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Abstract: Poly(γ-benzyl-L-glutamate) (PBLG) derivatives are synthetic polypeptides for 

preparing nanoparticles with well controlled surface properties. The aim of this paper was to 

investigate the biodistribution of pegylated PBLG in rats. For this purpose, nanoparticles were 

prepared by a nanoprecipitation method using mixtures of different PBLG derivates, including a 

pegylated derivate to avoid mononuclear phagocyte system uptake. The morphology, size distri-

bution, and surface charge of the nanoparticles were investigated as a function of the amount of 

polymer employed for the preparation. Moderately polydispersed nanoparticles (polydispersity 

index less than 0.2) were obtained. Their size increased with polymer concentration. The zeta 

potential values were negative whatever the formulations. The availability of polyethylene glycol 

chains on the nanoparticles’ surface was confirmed by measuring the decrease in bovine serum 

albumin adsorption. For in vivo distribution studies, pegylated and nonpegylated nanoparticles 

were prepared with polymer mixtures containing PBLG-fluorescein isothiocyanate and imaged 

by fluorescence microscopy to measure their accumulation in liver and spleen tissues of rats 

after intravenous administration. Injection of stealth formulations resulted in negligible fluores-

cence in liver and spleen compared with nonpegylated formulations, which suggests that these 

nanoparticles are promising candidates as a stealth-type long-circulating drug carrier system 

and could be useful for active targeting of drugs while reducing systemic side effects.

Keywords: PBLG, physicochemical characterization, biodistribution, nanoparticles, pegylation

Introduction
Synthetic polypeptides are potential carriers for the delivery of drugs, owing to their low 

toxicity, biocompatibility, biodegradability, adjustable structures, and well controlled 

dimensions. Polypeptides can be conveniently synthesized using N-carboxyanhydrides 

(NCAs) by ring-opening polymerization, which utilizes a wide variety of monomers 

containing various functional side groups. Similar to natural polypeptides, these 

polymers possess the ability to self-assemble into well defined, ordered structures. 

The use of polypeptidic polymers in the preparation of nanoparticles for drug delivery 

and targeting is an attractive area in nanomedicine.1–3 Poly(γ-benzyl-L-glutamate) 

(PBLG), a synthetic and biodegradable polypeptide, has attracted attention for use 

in biomedical applications because various chemical moieties could be quite easily 

introduced into the structure of PBLG to form various copolymers.2 The functional 

side group of carboxyl (–COOH) in glutamic acid units can be modified by chemical 

reactions to form new molecular structures.4,5 As an alternative, copolymers can be 

obtained by initiating the polymer synthesis with a molecule of biological interest, 

such as a polyethylene glycol (PEG) chain or a cyclodextrin moiety.2 Further, it has 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
mailto:ipek.ozcan@ege.edu.tr


International Journal of Nanomedicine 2010:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1104

Özcan et al

been demonstrated that multifunctionalized nanoparticles 

exhibiting interesting surface properties could be obtained 

by preparing nanoparticles from mixtures of these different 

derivates.

Injectable polymeric nanoparticles have received much 

attention. Their use can be seen to prolong the blood half-

life of drugs and increase their efficacy.6 Alternatively, they 

represent very attractive properties for targeting applications 

for improving the selectivity in drug delivery or for imaging 

purposes. These latter applications necessitate an efficient 

control of their body distribution. Such a distribution after 

intravenous (IV) injection is considerably influenced by 

their interactions with the biological environment and their 

physicochemical properties, including particle size, surface 

charge, morphology, and surface hydrophilicity.7–9 Their size 

can affect the biodistribution of intravascularly injected nano-

particles. Studies have shown that large nanoparticles are 

sequestered in the liver, consistent with observations in the 

spleen, whereas very small nanoparticles (less than 100 nm) 

can pass through the sinusoidal fenestrations in the liver and 

be entrapped by underlying parenchymal cells.10 The size of 

polymeric nanoparticles can be adjusted to some extent as it 

depends on the polymer type, molecular weight, and concen-

tration. Thus, to some extent, convenient particle size can be 

looked for by adjusting the polymer properties.11–13

Further, the potential of injectable polymeric nanopar-

ticles is compromised by their rapid elimination from the 

bloodstream and their accumulation in the tissues of the 

mononuclear phagocyte system (MPS), mainly the Kupffer 

cells in the liver and the spleen macrophages.14–16 This pre-

vents their application in controlled drug delivery and drug 

targeting to tissues other than the MPS.

