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Purpose: Halloysite nanotubes (HNTs) are a versatile and highly investigated clay mineral due to their natural availability, low cost, 
strong mechanical strength, biocompatibility, and binding properties. The present work explores its role for retarding and controlling 
the drug release from the composite polymer matrix material.
Methods: For this purpose, nanocomposite films comprising propranolol HCl and different concentrations of HNTs were formulated 
using the “solution casting method”. The menthol in a concentration of 1% w/v was used as a permeation enhancer, and its effect on 
release and permeation was also determined. Quality characteristics of the nanocomposite were determined, and in vitro release and 
permeation studies were performed using the Franz diffusion system. The data was analyzed using various mathematical models and 
permeation parameters. Optimized formulation was also subjected to skin irritation test, FTIR, DSC, and SEM study. Systemic 
absorption and disposition of propranolol HCl from the nanocomposites were predicted using the GastroPlus TCAT® model.
Results: The control in drug release rate was associated with the higher concentration of HNTs. F8 released 50% of propranolol 
within 8 hours (drug, HNTs ratio, 1:2). The optimized formulation (F6) with drug: HNTs (2:1), exhibited drug release 80% in 4 hours, 
with maximum flux of 145.812 µg/cm2hr. The optimized formulation was found to be a non-irritant for skin with a shelf life of 35.46 
months (28–30 °C). The in silico model predicted Cmax, Tmax, AUCt, and AUCinf as 32.113 ng/mL, 16.58 h, 942.34 ng/mL×h, and 
1102.9 ng/mL×h, respectively.
Conclusion: The study demonstrated that HNTs could be effectively used as rate controlling agent in matrix type transdermal 
formulations.
Keywords: halloysite nanotube, transdermal, nanocomposite, controlled release, GastroPlus

Introduction
A pharmaceutical system that offers the passage of the drug through the skin to produce a systemic effect is termed 
a transdermal drug delivery system (TDDS).1 It is one of the most promising drug conveying means due to its various 
advantages, such as offering continuous therapeutic effect from hours to days, avoiding frequent dosing, providing 
painless and easy administration, and ensuring minimal chances of toxic reactions.2,3 These properties of TDDS provide 
improved patient compliance in long-term treatment especially for chronic pain and discontinuation of smoking. 
Therefore, a large number of TDDS are becoming commercially available day by day throughout the world.4 

However, the polymers utilized for providing controlled delivery of drug molecules from TDDS are mostly from 
a synthetic source, require combination with other polymers, many are claimed to be toxic, and some are expensive.5
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Halloysite nanotubes (HNTs) are nanosized clay materials consisting of nanotubes. Each nanotube is further 
comprised of 10 to 15 rolls of double layers (600 to 900 nm) of alumina-silica having 50 nm and 15 nm inner and 
outer diameters, respectively.6 Structurally, they consist of a 1:1 ratio of tetrahedral siloxane (Si–O–Si) and octahedral 
aluminum hydroxide (Al–OH) layers.6–8 The presence of the siloxane layer on the outer surface is responsible for their 
negative charge, while the aluminum hydroxide layer on the inner surface is responsible for their positive charge.6 They 
possess significant loading and adsorption capabilities. Hence, they could interact with different molecules and help to 
modify their physicochemical characteristics. Moreover, their tubular structure is beneficial for improving the rheology of 
certain polymers and enhancing their mechanical strength.9,10 They are considered economical with abundant natural 
availability, non-toxic, biocompatible, and capability of binding with the drug particles.6–8,11 These properties make 
HNTs an attractive carrier for the delivery of pharmaceutical drug substances. They have been utilized successfully as 
a drug carrier excipient in different pharmaceutical dosage forms.9,12,13 A slow drug release rate of more than 100 h has 
been achieved using the material, and their drug loading efficiency has been observed between 10% and 30%.9 They have 
been utilized as nanofillers in polymers such as polyvinyl alcohol (PVA) composite to modify their physicochemical 
characteristics.9 Similarly, the polymer is low-cost, biocompatible, soft, and biodegradable. It acts as a reservoir for drug 
substances and releases the drug as it degrades. Therefore, HNT-based composites are becoming the material of choice as 
a drug carrier for the development of drug delivery systems.14 Numerous studies have been conducted for the design and 
characterization of HNTs/PVA-based nanocomposites.15 The modified polymeric material has been used to improve the 
release profile and bioavailability of several drug substances including antihistamine, anti-inflammatory, and 
antibiotics.14,16

