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Purpose: The common cause of blindness in people with type 2 diabetes (T2D) is diabetic retinopathy (DR). Early fundus 
examinations have been shown to prevent vision loss, but routine ophthalmic screenings for patients with diabetes present significant 
financial and material challenges to existing health-care systems. The purpose of this study is to build a DR prediction model based on 
the extreme learning machine (ELM) and to compare the performance with the DR prediction models based on support machine vector 
(SVM), K proximity (KNN), random forest (RF) and artificial neural network (ANN).
Methods: From January 1, 2020 to November 31, 2021, data were collected from electronic inpatient medical records at Lu’an 
Hospital of Anhui Medical University in China. An extreme learning machine (ELM) algorithm was used to develop a prediction 
model based on demographic data and blood testing and urine test results. Several metrics were used to evaluate the model’s 
performance: (1) classification accuracy (ACC), (2) sensitivity, (3) specificity, (4) Precision,(5) Negative predictive value (NPV), 
(6) Training time and (7) area under the receiver operating characteristic (ROC) curve (AUC).
Results: In terms of ACC, Sensitivity, Specificity, Precision, NPV and AUC, DR prediction model based on SVM and ELM is 
better than DR prediction model based on ANN, KNN and RF. The prediction model for diabetic retinopathy based on elm is the 
best among them in terms of ACC, Precision, Specificity, Training time and AUC, with 84.45%, 83.93%, 93.16%,1.24s, and 
88.34%, respectively. The DR prediction model based on SVM is the best in terms of sensitivity and NPV, which are, 
respectively, 70.82% and 85.60%.
Conclusion: According to the findings of this study, the model based on the extreme learning machine presents an outstanding 
performance in predicting diabetic retinopathy thus providing technological assistance for screening of diabetic retinopathy.
Keywords: type 2, diabetic retinopathy, extreme learning machine, predictive model

Introduction
In 2021, 536.6 million people with diabetes were reported worldwide. Among adults, diabetes afflicts more than 
10% of the world’s population.1 Almost all of them (90%–95%) have type 2 diabetes (T2D).2 Diabetic retinopathy 
(DR) is a diabetic microvascular condition that is a significant cause of vision loss and blindness.3 Early detection 
and treatment, according to evidence, are critical in preventing visual loss.4 The current gold standard of DR 
screening is fundus photography.5 The American Diabetes Association recommends annual fundus examinations for 
diabetics, but about half of diabetics do not undergo any tests to diagnose DR.6 In addition, fundus examinations 
require experienced ophthalmologists to perform them. However, ophthalmologists are scarce in poor nations.7 

These limitations have resulted in low DR screening rate and large investment of resources, both of which pose 
serious challenges to the healthcare system in developing countries. Therefore, various DR prediction models have 
become popular. Artificial intelligence (AI) and machine learning (ML) may perform better than traditional 
prediction models in order to continue to play a role in DR screening.8–11 Thus far, numerous ML algorithms for 
screening DR have been proposed.12 Most algorithms show good performances. In investigations, support vector 
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machine (SVM) and artificial neural network (ANN) models were shown to improve DR prediction performance for 
the diabetic American population.13 This finding has prompted further interest in the application of machine 
algorithms to DR. However, common ML algorithms, such as ANN, support machine vector (SVM), K proximity 
(KNN), and random forest (RF), have two common shortcomings. Many network parameters must be properly set, 
which significantly increases the learning time.14–16 The input weights and hidden deviations were chosen at random 
using an extreme learning machine (ELM) algorithm, while the output weights were computed through the Moore 
Penrose generalized inverse analysis.17 As a result, compared with SVM, RF, ANN and KNN, ELM learns quicker 
and uses fewer fine-tuned parameters while still achieving high generalization results. Based on these findings, the 
ELM model is projected to provide a new and accurate tool for detecting DR. Design of this study Adhere to 
TRIPOD-PROBAST/TRIPOD-AI PROBAST-AI.