The preferred method for the preparation of long-circulating 

nanoparticles is to modify their surface by adding hydrophilic 

polymers. PEG has been widely used for modifying the sur-

face of particles, leading to stealth-type (long-circulating) 

carriers.17–19 Pegylation simply refers to the decoration of a 

particle surface by PEG chains, which can be obtained through 

different methods such as physical adsorption, covalent 

grafting, or the self-assembling of PEG copolymers.20–22 

These PEG chains create a hydrophilic layer in the surface of 

the particles, which acts as a barrier that is able to block the 

adhesion of opsonins present in the blood serum so that the 

particles can remain camouflaged or invisible to phagocytic 

cells.15 Many different types of PEG-containing polymers have 

been tested for their ability to impart stealth characteristics 

to polymeric nanoparticles. Particularly, poly(lactide-co-

glycolide) (PLGA)-PEG and poly(lactide) (PLA)-PEG 

nanoparticles have been  extensively investigated for their 

potential as controlled and targeted drug delivery systems.23,24 

It has been shown that the IV administration of these nanopar-

ticles loaded with a drug in experimental animals results in 

prolonged drug residence in systemic blood circulation.25 For 

example, after IV administration, PLA-PEG and PLGA-PEG 

nanoparticles remain in the systemic circulation for days, 

whereas PLA and PLGA nanoparticles are removed from 

blood within a few minutes.26

Therefore, when conceiving original nanoparticles for 

targeting applications, it is not only necessary to adjust 

their morphology, generally looking for small particles, but 

also to prevent the opsonization phenomenon. Obviously, 

pegylation remains nowadays a very attractive strategy for 

achieving this goal. The aim of this study was to investigate 

the biodistribution and efficacy of the pegylation of recently 

developed multifunctional PBLG nanoparticles.2,27,28 For this 

purpose, nanoparticles were prepared by a nanoprecipitation 

method using mixtures of different PBLG derivates, includ-

ing a pegylated derivate, to avoid MPS uptake. Further, their 

distribution in tissues were investigated using fluorescein 

isothiocyanate (FITC) derivate-tagged nanoparticles after 

IV administration in rats, with a specific emphasis on their 

 affinity for liver and spleen tissues, known as the major organs 

involved in the capture of nanoparticles in vivo.

Materials and methods
Materials
N,N-dimethylformamide (DMF; Acros, Belgium, 99%) and 

benzylamine (Janssen Chimica, Belgium) were distilled 

under reduced pressure over BaO and KOH, respectively, 

and stored under argon atmosphere. γ-benzyl-L-glutamate 

NCA, from ISOCHEM-SNPE (France), was used as received. 

Methoxy poly (ethylene glycol)-amine (mPEG-NH
2
), 

Mw = 5000 gmol−1 from Shearwater Corporation (USA) 

was dried separately under vacuum over P
2
O

5
 at 30°C for 

24 hours. Benzylamine (Bnz) and FITC were purchased from 

Sigma-Aldrich (Germany). Water was purified by reverse 

osmosis (Milli-Q, Millipore, USA). All other solvents and 

chemicals used were of analytical grade.

synthesis of PBLg derivatives
Three different PBLG derivatives (PBLG-Bnz, PBLG-PEG, 

and PBLG-FITC) were synthesized by anionic ring-opening 

polymerization of NCA initiated by Bnz, mPEG-NH2, or 

FITC, respectively, in DMF.2,29 To sum up, N  millimoles of 

NCA were weighed under argon atmosphere in a degassed, 

three-necked, round-bottomed flask equipped with a 
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 thermometer, mechanical stirrer, and refrigerant with a silica 

gel guard and a bubble detector. NCA was dissolved in DMF 

at room temperature under mechanical stirring and argon flux. 