Propranolol hydrochloride (HCl) is a non-selective beta-blocker generally used in the management of hypertension, 
angina, cardiac arrhythmias, and pheochromocytoma.17 It has a molecular weight of 259.35 g/mol, possesses a biological 
half-life of 2–6 h with an oral bioavailability of about 25%, and is used in an adult dose of 10–30 mg taken 3–4 times 
per day.18–20 The properties of propranolol HCl, such as low molecular weight, low oral bioavailability, and short half- 
life, suggest that it is a potential candidate for the design of a transdermal delivery system.

In the present study, different nanocomposite films of HNT and PVA as a drug carriers were developed using a facile 
and convenient method for the controlled transdermal delivery of propranolol HCl (see Figure 1; diagrammatic 
illustration). Permeation enhancer such as menthol was incorporated in the formulations. The physicochemical char-
acteristics were evaluated, including weight and thickness variation, folding endurance, moisture uptake, moisture 
content, and drug content. The release and permeation behavior of the drug from the system were determined using 
the Franz diffusion cell. Skin sensitivity, chemical interaction, morphology, thermal and mechanical properties were 
determined. In vivo characteristics were predicted using an in silico model, and stability was also determined at different 
temperatures.

Materials and Methods
Materials
HNTs were gifted by China Clays Ltd (New Zealand). Propranolol HCL was kindly provided by Lisko Pakistan (Private) 
Limited (Karachi, Pakistan), PVA was purchased from Daejung Chemicals & Metals (Gyeonggi-do, Korea), menthol 
from ‘Standard Scientific and Glass Works’ (Karachi, Pakistan). Potassium phosphate monobasic anhydrous from Sigma- 
Aldrich (St. Louis, Missouri, USA), sodium hydroxide, orthophosphoric acid, potassium dihydrogen phosphate, sodium 
chloride, and formaldehyde solution from Merck (Darmstadt, Germany).

Animals
Male mice (Albino) weighing 14 to 23 g used in the skin irritation test were obtained from the animal house, Faculty of 
Pharmacy and Pharmaceutical Sciences, University of Karachi. The study’s ethical approval was granted and approved 
by the Institutional Bioethics Committee (IBC) University of Karachi (Approval no: IBC KU-106/2020). All ARRIVE 
guidelines for the care and use of laboratory animals were followed.21 The welfare of the laboratory animals was 
followed as per the guidelines of the National Research Council’s Guide for the Care and Use of Laboratory Animals.22

https://doi.org/10.2147/IJN.S367540                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2022:17 3464

Sikandar et al                                                                                                                                                         Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Preparation of Transdermal Formulations
The formulations (containing HNTs or without HNTs) were prepared by utilizing the solvent casting method.23 The composition 
of each formulation is shown in Table 1. A 2% w/v solution of propranolol HCl was prepared in deionized water. HNTs in 
different concentrations were incorporated in the propranolol solution with continuous agitation for 5 minutes. PVA (film former) 
along with or without menthol (permeation enhancer) in a fixed concentration was added in the drug and HNTs mixture, and it 
was agitated overnight at 250 rpm using a flat orbital shaker (KS 260 B, Industrial and Automotive Equipment, Germany). The 
mixture was later poured into a petri dish and dried at 60 °C for 6 hours in a hot air circulating oven (YCO-N01, Gemmy 
Industrial Corporation, Taiwan).

