.9%) 0.513c

None or nonspecific 7 (25.0%) 3 (21.4%) 1.000c

Basal ganglia 16 (57.1%) 5 (35.7%) 0.190c

Thalamus 18 (64.3%) 5 (35.7%) 0.079c

Area postrema 5 (17.9%) 2 (4.3%) 1.000c

Brainstem 15 (53.6%) 4 (28.6%) 0.125c

Cerebellum 11 (38.7%) 3 (21.4%) 0.418c

Cerebellar peduncle 13 (46.4%) 4 (28.6%) 0.266c

Enhancement 9 (32.1%) 7 (50.0%) 0.261c

Symmetrical distribution 8 (28.6%) 7 (50.0%) 0.172c

Specific features T1 hypointensity 8 (28.6%) 6 (42.9%) 0.563c

Dawson fingers 1 (3.6%) 2 (14.3%) 0.525c

TDLs 3 (10.7%) 1 (7.1%) 1.000c

Leukodystrophy-like 2 (7.1%) 6 (42.9%) 0.018c

Spinee Spinal lesions 7 (41.2%) (n = 17) 5 (55.6%) (n = 8) 0.683c

Enhancement 0 (0.0) (n = 6) 1 (25.0%) (n = 4) 0.400c

Notes: aAge was normally distributed and expressed as mean ± standard deviation. bTwo-independent samples Student’s t-test. cChi-squared test. The 
bold texts mean statistics showing significant differences. dEBV IgG refers to IgG of VCA and EBNA. eOnly 26 patients underwent spinal MRI, and ten 
finished the contrast-enhanced examination. 
Abbreviations: VEP, visual evoked potential (the data were recorded as positive if the P100 latencies and amplitudes are in excess of normal limits); 
CHL, confluent and hazy lesion involving both the cortex and white matter; TDLs, tumefactive demyelinating lesions.
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Discussion
MOG is exclusively expressed in the CNS on the outermost surface of the myelin sheath and oligodendrocyte plasma 
membrane.10 MOG is a minor constituent of myelin, but its expression at the myelin sheath surface makes it accessible to 
antibodies and a candidate for CNS-targeted autoimmune responses in different species. The associated pathology is 
mediated by T cells and complement-fixing antibodies.6,11 MOGAD are rare, with a higher incidence in pediatric 
compared to adult patients, presented with various clinical phenotypes and associated radiological features.12 This 
study first compared the clinical and MRI features of 42 pediatric patients with MOGAD for different clinical and 
radiological outcomes, and then developed and validated a multivariable logistic regression model for predicting poor 
radiological outcomes. This retrospective analysis produced several major findings.

Table 2 Comparison of the Clinical and Corresponding Radiological Data Between Different Radiological Outcomes