After about 10 minutes, the initiator solution was added and 

CO
2
 emission was observed. The reactions were conducted 

under argon atmosphere, and mixtures were stirred at 30°C 

until the characteristic Fourier transform infrared (FT-IR) 

NCA bands disappeared from the spectrum (Perkin-Elmer 

1750, Norwalk, USA). Further, the mixture was precipitated 

in an excess of cold diethyl ether. The precipitates were 

filtered, washed with diethyl ether, and finally dried under 

vacuum at 35°C for at least 12 hours. Polymer molecular 

weights were characterized by Ubbelohde viscometer 

(Schott Geraete GmbH, Germany) using the Mark–Houwink 

 equation ([η] = 1.58 × 10−5Mw1.35); intrinsic viscosity (η) was 

measured at 25°C. Furthermore, both copolymers (PBLG-

Bnz and PBLG-PEG) were dissolved in deuteriochloroform 

(CDCl
3
) in nuclear magnetic resonance (NMR) tubes, and 

1H-NMR spectras were recorded with a Bruker Advance 

(Bruker, Karlsruhe, Germany) spectrometer operated at 

400 MHz.

Preparation of nanoparticles
Nanoparticles were prepared with the different PBLG 

derivatives by a modified nanoprecipitation method either 

using pure copolymers or a mixture of the different copo-

lymers.27 FITC-labeled nanoparticles were prepared with 

PBLG-Bnz:PBLG-FITC and PBLG-PEG:PBLG-FITC 

polymer mixtures at the 80:20 ratio. Briefly, copolymers or 

copolymer mixtures were dissolved in 5 mL of tetrahydro-

furane at 30°C using different amounts (5, 10, 15, 20, 25 mg). 

This organic solution was added to 10 mL of Milli-Q water 

by dripping, under magnetic stirring, without the presence 

of any surfactant. The mixture was then transferred to a 

Teflon flask. The solvent was gently evaporated, at 30°C, 

under a light air flow. Nanoparticles were washed with 

5 mL of Milli-Q water, and finally the suspension was partly 

evaporated to yield 10 mL of nanoparticle suspension. The 

suspensions were kept at +4°C in capped glass vials before 

use. Furthermore, their stability under these conditions was 

checked on a 4-week period during which the samples were 

visually inspected and their physicochemical characteristics 

regularly measured.

Physicochemical characterization  
of nanoparticles
The average particle size and size polydispersity of 

the nanoparticles were determined by dynamic laser 

light scattering (Nanosizer Coulter N4 Plus®, Malvern 

Instruments, Malvern, UK). The ζ potential of the 

nanoparticles was measured in aqueous dispersion with a 

Zetasizer 4 (Malvern Instruments) at 25°C. Experimental 

values were the average of six different preparations. Fur-

ther, nanoparticles were imaged by transmission electron 

microscopy (TEM) (TEM-Philips EM 208, Orsay, France) 

operating at 80 kV, and images were acquired using a 

high-resolution camera (Advantage HR3/12GO4, AMT-

Hamamatsu, France).

Isothermal titration calorimetry (ITc) 
experiments
In accordance with a previously published method, an 

isothermal calorimeter titration apparatus (MicroCal Inc., 

USA) has been used to evaluate the capacity of nanopar-

ticles to avoid protein adsorption and therefore to confirm 

the presence of PEG chains at the surface of the nanopar-

ticles.2 Bovine serum albumin (BSA) was used, as it has a 

major representative globular protein present in the serum 

and is known for being easily adsorbed on polymeric 

surfaces. The ITC instrument was periodically calibrated 

either electrically using an internal electric heater or chemi-

cally by measuring the dilution enthalpy of methanol in 

water. This standard reaction was in agreement (1%–2%) 

with MicroCal constructor data. In a typical experiment, 

aliquots of 10 µL of a BSA solution (5.4 × 10−2 mM) filled 

into a syringe containing 283 µL were used to titrate a 

suspension of nanoparticles  (pegylated or nonpegylated) 