Evaluation of Formulations
Organoleptic Evaluation
The formulations were examined visually as well with the sense of touch for smoothness, flexibility, and clarity.24

Figure 1 Diagrammatic illustrations of propranolol-loaded HNTs-PVA nanocomposite transdermal films.

Table 1 Composition of the Different Transdermal Composite Formulations

Formulations Code Propranolol HCl (mg) HNT (mg) PVA (mg) Menthol (mg)

F1 100 – 150 –

F2 100 – 150 50

F3 100 100 150 –

F4 100 100 150 50

F5 100 50 150 –

F6 100 50 150 50

F7 100 200 150 –

F8 100 200 150 50
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Weight Variation and Thickness Evaluation
The prepared transdermal nanocomposite films (F1–F8) were subjected to uniformity of weight and thickness variation 
tests. For this purpose, the films, each of 1cm2, were weighed separately on an analytical balance (Sartorius CP 224 S, 
Gottingen, Germany), and the readings were then recorded for performing statistical analysis. The thickness of the 
formulations was also determined with the help of a digital vernier caliper (Seiko Brand, China). The thickness and 
weight variation of the formulations were determined statistically by calculating the mean and standard deviation.24,25

Folding Endurance Test
The folding endurance of the formulations was determined to measure the capability of a transdermal film system to 
resist rupture or maintain the physical integrity with general skin folding.26 In this test, the nanocomposite films of each 
formulation were repeatedly folded manually at the same place, and the number of folds required to break the film was 
recorded.25,26

Moisture Content Test
The moisture content within the nanocomposite films helps in maintaining physical stability. The moisture content of 
formulations was determined by weighing each film and keeping it in a desiccator (containing silica gel as a desiccant) at 
normal room temperature. Their weight was measured after every 24 hours until a constant weight was attained. The 
percentage moisture content was calculated by using equation 1.27

% Moisture content ¼
initial weight of the film � final weight of the film

initial weight of the film
x 100 (1) 

Moisture Uptake Test
The capability of a polymeric nanocomposite film to uptake moisture content from the environment is considered to 
affect the release rate of the drug from the system.28 The formulations were subjected to moisture uptake test by 
weighing each film initially and keeping it in a desiccator containing a saturated solution of sodium chloride. The weight 
of each film was measured after every 24 hours until a constant weight was achieved. Equation 2 was used to calculate 
the percentage moisture uptake.29

% Moisture uptake ¼
final weight of the film � initial weight of the film

initial weight of the film

� �

x 100 (2) 

Content Uniformity
All the nanocomposite formulations (F1-F8) were subjected to content uniformity test for determining the percent 
amount of drug in the formulation. The content of the drug in each formulation was determined by following the HPLC 
technique as described in British Pharmacopoeia (BP 2020). The chromatographic separation was performed by using 
High-Pressure Liquid Chromatograph (LC-20A Shimadzu, Kyoto, Japan). The mobile phase (100 mL) was prepared by 
mixing 1 mL aqueous sulfuric acid (10% v/v), 2 mL of tetra-butylammonium dihydrogen orthophosphate (1.7% w/v), 
acetonitrile (60% v/v), sodium dodecyl sulphate (0.115% w/v) and 37% v/v distilled water. The mobile phase was 
pumped (isocratic) at a rate of 1.8mL/min through a C18 column (20 × 4.6cm, Mediterranean Sea 5µm) maintained at an 
ambient temperature by a column oven (CTO-20 A, Shimadzu, Kyoto, Japan). The peak response of propranolol HCl 
was recorded at 289 nm using a UV detector (SPD-20A, Shimadzu, Kyoto, Japan).

The standard solution was prepared in a 100 mL volumetric flask by dissolving 3.33 mg of propranolol HCl in 
phosphate buffer B.P. having a pH of 7.4. Similarly, the test solution was prepared by dissolving a 1cm2-sized film in the 
same buffer solution. The solution was agitated overnight on a flat orbital shaker at a speed of 250 rpm and sonicated 
using Elmasonic D-78224 (Elma, Germany) for 15 minutes.