Clinical and Radiological Data Good (n = 21) Poor (n = 21) P-value

Agea (months) 94.67 ± 35.52 94.67 ± 28.46 1.000b

Disease course (M/R) 17 (81.0%)/4 (19.0%) 11(52.4%)/10(47.6%) 0.050c

Gender (F/M) 11(52.4%)/10(47.6%) 12(57.1%)/9(42.9%) 0.757c

CSF pleocytosis (> 5 cells/mm3) 10 (47.6%) 15 (71.4%) 0.116c

EBV IgGd 10 (47.6%) 13 (61.9%) 0.352c

VEP 8 (38.1%) 6 (28.6%) 0.513c

Clinical phenotypes ON 6 (28.6%) 5 (23.8%) 0.726c

ADEM 11 (52.4%) 12 (57.1%) 0.757c

Myelitis 4 (19.0%) 6 (28.6%) 0.469c

Seizures 4 (19.0%) 5 (23.8%) 1.000c

Ataxia 2 (9.5%) 2 (9.5%) 1.000c

Area postrema syndrome 0 0 /

Radiological features

Distribution

Brain CHL 1 (4.8%) 9 (42.9%) 0.004c

Cortex 7 (33.3%) 13 (61.9%) 0.064c

WML of > 2 cm 2 (9.5%) 10 (47.6%) 0.006c

WML of < 2 cm 8 (38.1%) 13 (61.9%) 0.123c

None or nonspecific 7 (33.3%) 3 (14.3%) 0.147c

Basal ganglia 12 (57.1%) 9 (42.9%) 0.355c

Thalamus 11 (52.4%) 12 (57.1%) 0.757c

Area postrema 3 (14.3%) 4 (19.0%) 1.000c

Brainstem 8 (38.1%) 11 (52.4%) 0.352c

Cerebellum 7 (33.3%) 7 (33.3%) 1.000c

Cerebellar peduncle 9 (42.9%) 8 (38.1%) 0.753c

Enhancement 2 (9.5%) 14 (66.7%) <0.001c

Symmetrical distribution 7 (33.3%) 8 (38.1%) 0.747c

Specific features T1 hypointensity 3 (14.3%) 11 (52.4%) 0.009c

Dawson fingers 1 (4.8%) 2 (9.5%) 1.000c

TDLs 2 (9.5%) 2 (9.5%) 1.000c

Leukodystrophy-like 0 (0.0) 8 (38.1%) 0.006c

Spinee Spinal lesions 4 (26.7%) (n = 15) 8 (72.7%) (n = 11) 0.045c

Enhancement 0 (0.0) (n = 4) 1 (16.7%) (n = 6) 1.000c

Notes: aAge was normally distributed and expressed as mean ± standard deviation. bTwo-independent samples Student’s t-test. cChi-squared test. The 
bold texts mean statistics showing significant differences. dEBV IgG refers to IgG of VCA and EBNA. eOnly 26 patients underwent spinal MRI, and ten 
finished the contrast-enhanced examination. 
Abbreviations: VEP, visual evoked potential (the data were recorded as positive if the P100 latencies and amplitudes are in excess of normal limits); 
CHL, confluent and hazy lesion involving both the cortex and white matter; TDLs, tumefactive demyelinating lesions.
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The clinical data from the pediatric series of MOGAD in Southwest China revealed it to slightly affect more girls 
(n = 23) than boys, with a median age of 7 years. Pediatric patients with high and persisting MOG-IgG titers were 
reported with a tendency to relapse.13 The titer was not included in the discussion, due to the low MOG-IgG titer 
(range: 1:32–1:320) in our series. None of them had AQP4 or MBP antibodies in the serum or CSF. We did not 
calculate the predictive OCB values because of inadequate cases (n = 2, weak positive). Our study revealed no 
significant difference was found in EBV infection for courses and radiological outcomes. The observation of 
intrathecal OCBs and the remote EBV infection confirmed previous findings.14–16 ADEM-like presentation at the 
onset of this younger-aged cohort was the most common clinical phenotype, which is consistent with recent observa-
tions that the clinical presentation of MOGAD changes with age.17 Approximately two-thirds of our patients 
experienced a monophasic course, which conforms to the recognition that MOGAD is a benign, non-MS demyelinating 
CNS disease. Some studies declare that recurrence is common in MOGAD. Most relapses occur in the early months 
after the onset of attack.17,18 Our institute started to conduct the MOG-IgG test by cell-based assay at the end of 2017, 
the MRI follow-up period ranged from 21 days to 28.5 months (median, 5.5 months), and nine children were followed 
up for <3 months; therefore, a relapse might be too early for these cases in our cohort. The literature has reported that 
irregular treatment or drug withdrawal can lead to relapse. Standard treatment was conducted among the children in 
this study since MOGAD diagnosis. All of them received persistent treatment with prednisolone and regular tapering 
to lower the risk of recurrence,19 which means therapy is less likely to result in a relapse.

Figure 1 A 10-year-old girl with a relapsing MOGAD, presented with seizures at onset. (A) Axial T2-weighted fluid-attenuated inversion recovery(FLAIR) image of the brain 
shows cortical encephalitis(arrowheads) located in the right frontal and parietal lobes. (B) Axial T1 enhanced image shows the lesion with no obvious enhancement. Seizures 
emerge nearly three months later. The previous cerebral abnormalities resolve on MRI, another cortical lesion(arrowheads) affecting the contralateral frontal and parietal 
lobes is found on axial (C) and coronal (D) T2-FLAIR images.
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This study aimed to determine the association between the disease courses and radiological outcomes and radiological 
features at the initial onset, which could give some clues for MOGAD in children from a neuroradiology perspective, 
although this is not a large cohort. After all, MRI is one of the main follow-up examinations.