(2.7 × 10−2 mM) into the calorimetric cell and accurately 

thermostated at 37°C (310 K). Intervals between injections 

were 300 seconds, and agitation speed was 270 rpm. A 

control experiment was also performed, which consisted 

of successive injections of a BSA solution in the measur-

ing cell filled with Milli-Q water. The corresponding heat 

flow was recorded as a function of time and accounted for 

dilution effects or any possible conformational changes 

likely to occur during dilution.

FITc labeling and characterization  
of nanoparticles
Emission spectrum of water-diluted, FITC-labeled nano-

particles was recorded with a fluorescence/luminescence 

spectrophotometer (Perkin Elmer LS 50B, Beaconsfield, 

UK) at an excitation wavelength of 485 nm. Further, the 

fluorescence images of FITC-labeled nanoparticles were 

observed by confocal laser scanning microscopy (CLSM 

510, Carl Zeiss, Jena, Germany).
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Figure 1 1h-NMr spectra of PBLg-Bnz (A) and PBLg-Peg (B).
Abbreviations: Bnz, benzylamine; NMr, nuclear magnetic resonance; PBLg, poly(γ-benzyl-L-glutamate); Peg, polyethylene glycol.

Table 1 Molecular weights of synthesized polymers

Polymer Average molecular weight (g/mol)

Theoreticala Observed
PBLg-Bnz 50,000 46,300b

PBLg-Peg 60,000 50,000c

PBLg-FITc 60,000 43,300b

Notes: acalculated by considering the constitutional repeating units according to 
the initial ratio; bcalculated from viscosity measurements; ccalculated from 1h-NMr 
spectra.
Abbreviations: Bnz, benzylamine; FITC, fluorescein isothiocyanate; PBLG, poly(γ-
benzyl-L-glutamate); Peg, polyethylene glycol.

In vivo studies
Distribution studies were performed in vivo in Wistar Albino 

rats (weighing between 250 and 300 g) in  accordance with 

an approved specific protocol (Ege University Faculty 

of  Pharmacy Animal Ethics Committee [Protocol no: 

2008/6-1]). The animals were divided into three groups (six 

animals per group), including a control group (G1) and two 

trial groups (G2 and G3). Prior to the experiments, animals 

were anesthetized with light ether. Nanoparticles were steril-

ized by membrane filtration before the in vivo administra-

tion.30 The saline solution was injected to control group G1, 

and the two other groups, G2 and G3, received pegylated 

and nonpegylated nanoparticle suspensions (0.3 mg/mL), 

respectively. All animals had free access to food and water 

ad libitum after the IV injection in the tail vein. Twenty-four 

hours after administration, the animals were killed by cervical 

vertebrae dislocation, and their liver and spleen tissues were 

isolated. All organs were cut and then immediately embed-

ded in  Cryoblock (DiaPath,  Bergamo, Italy) and cryosec-

tioned (7 µm) by cryomicrotome (Leica CM 1900, Wetzlar, 

 Germany) at −60°C. Biopsies were spread on microscope 

glass slides, and analyses were carried out using an Olympus 

IX71 model fluorescence microscope (Olympus Optical, 

Tokyo, Japan) equipped with an Olympus DP71 digital 

camera (Olympus America Corp., Mellville, NY).

statistical analysis
Statistical analysis of the data was performed via analysis 

of variance (ANOVA) followed by Tukey’s multiple 

comparisons test. A P value of less than 0.05 was considered 

as evidence of a significant difference.31 All calculated values 

were expressed as their mean ± standard deviation.

Results and discussion
synthesis and characterization  
of the PBLg derivatives
Polymerizations were followed by FT-IR spectroscopy. 