Data and Methods
Patient Selection
Patients (n = 1309) admitted from January 1, 2020 to November 31, 2021 to Lu’an Hospital of Anhui Medical 
University, China, were selected as study subjects. Inclusion criteria included patients: (1) Patients diagnosed with 
type 2 diabetes according to the diagnostic and classification criteria for diabetes published by who in 1990, (2) The eye 
department has been consulted to determine whether there is diabetes retinopathy after completing the fundus examina
tion. Exclusion criteria included several parameters: (1) previous diagnosis (2) incomplete data, (3) patients with 
hepatobiliary, hematological, or inflammatory diseases, (4) patients with unclear fundus due to refractive media turbidity. 
We finally got 1093 samples through strict data preprocessing (Figure 1).

Data Processing
A total of 1093 patients (377 patients with DR, accounting for approximately 34.5% of the patients) were extracted using 
the above criteria, and their age, sex, diabetes course (DC), body mass index (BMI), and other demographic information 

Figure 1 Data screening flow chart. 
Notes: Patients with missing data: Delete samples with one or more missing variables; fundus examination: if there is any characteristic lesion, it is diagnosed as DR: 
microaneurysm, hemorrhage, cotton wool spot, abnormal microvascular in retina, hard exudate, venous hemorrhage, neovascularization.
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were obtained. Blood testing and urine test results measured on fasting on the second day of admission were measured. 
Values for the presence of DR (yes = 2, no = 1), urinary protein (yes = 2, no = 1), and sex (female = 2, male = 1) were 
assigned (Table 1 and Supplementary Table 1).

Table 1 DR Dataset

Name Levels Non DR Patients  
(n=716)

DR patients  
(n=377)

p

Sex male = 1 247 (34.5%) 189 (50.1%) <0.001

Female = 2 469 (65.5%) 188 (49.9%)
Age (y) Mean ± SD 52.747 ± 13.573 57.430 ± 10.733 <0.001

DC (y) Mean ± SD 5.724 ± 5.260 12.323 ± 6.587 <0.001

BMI (kg/m2) Mean ± SD 25.432 ± 3.635 24.806 ± 3.419 0.006
K+ (mmol/L) Mean ± SD 3.978 ± 0.367 4.091 ± 0.495 <0.001

Na+(mmol/L) Mean ± SD 139.880 ± 2.780 140.001 ± 3.292 0.543

Cl−(mmol/L) Mean ± SD 104.101 ± 3.337 104.185 ± 3.649 0.710
Ca2+(mmol/L) Mean ± SD 2.363 ± 0.176 2.262 ± 0.286 <0.001

CR (umol/L) Mean ± SD 64.012 ± 28.368 72.819 ± 37.258 <0.001

BUN(mmol/L) Mean ± SD 5.725 ± 1.866 6.562 ± 2.477 <0.001
UA(umol/L) Mean ± SD 324.541 ± 96.300 311.692 ± 91.808 0.033

AST(u/L) Mean ± SD 23.694 ± 17.291 20.817 ± 16.180 0.008

ALT(u/L) Mean ± SD 29.745 ± 28.221 24.169 ± 39.603 0.015
TBIL(umol/L) Mean ± SD 13.887 ± 5.128 11.600 ± 4.779 <0.001

DBIL(umol/L) Mean ± SD 4.690 ± 1.960 3.679 ± 1.840 <0.001

IBIL (umol/L) Mean ± SD 9.196 ± 3.520 7.928 ± 3.553 <0.001
ALB(g/L) Mean ± SD 43.711 ± 3.969 41.397 ± 5.055 <0.001

GLB(g/L) Mean ± SD 24.807 ± 4.837 26.367 ± 4.850 <0.001

TCH(mmol/L) Mean ± SD 4.854 ± 1.227 5.057 ± 2.549 0.144
TG(mmol/L) Mean ± SD 2.014 ± 2.504 2.023 ± 2.296 0.952