In vitro Drug Release Study
The release rate of the drug from the nanocomposite films was determined by using Franz Diffusion Cell (V9-CB 
Manual diffusion system, PermeGear Incorporated, USA). A film of 1 cm2 size was selected from each formulation. 
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A fiber net of appropriate size carrying the transdermal formulation was placed between the donor and acceptor 
compartment. The acceptor compartment was loaded with 5 mL of phosphate buffer B.P., having a pH of 7.4. The 
temperature of the water jacket was held at 37 °C.29 And, 0.5 mL aliquots of the drug samples were collected in 
triplicate at different time intervals (0, 5, 10, 15, 30 min, and 1, 2, 3, 4, 5, 6, and 8 h) and diluted separately with an 
appropriate volume of the phosphate buffer. The drug concentration in each sample was determined by using a double 
beam UV-Vis. Spectrophotometer (UV-1800, Shimadzu Corporation, Kyoto, Japan) at a wavelength of 289 nm. The 
drug release kinetics was determined by using different drug release kinetic models such as zero order, first order, 
Higuchi, and Korsmeyer–Peppas (Equation 3–6) using the Microsoft Excel add-in program DDSolver.30

Q1 ¼ Q0 þ K0t (3) 

where Q1 and Q0 are the amounts of drug dissolved at a particular time t and the amount of the drug present at time zero in 
the dissolution media, and K0 is the zero-order rate constant.

log Q1 ¼ log Q0 þ
K1t

2:303
(4) 

where Q1 and Q0 are the amounts of the drug in the dissolution media at time t and zero, and K1 is the first-order rate 
constant.

Qt ¼ KH t1=2 (5) 

where Q1 is the dissolved amount of the drug in the dissolution media at time t, t1/2 is the square root of time (t), and KH 

is the rate constant for the Higuchi model.

Qt ¼ atn (6) 

where a is a constant that depends on geometric and structural characteristics of the dosage form and n is the release 
exponent indicating the mechanism of drug release.

In vitro Permeation Study
The permeation test was conducted by Franz Diffusion Cell using dialysis tubing (500 g/mol cut-off molecular weight) as 
a barrier membrane.31 Sample nanocomposite films of 1 cm2 size were placed between the donor and acceptor 
compartment. The acceptor compartment was filled with 5 mL of phosphate buffer pH 7.4. The temperature of the 
water jacket was held at 37 °C.32 And, 0.5mL aliquots of the drug samples were collected in triplicate at a different time 
intervals (0, 0.25, 0.5, 1, 2, 4, 6, 8, 10, and 12 h) and diluted with an appropriate volume of the same buffer. The 
absorbance of the drug in each sample was determined by a UV-Vis spectrophotometer (UV-1800, Shimadzu, Japan) at 
a wavelength of 289 nm, and the amount of the drug diffused through the barrier membrane at different time intervals 
was calculated. Permeation profiles were obtained by plotting a graph between the amount of drug permeated (µg/cm2) 
versus time. Various permeation parameters such as flux, permeation coefficient, lag time, and diffusion coefficient were 
also determined using the method stated by Ubaidulla in 2007.33 The flux (J) was calculated as the slope of the graph 
plotted between the linear portion of the cumulative amount of drug permeated and time. Whereas the lag time (L) was 
determined by extrapolating the line of the same graph to the abscissa. The partition coefficient (P) and the diffusion 
coefficient (D) were calculated by using equations 7 and 8.34,35

P ¼
J

Cd
(7) 

where P is the partition coefficient, J is the flux and Cd is the amount of drug in the donor compartment.