 Disappearance of absorption bands at 1843, 1786, and 

923 cm−1, corresponding to the cyclic 5-ring anhydrides, 

indicated the end of the polymerization reaction.
1H-NMR spectroscopy of synthesized derivates confirmed 

that the expected structures were obtained for PBLG-Bnz and 

PBLG-PEG copolymers (Figure 1A, 1B). The signals at 

3.72 ppm and 7.36 ppm in the 1H-NMR spectra were attrib-

uted to the PEG backbone and aromatic methylene protons 

of polymer, respectively (Figure 1B).

High-molecular-weight polymers could be quite easily 

prepared by ring-opening polymerization in good yields 
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and large quantities. Molecular weights of the synthesized 

polymers are summarized in Table 1.

Molecular weights were calculated from viscosity 

measurements when possible, except for PBLG-PEG 

copolymers. Molecular weights for PBLG-PEG copolymers were 

calculated from 1H-NMR spectra, because the Mark–Houwink 

equation was not applicable for these PBLG derivatives. For 

this copolymer, the degree of polymerization of the PBLG seg-

ment in PBLG-PEG derivatives was determined from 1H-NMR 

spectra using the ratio between the peak intensities of methylene 

protons of the PEG chain, OCH
2
CH

2
, and the benzyl protons 

of the PBLG chain, COOCH
2
C

6
H

5
. 1H-NMR could not be 

used for the other PBLG derivatives because the signal from 

the polymerization initiator was difficult to localize due to the 

presence of other peaks in the same region.

Physicochemical properties  
of the nanoparticles
Stable suspensions of nanoparticles with a moderate poly-

dispersity could be easily and reproducibly prepared from 

the different synthesized PBLG derivates by a previously 

described nanoprecipitation method.27 Nanoparticles were 

typically less than 100 nm and their polydispersity index 

(PI) was typically less than 0.2. Further, these particles were 

negatively charged (zeta potential in the range of −20 mV, 

which combined with the low PI was in favor of the stability 

and homogeneity of the suspensions). These characteristics 

were compatible with an IV administration.7,8

As shown in Figure 2, the polymer concentration of the 

organic phase used during the nanoprecipitation process influ-

enced the mean diameter of the nanoparticles.  Concentrations 

were varied from 0.5 to 2.5 mg/mL while keeping the other 

processing parameters at standard  conditions. A stronger 

dependence was observed for nonpegylated nanoparticles 

for which the initial polymer concentration led to a gradual 

increase in nanoparticle diameter while maintaining a 

unimodal size distribution (PI values less than 0.2). Under 

these conditions, the average size of the nanoparticles was 

significantly increased (P , 0.05) from 60 to 100 nm in the 

case of PBLG-Bnz and 50 to 90 nm in the case of PBLG-

FITC. During the nanoprecipitation process, the mechanisms 

mastering the self-assembling of amphiphilic polymer chains 

are quite complex.  Commonly, a dependence of the size of the 

nanoparticles on the viscosity of the organic phase containing 

the polymer has been observed. For example, the importance 

of polymer concentration in controlling the size of particles 

produced by emulsification or nanoprecipitation processes 

has previously been reported for PLGA and PLA.12,32,33 

Similar results were found for polycaprolactone/PEG/ 

polycaprolactone (PCEC) nanoparticles by Huang et al.34

Interestingly, very small nanoparticles (circa 40 nm) 

were obtained from the PBLG-PEG copolymer compared 

with what was obtained with other PBLG derivatives, 

and almost no influence of the copolymer concentration 

was observed. These trends could be explained by the 

amphiphilic nature of this copolymer in comparison with 

PBLG-Bnz and PBLG-FITC, from which the nanoparticles 

were prepared without the presence of any surfactant. 