LDL(mmol/L) Mean ± SD 2.834 ± 0.879 2.678 ± 0.875 0.005

HDL(mmol/L) Mean ± SD 1.201 ± 0.365 1.225 ± 0.347 0.300
GLU(mmol/L) Mean ± SD 10.268 ± 4.343 10.717 ± 4.727 0.115

HbA1c(%) Mean ± SD 9.567 ± 2.167 9.797 ± 2.062 0.091

SG Mean ± SD 1.022 ± 0.007 1.021 ± 0.007 0.026
PH Mean ± SD 5.480 ± 0.495 5.536 ± 0.590 0.120

Hb(g/L) Mean ± SD 139.242 ± 15.930 130.141 ± 18.266 <0.001

WBC (109/L) Mean ± SD 6.449 ± 1.800 6.467 ± 1.933 0.880
PLT(109/L) Mean ± SD 208.256 ± 61.452 200.992 ± 64.965 0.069

HCT(%) Mean ± SD 41.405 ± 4.556 38.807 ± 5.198 <0.001

MCV(fl) Mean ± SD 87.844 ± 5.646 87.840 ± 5.699 0.991
RDW-CV Mean ± SD 12.613 ± 0.953 13.319 ± 2.960 <0.001

MPV(fl) Mean ± SD 11.517 ± 1.137 11.334 ± 1.446 0.033

PCT(ng/mL) Mean ± SD 0.240 ± 0.063 0.225 ± 0.063 <0.001
C-P (Fasting)(ng/mL) Mean ± SD 1.417 ± 0.995 1.219 ± 0.858 <0.001

C-P (1 h after meal)(ng/mL) Mean ± SD 2.580 ± 1.858 1.851 ± 1.322 <0.001

UP No = 1 610 (85.2%) 226 (59.9%) <0.001
Yes = 2 106 (14.8%) 151 (40.1%)

Abbreviations: DR, diabetic retinopathy; DC, diabetes course; BMI, body mass index; K+, serum potassium concentra
tion; Na+, serum sodium concentration; Cl−, serum chloride concentration; Ca2+, serum calcium concentration; CR, serum 
creatinine; BUN, blood Urea nitrogen; UA, uric acid; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TBIL, 
total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB, albumin; GLB, globulin; TCH, Total cholesterol; TG, 
triglyceride; LDL, low density lipoprotein; HDL, high density lipoprotein; GLU, fasting blood glucose; HbA1c, glycosylated 
hemoglobin; SG, specific gravity of urine; PH, urine pH; Hb, hemoglobin concentration; WBC, white blood cell count; PLT, 
platelet count; HCT, hematocrit; MCV, mean red blood cell volume; RDW-CV, red blood cell distribution width; MPV, mean 
platelet volume; PCT, Platelet hematocrit; C-P (Fasting), fasting C-peptide; C-P (1 h after meal), C peptide 1 h after meal; 
UP, urine protein.
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Extreme Learning Machine
A single hidden layer neural network, an ELM, can be applied for classification, regression, and grouping.18 Different 
than other traditional neural networks that use error back propagation, the input layer coefficient of the ELM is 
constructed and fixed initially, and the output layer coefficient is directly calculated during training to use the input 
and output values of training data. The advantage of the ELM is its fast training speed, and its classification effect is 
better than that of ordinary SVM models. The image below depicts the principle of an extreme learning machine. 
Only one hidden layer in the neural network exists. In the figure, X represents the input feature vector of a sample, 
and the output of the ith node of the hidden layer is expressed as: hi(X)=G(ai, bi, x) for which ai and bi are input layer 
coefficients, and G(X) is a mapping function, such as G ai; bi; xð Þ ¼ sigmoid at

ixþ bi
� �

.
The vector h xð Þ ¼ h1 xð Þ; � � � ; hL xð Þ½ � is formed from the output of L nodes in the hidden layer. The ELM produces 

f xð Þ ¼ h xð Þβ as a result of its output, and β ¼ β1; � � � ; βL½ �
T is the output layer’s coefficient. Three stages can also be used 

to train an extreme learning machine:

1. Generate input layer coefficients randomly ai and bi,
2. Calculate the H ¼ h x1ð Þ; � � � ; h xNð Þ½ �

T output matrix for the hidden layer for which N represents the amount of 
training data, and

Assume that Y is the corresponding classification label vector of N samples. The optimal solution for calculating the 
number of output layers β should satisfy min

β
y � Hβ2. The beta optimal solution can be calculated by 

calculatingβ ¼ Hþy for which the Moore-Penrose generalized inverse of the H matrix is denoted by H+. When the 
training is complete and the neural network’s input layer coefficients ai, bi and the output layer coefficients β have been 
determined, the ELM can categorize the test data (Figure 2).

Ten-Fold Cross-Validation
All indicators in Table 1 are used to train the model. On average, the database was separated into 10 sections, nine of which 
were used for training the ELM and one for testing and diagnostics. The performance of the classifier was assessed on the test 
data after training, and the cycle was repeated 10 consecutive times until all objects had been utilized for one test.

Experimental Design
The most appropriate hidden neurons and activation functions should be solved to construct the ideal ELM model 
structure. Take 10-fold cross-validation to find the best model. The average of ten times was eventually chosen as the 
result to evaluate the model’s performance (Figure 3). The process was conducted on an AMD Athlon 64×2 Dual Core 
Processor 5000+ (2.6 GHz) with 4GB of RAM running Windows 7.

Evaluation Standard
Classification accuracy (ACC), sensitivity, specificity, Precision, Negative predictive value (NPV), Training time, and the 
area under the operating characteristic curve (ROC) of the subject (AUC) were used to evaluate the model’s quality.19 

The definition is shown below:

ACC ¼
TPþ TN

TPþ FPþ TN þ FN
� 100% 

Sensitivity ¼
TP

TPþ FN
� 100% 

Specificity ¼
TN

FPþ TN
� 100% 
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Precision ¼
TP

TPþ FP
� 100% 

Negative predictive value ¼
TN

TNþ FN
� 100% 

for which TP, FN, TN, and FP reflect the number of true positives, false negatives, true negatives, and false positives, 
respectively.

Results
To develop the best classification model for DR, sigmoid (sig) activation functions that have shown good performance in 
previous disease diagnosis were selected for this study,20–22 and in the range of 10 to 200 hidden neurons, every 10 
neurons was selected to build models. The ACC quality of the various models in the fold verification was checked 
separately for which ACC was the average value of each neuron independently running 30 times (Figure 4). This result 
shows that when the hidden neuron is 70, the model represented by ELM has the best performance. Finally, the activation 
function was chosen as sig, and hidden layer neuron 70 was employed to create the final model.

The DR model classification performance was based on the ELM. The full findings under 10-CV are listed in table 
(Table 2). According to the table, this prediction model based on ELM consistently performed successfully with an ACC 
= 84.45%, Specificity = 93.16%, Precision = 83.93%, NPV = 84.64% and Sensitivity = 67.90%.

In order to better illustrate the predictive performance of elm based model for diabetes retinopathy, based on all the 
features of the same data set, we compared the prediction models based on KNN, ANN, SVM and RF by using the 
method of 10-CV. KNN, ANN, SVM and RF related parameters have been adjusted as follows: KNN: Number of nearest 
neighbors: 5, Distance: euclidean; ANN: Number of neurons in the hidden layer: 20, Type of activation function: purelin 
(line transfer function), epochs = 100; RF: Number of trees: 300; SVM: type of kernel function: radial basis function, the 

Figure 2 Basic principles of extreme learning machine (ELM).
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parameter of C-SVC C = 2.0, gamma = 0.3 in kernel function. The outcomes are shown in as table(Table 3), the DR 
prediction model based on ELM and SVM performed better with respect to ACC, Precision, NPV, Sensitivity and 
Specificity than KNN, ANN, and RF. Among them, the training time of DR prediction model based on elm is 
significantly better than that of Dr prediction model based on SVM. 1.24 s and 148.07s, respectively.