D ¼
h2

6L
(8) 

where D is the diffusion coefficient, h is the thickness of the membrane and L is the lag time.
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Fourier Transform Infrared (FTIR) Spectroscopy
The compatibility of the drug with the excipients in the optimized formulation was determined by FTIR spectroscopy 
(Nicolet Avatar 330, ThermoFisher Scientific, USA) study. The raw FTIR data of the was used to construct a composite 
plot in MS Excel 365 for all the samples, whereas the images generated from the OMNIC software ver. 7.3 
(ThermoFisher Scientific, USA) are presented in Figures S1 and S2. The obtained spectra were compared for any 
chemical incompatibility of the samples with the drug present in the composite transdermal film.

Differential Scanning Calorimetry (DSC)
The thermal behavior of propranolol HCl, PVA, HNT, PVA/HNT nanocomposite film and the optimized formulation were 
determined using DSC (DSC 250, TA Instruments, DE, USA) method to study the mechanical properties of the samples. 
The heating of the samples was carried out at a rate of 10 °C/min in a temperature range of 30 to 240 °C. The raw data of 
the thermogram were used to construct a composite plot using MS Excel 365 for all the samples, whereas the images 
generated from the TRIOS software (TA Instruments, New Castle, DE, USA) are presented in the Figures S1 and S2. The 
obtained thermograms were compared for any change in thermal and mechanical properties of the samples in the composite 
transdermal film.

Scanning Electron Microscopic (SEM) Analysis
The surface morphology of the prepared transdermal polymeric films with or without HNTs was analyzed by scanning 
electron microscope (SEM, JEOL JSM 6380-A, Tokyo, Japan) at an accelerating voltage of 20 kV. Sputter coating of the 
samples was carried out with gold up to 250°A using an automated sputter coater (JEOL FC-1500). The images obtained 
were compared for the difference in surface characteristics between the films.

Skin Irritation Test
The optimized nanocomposite transdermal film formulation (F6) was subjected to skin irritation test, using mice as 
subjects. Six mice were taken. The animals were kept at normal room temperature with free access to food and water. 
The National Research Council and the ARRIVE guidelines for the use and care of laboratory animals were properly 
followed.21,36 A particular area of the skin was shaved using an electric hair clipper (KM-6330, Kemei, China) a day 
before the test. The optimized formulation was applied on three of the animals (marked as test) on the area with the help 
of CoTran 9697 Tape (3M, Saint Paul, USA) for 24 hours. It was then evaluated for any signs and symptoms of edema or 
erythema. In addition, an aqueous solution of 0.8% formalin was applied on the remaining three animals (marked as 
control).37 The site of applications was rated based on the method described earlier by Vlasses et al 1985.38

In silico Modeling and Simulation
The systemic disposition of propranolol HCl from optimized transdermal nanocomposite film was predicted using the 
“Transdermal Compartmental Absorption and Transit” (TCAT®) model embedded in GastroPlusTM software version 9.8 
(Simulations Plus Inc., Lancaster, CA, USA). Several formulations, physiological and pharmacokinetic parameters 
obtained from the literature,17,18,39–41 and ADMETTM predictor (in GastroPlusTM) module were incorporated as shown 
in Table 2. The simulation was performed using ‘transdermal: reservoir patches’ as dosage form under human-fed 
conditions and the human arm was selected as the dosing application region. Diffusivity values in various layers of skin 
were used as predicted by the default in silico method present in GastroPlus®. The pharmacokinetic parametric values of 
propranolol HCl were calculated after processing and modeling (compartmental modeling) the reported in vivo pharma-
cokinetics data of extended-release (ER) propranolol HCl 80 mg tablets in the PKPlusTM module of GastroPlusTM.42 The 
predicted plasma profiles obtained from single and multiple doses of propranolol HCl were cross-matched with the 
reported in vivo profile and various pharmacokinetic parameters of optimized formulation were compared.

Stability Study
The stability study of the optimized nanocomposite film formulation (F6) was conducted according to the method 
reported by Puri et al.43 In the stability testing, the samples of the optimized formulation packed separately in an 
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aluminum foil were placed in a stability chamber (NuAire, Plymouth, MN, USA) at 28–30°C (room temperature) and 
40–45°C (accelerated temperature) for 3 months. The samples were not only evaluated physically but the drug content, 
drug release and permeation rate were also determined at different time intervals. The shelf life was also calculated by 
using Minitab Statistical Software version 20.2, 2021.