Indeed, this phenomenon could be explained by the pres-

ence of hairy PEG chains (5000 g/mol) at the surface of the 

nanoparticles extending into the water phase. Very small 

nanoparticles are of interest in targeting applications because 

the size of the nanoparticles is one of the key characteristics 

governing their traffic and their distribution in organs and 

the modalities of their capture by cells. For example, bone 

targeting requires very small particles, as it is known that 

the vasculature in bones has pores of approximately 80 nm 

in diameter.35

0
20
30
40
50
60
70
80
90

100
110
120

0,5 1 1,5 2 2,5 3

Polymer concentration (mg/mL)

M
ea

n
 d

ia
m

et
er

 (
n

m
)

PBLG-Bnz
PBLG-PEG
PBLG-FITC

Figure 2 effect of polymer concentration in the nanoparticle suspension on the 
mean diameter of nanoparticles.
Abbreviations: Bnz, benzylamine; FITC, fluorescein isothiocyanate; PBLG, 
 poly(γ-benzyl-L-glutamate); Peg, polyethylene glycol.

Polymer concentration (mg/mL)

0
−10

−15

−20

−25

−30

−35

−40

0,5 1,5 2 2,5 31

Z
et

a 
p

o
te

n
ti

al
 (

m
V

) PBLG-Bnz
PBLG-PEG
PBLG-FITC

Figure 3 effect of polymer concentration in the nanoparticle suspension on the zeta 
potential of the nanoparticles prepared from PBLg-Bnz, PBLg-Peg, and PBLg-FITc.
Abbreviations: Bnz, benzylamine; FITC, fluorescein isothiocyanate; PBLG, 
poly(γ-benzyl-L-glutamate); Peg, polyethylene glycol.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2010:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1108

Özcan et al

Contrary to the particle size, the zeta potential was 

only slightly changed whatever the nature of the polymer 

 (Figure 3). Pegylated nanoparticles exhibited a negative zeta 

potential value (−20 mV) closer to neutrality compared with 

nonpegylated nanoparticles (−30 mV) whatever the initial 

concentration. This trend is in agreement with other studies 

describing reductions in the zeta potential following surface 

pegylation, such as, for example, poly(alkylcyanoacrylate) 

or polylactide nanoparticles, and could be attributed to the 

shielding effect of these hydrophilic chains.36,37

Finally, storage of these preparations for 4 weeks at +4°C 

did not show any significant change in nanoparticle character-

istics (data not shown), and the suspensions remained stable.

Investigation of protein–nanoparticle 
interactions by ITc
Surface pegylation of nanoparticles aims to avoid adsorption 

of a set of serum proteins such as the complement C3b factor 

following their IV injection (opsonization), which in turn 

induces their rapid capture by the MPS. ITC analysis was per-

formed to investigate the efficiency of PEG chains to reduce 

interactions with proteins because of the hydrophilization of 

the surface of the particles and steric repulsions. As shown 

earlier by Martinez-Barbosa et al,28 ITC can be conveniently 

used for investigating this effect. In the present study, BSA 

was used for probing the capacity of PBLG nanoparticles to 

avoid interactions with proteins.

ITC experiments consist of injecting aliquots of a 

 solution containing a molecule of interest in another solution 

 containing a second molecule that is supposed to interact, or 

not, with the first one. Following each injection, heat flow 

peaks occur that correspond to the amount of heat produced 

(or  consumed) by the interaction developed between the 

two entities. When the interaction consists of an adsorption 

phenomenon, a similar behavior is expected. Indeed, as 

shown in Figure 4, enthalpograms obtained with nonpegy-

lated nanoparticles were different from those obtained with 

pegylated nanoparticles. Titration of nonpegylated nanopar-

ticles resulted in an initial series of pronounced endothermic 

peaks, which decreased in intensity after 10 injections and 

further resulted in fairly constant heat flows when adding 

BSA. This could correspond to the saturation of the surface 

in the adsorption process. On the contrary, when the BSA 

solution was injected into a suspension of pegylated nano-

particles, weaker enthalpy changes were observed than for 

nonpegylated nanoparticle injection, which could be attrib-

uted to decreased interactions of BSA with the surface of the 

nanoparticles. No significant signal was produced by dilution 

of the BSA solution in the absence of nanoparticles, which 

was used as a negative control in this experiment.