The clinical outcomes revealed cortical lesions and a leukodystrophy-like pattern on MRI, which might suggest a 
relapsing course in children. Cortical involvement in imaging and presenting with seizures are categorized as a special 
MOGAD type, mainly in case reports on both children and adults from Japan or Europe.20–26 Patients with this 
presentation from Japan experienced different courses, but all of the European patients (from Spain and the United 
Kingdom) suffered a relapsing course. Of 18 patients with MOGAD with cortical involvement, 13 (72.2%) were reported 
in a mixed cohort from Shanghai, China, and cortical encephalitis was thought to be an important clinical MOGAD 
phenotype.27 Therefore, if a child presented with seizures and cortical encephalitis is depicted on MRI, clinicians should 
consider performing the MOG-IgG test and be aware of the risk of recurrence if the antibody is positive, although the 
mechanism remained unclear. Additionally, a leukodystrophy-like MRI pattern plays a role in the subsequent recurrence 
based on our observation. This finding is coherent with Hacohen et al’s study;9 however, the affected children with these 
extensive MRI presentations were younger (range, 1.7–6 years) than those in our cohort (range, 1.6–12.1 years). Thus, 
the immune damage mediated by MOG antibody disease could cause a wide range and severe myelin damage during 
childhood, even with the axonal loss, resulting in poor clinical outcomes.28 Doctors should be alert to this imaging 
pattern.

The radiological results revealed an equal good proportion and poor improvement (n = 21). Factors involved in poor 
neurological results in our study include confluent and hazy lesions that involve both the cortex and white matter, WML 
of >2 cm, and leukodystrophy-like patterns. These characteristics confirm the results of previous studies that MOG 

Figure 2 A six-year-old boy diagnosed MOGAD with poor MRI results. Axial T2-weighted fluid-attenuated inversion recovery (A and B) and T1-weighted (C) images of the 
brain show confluent lesions symmetrically that involve both cortex and white matter, with enhancement (D), as well as the bilateral basal ganglia, thalamus, brainstem, 
cerebellum (not shown) affected. Sagittal T2-weighted image (E) shows spinal lesions (red arrowheads). After six months, atrophy (F) is observed on T2-weighted image, 
with multiple residual lesions (not shown).
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antibodies can induce extensive myelin damage and axonal loss.9,28 A recent study that used lesion volumetric analysis 
suggested that grey matter atrophy could be driven by the white matter bundle disruption projecting into the deep grey 
matter structures,29 which leads to poor radiological outcomes. It is also consistent with the most recent findings of 
MOGAD meeting MS diagnostic criteria by Fadda et al.30 Generally, MS is a chronic demyelinating disease in which the 
majority of patients suffer a progressive course. Hence, patients with MOGAD who meet the MS diagnostic criteria 
might experience a poorer outcome. Thus, should the radiologist recommend a follow-up MRI although no additional 
clinical manifestations show up when extensive white matter involvement is observed in patients suspected of MOGAD? 
Interestingly, future studies should assess whether relapsing patients with greater residual lesion load might predict a 
worse outcome, and thus require more aggressive therapy than those with lesion recovery. Likewise, cerebral lesions with 
T1 hypointensity were found to be more common in patients with poor recovery on MRI. T1 hypointensity is one of the 
typical features of MS.31,32 However, this imaging finding is consistent with histological observations in adults with 
fulminant episodes and MOG-IgG, depicting a so-called pattern II MS with demyelination and the presence of 
complement activation.33 Cerebral enhancement is also an imaging feature, which is more frequently observed in 
patients with MOGAD with poor radiological results. Previous radiological and pathological studies confirmed that 
enhancement demonstrates acute inflammatory reaction, causing blood–brain barrier (BBB) damage. This may explain 
the poor MRI results due to irreversible changes following BBB damage. Furthermore, spinal cord scanning is 
recommended if available, as abnormality implies the possibility of future residuals on imaging. Observations in adults 
or smaller pediatric cohorts have found some spinal cord imaging features that favor MOGAD diagnoses, such as the 
H-sign and leptomeningeal enhancement, and have shown few children experienced residual neurological deficits.34–37 

These conflicting results among studies may be attributed to sampling size differences. Detailed imaging features will be 
further observed in a larger cohort.

Multivariable logistic regression analysis indicated that cerebral enhancement and a leukodystrophy-like pattern were 
the independent predictors of poor radiological outcomes of MOGAD. This model obtained an AUC, sensitivity, 
specificity, and accuracy of 0.875, 81.0%, 90.5%, and 85.7%, respectively, for predicting poor radiological outcomes 
of MOGAD.

This study has several limitations. This was a single-center, cross-sectional study with retrospective data collection. 
Our institution is highly specialized and serves as a national referral center. Therefore, only severe MOGAD cases may 
be encountered. Additionally, the radiological outcome measurement is subjective, and a few cases may be in the early 
disease stages due to a short follow-up time. Larger cohorts of milder cases and longer follow-up periods will be needed 
to further validate this observation.

Conclusion
Our findings demonstrate that MOGAD in children has some radiological features that suggest clinical courses and 
radiological outcomes. A good understanding of these differential features can give an early warning of disease 
recurrence or poor radiological improvement and develop subsequent therapeutic strategies.
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