Result and Discussion
Organoleptic Evaluation
The transdermal nanocomposite film formulations were physically examined to determine texture, flexibility and clarity. 
All the formulations were found to possess satisfying clarity, texture and brittleness as shown in Table 3. An inverse 
relation was found between the concentration of HNTs and the film’s clarity and smoothness. The formulations without 
HNTs (F1 and F2) were found to have the greatest smoothness and clarity. The smoothness and clarity of formulations 
were observed to decrease with an increase in the proportion of HNTs. The formulations F3 and F4 were found to have 

Table 2 Formulation, Physiological and Pharmacokinetic Input Parameters Used for the Development of PBPK Model 
of Propranolol HCl Using GastroPlusTM

Parameter Value Source

Log P 3.03 Calatayud-Pascual et al, 201818

pKa 9.45 Information, N.C.f.B., 202219

Molecular weight (MW) (g/mol) 259.35 ADMET Predictor™
Aqueous solubility (S) (mg/mL) 0.0617 Drug Bank 202240

Dosage form TD: Reservoir Patch Adjusted

Dosing region Arm Adjusted
Application surface area (cm2) 9 Adjusted

Jejunal effective permeability (Peff) (cm/sec ×10−4) 2.5 ADMET Predictor™
Unbound percent in human plasma (% Fup) 10 Al-Majed et al, 201717

Human blood to plasma concentration ratio (Rbp) 0.89 Taylor and Turner., 198141

Stratum corneum diffusivity (cm2/s) 2.259 × 10–11 TCAT® model
Epidermis diffusivity (cm2/s) 1.857 × 10–6 TCAT® model

Dermis diffusivity (cm2/s) 4.45 × 10–6 Calculated from in vitro permeation data

t1/2 (h) 10.2 PKPlus™
Vc (L/kg) 3.11 PKPlus™

Clearance (CL) (L/h) 14.79 PKPlus™

Table 3 Physical Appearance of Transdermal Films

Formulations Smoothness Clarity Flexibility (Non-Brittleness)

F1 ++++ ++++ ++++

F2 ++++ ++++ ++++

F3 ++ ++ ++++

F4 ++ ++ ++++

F5 +++ +++ ++++

F6 +++ +++ ++++

F7 + + ++++

F8 + + ++++

Note: Levels of satisfaction: Excellent = ++++, Good = +++, Fair = ++, Passable = +.
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a greater smoothness and clarity than F5 and F6. In comparison, the formulations with the highest concentration of HNTs 
(F7 and F8) were found to have a rough texture.

Weight Variation and Thickness Variation
The mean weight and thickness of the nanocomposite film formulations were calculated along with the standard 
deviation. The results shown in Table 4 indicate that both the weight and thickness of all formulations did not deviate 
vastly from their mean value. A low SD value and closeness of results among the films of the same formulation indicate 
uniformity.44 Furthermore, it was also noticed that as the concentration of HTNs was increased in the formulations, the 
weight and thickness were also enhanced.

Folding Endurance
The folding endurance test determined the flexibility and physical stability of all the transdermal film formulations, as 
shown in Table 4. The value of folding endurance (>300-fold) indicates that all the formulations can withstand the skin’s 
folding and retain its physical stability.26

Moisture Content
The results of the moisture content are shown in Table 4. The results indicated the highest moisture content in 
formulations without HNTs (F1 and F2). Moisture content was found to decrease with an increment in HNTs amount 
(F3–F8). High moisture content in the polymer was supposed to be due to the hydrophilic nature of the compound.27 The 
presence of SiO2 and a small number of hydroxyl groups in HNTs make the clay hydrophobic, resulting in strong 
hydrogen bonding with polymer matrices and reducing the interaction of the composite with water molecules.45