FITc labeling and characterizations  
of optimized nanoparticles
FITC-labeled nanoparticles were used for in vivo distribu-

tion studies. For this purpose, FITC-labeled nanoparticles 

were prepared from 80:20 (w/w) mixtures of PBLG-Bnz 

or PBLG-PEG with PBLG-FITC. As shown previously 

by Martinez-Barbosa et al,27,28 the nanoprecipitation of 

these copolymers leads to the production of composite 

nanoparticles, each nanoparticle simultaneously containing 

the two types of polymers. This absence of segregation could 

be attributed to the similarity of the PBLG segment in these 

copolymers. Further, it was shown that the incorporation of 

77% of PBLG-PEG copolymer chains in the nanoparticles 

was enough to maintain the “stealthiness” of the particles, 

as suggested by ITC adsorption and complementary activa-

tion measurements of Martinez-Barbosa et al.28 Thus, in the 

present experiment, an amount of 20% (w/w) of PBLG-

FITC was considered to be a good compromise for ensuring 

stealth properties in the body and simultaneously an optimal 

fluorescence labeling.

The physicochemical characteristics of these preparations 

are tabulated in Table 2. The sizes of pegylated and nonpegylated 

FITC-labeled nanoparticles were 46 ± 16 nm with a PI value 

of 0.139 ± 0.01 and 75 ± 14 nm and a narrow size distribution 

(PI = 0.114 ± 0.03), respectively. In accordance with these 

results, TEM photographs of the nanoparticles revealed ellipsoi-
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Abbreviations: Bnz, benzylamine; BsA, bovine serum albumin; ITc, isothermal 
titration calorimetry; PBLg, poly(γ-benzyl-L-glutamate); Peg, polyethylene glycol.
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dal nanoparticles with sizes around 50 and 80 nm for pegylated 

and nonpegylated formulations, respectively (Figure 5).

Moreover, the FITC labeling efficiency was checked by 

luminescence spectrophotometer and confocal laser scan-

ning microscopy.38,39 The particles emitted green light after 

excitation at λ = 488 nm. Overall, the maximal excitation 

and emission wavelengths of formulations were found to be 

λ = 486 and λ = 515 nm, respectively, which are close to the 

values reported for free FITC.40

Fluorescence spectra and intensity were also determined 

in fresh and 4-week-old nanoparticle suspensions stored 

at +4°C in the dark. No significant differences in their 

fluorescence spectra or intensities were observed. Overall, 

maximal  excitation and emission wavelengths after storage 

of the formulations were found to be close to the values 

reported for free FITC. Such a stability of FITC fluorescence 

in PBLG nanoparticles has been reported by Segura-Sánchez 

et al, who have shown that a water suspension of fluorescent 

nanoparticles has a stable fluorescence after 200-day storage, 

although free FITC water solutions are not very stable.29 

This suggests that FITC labeling of PBLG multifunctional 

nanoparticles is of interest for visualization and tracking 

purposes.

In vivo studies
To assess the effect of size and pegylation on the distribution 

of the nanoparticles, liver and spleen were selected as 

 representative organs of the MPS.15,41,42 It is generally 

accepted that nanoparticles ranging from 30 to 100 nm in 

diameter can be captured by the macrophages of the liver 

and spleen. Liver uptake of the larger particles is faster than 

for smaller ones. Recent observations indicate that very 

small particles can pass through the sinusoidal fenestrations 

in the liver and gain access to the parenchymal cells of the 

liver.43,44 Sonavane et al prepared gold nanoparticles of differ-

ent particle sizes (15, 50, 100, and 200 nm) and distribution 

in organs like the liver, lung, and spleen and showed that 

tissue distribution of gold nanoparticles is size-dependent.45 

The smallest gold nanoparticles (15 nm) show the most 

widespread organ distribution.