This research involves various prediction models using the AUC of performance as shown in Figure (Figure 5). The 
prediction model of DR based on ANN, RF, SVM, and ELM performed well with respect to AUC, among which the 
prediction model of DR based on ELM had the best overall performance, while the prediction model based on KNN had 
the worst performance.

Discussion
Because of its quick learning speed, good generalization capabilities, and ease of application, ELM has stimulated 
interest of a wide range of sectors. This model has been applied in palmprint recognition,23 medical treatment,24–28 

motion image classification,29 communication networks,30 environmental management,31 water quality detection,32 and 

Figure 3 The Flow chart of prediction model.

https://doi.org/10.2147/DMSO.S374767                                                                                                                                                                                                                               

DovePress                                                                                             

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15 2612

Liu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


agricultural production,33 and has a good performance. However, no reports about ELM applied to DR classification have 
been published.

Currently, the DR prediction models based on AI are mainly divided into two categories. (1) DR prediction model 
established based on fundus photo images. For example, researchers from Singapore published a very influential study 
and proposed a DR analysis machine learning system using fundus images. In that study, Ting’s team used about half 
a million retinal images for model building and validation. The sensitivity of the system for detecting DR was 90.5%, 
a result that was comparable to 91.5% for professional raters who evaluated the same data set.34 Casanova et al predicted 
DR using a double-cross-validated RF, and the results show an accuracy rate of 75%.35 RetmarkerDR software was 
developed in Portugal and has a CE marking indicating type IIa level of medical equipment. In 2011 in central Portugal, 

Figure 4 An association between classification accuracy (ACC) and number of distinct hidden neurons in the ELM (database of our hospital).

Table 2 The Extreme Learning Model (ELM) Model Produced Detailed Findings

Fold TP FN FP TN Accuracy Precision NPV Sensitivity Specificity

1 28 10 10 61 81.65% 73.68% 85.92% 73.68% 85.92%

2 22 16 5 67 80.91% 81.48% 80.72% 57.89% 93.06%

3 30 8 7 65 86.36% 81.08% 89.04% 78.95% 90.28%
4 22 16 3 69 82.73% 88.00% 81.18% 57.89% 95.83%

5 28 9 2 70 89.91% 93.33% 88.61% 75.68% 97.22%

6 23 14 4 68 83.49% 85.19% 82.93% 62.16% 94.44%
7 26 11 4 68 86.24% 86.67% 86.08% 70.27% 94.44%

8 25 13 4 67 84.40% 86.21% 83.75% 65.79% 94.37%

9 32 6 5 66 89.91% 86.49% 91.67% 84.21% 92.96%
10 20 18 5 66 78.90% 80.00% 78.58% 52.63% 92.96%

Overall 256 121 49 667 84.45% 83.93% 84.64% 67.90% 93.16%

Abbreviations: TP, the number of true positives; FN, the number of false negatives; FP, the number of false positives; TN, true negatives; NPV, 
negative predictive value.
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human classification based on the implementation of DR screening scheme was implemented. The scheme can accurately 
and precisely identify threats to vision resulting from DR complications. The installed automated method has the ability 
to minimize the personnel grading burden by 48.42%.36 Although the above DR prediction model has excellent 
performance and can reduce the need for human resources, the DR prediction model using retinal images still requires 
professional ophthalmologist and expensive medical equipment, and is only used for DR screening in some developed 
countries. China, as a developing country with the world’s highest diabetic population, is particularly vulnerable to the 
lack of such resources, especially in rural regions, and overall, is not equipped for this type of diabetes screening. (2) DR 
prediction model based on physiological and biochemical indicators, mainly using demographic data, medical history, 
and blood and urine test results. Published studies mostly use SVM, ANN, RF, and decision trees to classify DR. For 
example, Tsao et al used 10 characteristic indicators to compare various machine learning algorithms in 536 patients with 
diabetes and classified DR using a 5x cross validation. The accuracy of the SVM was found to be 79.5%, which was 
superior to decision tree, ANN, and logistic regression.37 A study in a community in northeast China enrolled 530 
community members (including 107 non-diabetic individuals, 372 diabetic patients without DR, and 51 diabetic patients 

Table 3 Extreme Learning Machine, Support Vector Machine, Artificial Neural Network, Random Forest, and 
k-Nearest Neighbor (ELM, SVM, ANN, RF, and KNN, Respectively) Classification Performances Were 
Compared

Ways Accuracy AUC Precision Sensitivity Specificity NPV Training Time (s)

KNN 66.51% 61.96% 52.56% 29.97% 85.75% 69.93% 57.37

ANN 82.71% 86.24% 79.19% 67.64% 90.64% 84.18% 5.25
SVM 84.26% 87.59% 81.16% 70.82% 91.34% 85.60% 148.07

RF 81.43% 86.57% 79.79% 61.80% 91.76% 82.02% 11.05

ELM 84.45% 88.34% 83.93% 67.90% 93.16% 84.64% 1.24

Abbreviations: AUC, area under the receiver operating characteristic (ROC) curve; NPV, negative predictive value.

Figure 5 Receiver operating characteristic (ROC) curves corresponding to each model(database of our hospital).
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with DR) as study subjects and classified them using an ANN algorithm. The model’s AUC was 0.84, and its specificity 
was 0.83 according to the results. The model performed well in terms of DR prediction.38 In another study based on the 
KNHANES V-1 and KNHANESV-2 databases, the LASSO-based model effectively predicted DR using the physiolo
gical and biochemical indicators of 327 diabetic patients with an AUC of 0.82 and ACC of 0.752. These methods proved 
to be better than the DR prediction model based on SVM, ANN, RF, and KNN.39 When these findings were compared to 
our findings, it can be seen that with the exception of the KNN-based prediction model, other prediction models of DR 
show better performance among the DR prediction models based on various machine learning techniques used in this 
study. The differences might be attributed to more specific indicators, regional differences, varying sample sizes, and the 
fact that it only looked at type 2 diabetes.

Using the same datasets, DR prediction models based on KNN, ANN, SVM, and RF were compared. Results 
show that ELM was better than KNN, ANN, SVM, and RF in terms of ACC, Precision, Specificity, and AUC, 
especially for the recognition of non-DR patients. In addition, the time required for the training process of ELM, 
SVM, KNN, ANN, and RF was also recorded in this study. SVM takes 148.07 s, ANN 5.25 s, RF11.05s and ELM 
1.24s. In conclusion, the ELM-based model of DR shows good classification accuracy, Precision, Specificity, AUC, 
and computational efficiency, making it suitable for clinical use. This model appears to be an efficient tool for the 
diagnosis of DR.

At present, although this model has good performance in accuracy, Precision, Specificity, AUC and computational 
efficiency, it still has some shortcomings. (1) The study sample size is not very big at present, particularly in individuals 
with DR, leading to lower sensitivity of the model when compared with other evaluation index performances. 
Additionally, this study was only a single center study, not a multicenter samples epidemiological survey; thus, the 
data from the same medical center also has case selection bias. In the follow-up research work, our research team intends 
to collaborate with other centers to further refine and increase the predictive value of the model utilizing their clinical 
data. (2) Furthermore, because in the age of evidence-based medicine, this model can be converted to medical practices 
in the future, several challenges, such as patient acceptability, ethics, and clinical deployment, still need to be addressed. 
Therefore, the following research should focus on the establishment of a user interface, ethical supervision, and the 
nature of the “black box” algorithm. A website or an Android app should then be created to make DR predictions for new 
patients. This process will certainly help reduce the pressure on ophthalmologists and minimize the cost of screening 
patients. A clinical decision support system based on our results could revolutionize the current disease diagnosis model 
in the future and make a significant contribution to screening of DR.

Conclusion
This research developed an ELM-based DR prediction model that was established using physiological and biochemical 
markers and performed well in DR prediction. In future, this type of system will play a crucial role in the screening 
of DR.
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