The distribution of pegylated and nonpegylated (control) 

nanoparticles has been evaluated on these tissues in rats. The 

fluorescence microscopy images of liver and spleen tissue 

sections are shown in Figures 6 and 7, respectively. Twenty-

four hours after IV injection of pegylated nanoparticle sus-

pension (Figures 6C and 7C), only a negligible fluorescence 

was detected in the liver and spleen when compared with 

nonpegylated nanoparticles (Figures 6D and 7D). A strong 

green fluorescence due to the accumulation of nonpegylated 

nanoparticles could be clearly observed, especially in Kupffer 

cells, which are located mainly in the periportal region of 

Table 2 Physicochemical properties of FITc-labeled pegylated and nonpegylated nanoparticles (n = 6)

Preparation Polymer ratio 
(80% w/w)

Mean sizea 
(nm)

PI Zeta potentialb 
(mV)

Pegylated PBLg-Peg/PBLg-FITc 46 ± 16 0.139 ± 0.01 −24.5 ± 0.86
Nonpegylated PBLg-Bnz/PBLg-FITc 75 ± 14 0.114 ± 0.03 −29.8 ± 0.67

Notes: aMeasured by using a laser light scattering (Nanosize coulter N4 plus), n = 6; bMeasured by using a Zetasizer 4, n = 6. Polymer concentration for nanoprecipitation 
is 1.5 mg/mL.
Abbreviations: Bnz, benzylamine; FITC, fluorescein isothiocyanate; PBLG, poly(γ-benzyl-L-glutamate); Peg, polyethylene glycol; PI, polydispersity index.

100 nm 100 nm

A) B)

Figure 5 TeM microphotographs of FITc-labeled pegylated (A) and nonpegylated 
(B) nanoparticles.
Abbreviations: FITC, fluorescein isothiocyanate; TEM, transmission electron 
microscopy.

B)A)

C) D)

Figure 6 Light image of liver tissue section (A). Fluorescence images of liver tissue 
sections 24 hours after intravenous injection of: saline (B), pegylated nanoparticles 
(C), and nonpegylated nanoparticles (D).
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the liver, and few very bright spots were observed, probably 

because of aggregation. Green fluorescence along the lining 

of the liver sinusoids identified endocytosed nanoparticles 

by liver sinusoidal endothelial cells. On the contrary, the 

observed weak yellow fluorescence in tissues following 

 injection of pegylated nanoparticles suggests that pegylation 

of the PBLG nanoparticles was efficient for avoiding capture 

by the MPS. Similarly, macrophages of the spleen were much 

less deeply stained after injection of pegylated nanoparticles 

when compared with nonpegylated nanoparticles (Figure 7C 

and 7D). No autofluorescence was observed in the animals 

injected with saline, as expected (Figures 6B and 7B). It is 

evident from these results that PBLG-PEG copolymers could 

efficiently self-assemble to create a sufficient concentration 

of PEG chains at the surface of the particles, which was 

efficient for avoiding the capture of the PBLG nanoparticles 

by macrophages.

It can be concluded from this set of experimental data that 

the outer PEG layer provided an excellent stealth shield for the 

nanoparticles, while simultaneously the size of the nanopar-

ticles was small enough (46 nm) to permit the nanoparticles to 

reach tissues. Indeed, it suggests that essential properties in view 

of targeted applications can be imparted to composite nanopar-

ticles prepared by auto-assembling of PBLG derivates.

Conclusion
Due to interesting self-assembling properties, synthetic 

polypeptides deserve attention as biodegradable materials for 

the preparation of multifunctional nanoparticles. Belonging 

to this family, PBLG derivates could be synthesized using 

ring-opening polymerization, and small nanoparticles with 

stable characteristics could be successfully prepared by a 

nanoprecipitation technique without the need for surfac-

tants. Interestingly, small composite pegylated nanoparticles 

(typically 40 nm in size) made of a mixture of pegylated and 

PBLG-FITC copolymers could be obtained. The presence of 

80% of pegylated chains in the nanoparticles was enough to 

avoid their capture by the MPS, as shown by examination of 

their biodistribution in the liver and spleen. Because com-

posite PBLG nanoparticles can be looked at as an interesting 

platform for targeting applications, these preliminary results 

on the in vivo behavior of these nanoparticles are encourag-

ing and must be considered as the basis for further extensive 

exploration of the potential of these nanoparticles for targeted 

drug delivery applications.
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