Moisture Uptake
The average percent moisture uptake by the nanocomposite film formulations is shown in Table 4. It was observed that 
moisture uptake capability was increased with a reduction of HNTs amount in the formulations. Low moisture content in 
the formulation is considered favorable as it reduces the chances of microbial contamination and enhances stability.46

In vitro Drug Release Study
The in vitro drug release profiles of the nanocomposite film formulations are presented in Figure 2. The dissolution 
profile of formulations indicated an initial burst effect within 10 minutes. The burst effect of the drug from the 
formulations was supposed to occur due to the presence of adsorbed drug molecules on the outer surface of the 
HNTs.47 The dissolution rate of the drug in formulations without HNTs (F1 and F2) was the highest (>80% drug was 

Table 4 Quality Characteristics and Drug Content Uniformity of Propranolol HCl Nanocomposites

Formulations 
Code

Weight (mg) 
± S.D.

Thickness 
(mm) ± S.D.

Folding 
Endurance

Moisture Content 
(%) ± S.D.

Moisture Uptake 
(%) ± S.D.

Drug Content 
(%/cm2) ± S.D.

F1 7.833±0.057 0.17±0.01 >300 4.952±0.522 14.014±2.104 98.213±0.25

F2 9.633±0.208 0.223±0.011 >300 4.497±0.575 11.266±2.484 92.843±0.35

F3 10.866±0.057 0.253±0.005 >300 1.567±0.703 10.664±1.513 90.404±0.433

F4 12.633±0.057 0.296±0.015 >300 1.226±0.527 9.784±0.856 91.52±0.604

F5 9.733±0.057 0.213±0.005 >300 2.394±0.576 11.929±1.215 100±1.027

F6 10.767±0.057 0.243±0.005 >300 2.553±0.018 9.609±0.796 96.423±0.314

F7 14.566±0.152 0.326±0.005 >300 0.455±0.394 9.194±0.343 90.819±0.723

F8 15.733±0.057 0.393±0.005 >300 0.635±0.002 6.524±0.96 90.612±0.661
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released in 30 min) among all. A rapid drug release from the formulations was observed due to the presence of 
hydrophilic polymer prepared without HNTs.48 The formulations (F3 and F4) containing drug and HNTs in the same 
amount (1:1) showed about 60% drug release in 8 h (480 min). The nanocomposite films (F5 and F6) containing drug and 
HNTs in a ratio of 2:1 showed about 80% drug release in the first 4 h (240 min). About 50% of the drug was released 
from the transdermal films (F7 and F8) containing drug and HNTs in a ratio of 1:2 within 8 h (480 min). However, 
a desired controlled release profile of propranolol HCl was obtained by using drug and HNTs in a ratio of 2:1 (F6). In 
a study conducted by Levis and Deasy, a similar sustained released effect of propranolol HCl was observed from the 
halloysite nanotubes, and about 80% of the drug was released in 8 h.49

These release profiles indicated that with an increment of HNTs ratio in the transdermal films, the drug release rate 
was retarded. Levis and Deasy in 2003 reported that the release rate of propranolol HCl was observed to decrease by 
loading into halloysite and increasing the concentration of halloysite in the formulation. A similar inverse relationship of 
HNTs’ concentration with drug release was also reported by many researchers.8,50 The decrease in drug release rate in the 
presence of HNTs is considered due to loading of drug into the material lumen or strong ion interaction between drug and 
HNTs as well as improvement in mechanical properties and enhancement in the thermal stability of the polymer 
composite.8,15,51

The dissolution data of the formulations were subjected to different release kinetic models, including zero order, first 
order, Higuchi, and Korsmeyer–Peppas, and the results are presented in Table 5. Korsmeyer–Peppas model was best 
fitted in the dissolution data with an r2 value of 0.9655 to 0.9835. The n values of the formulations were less than 0.5, 
representing Fickian diffusion as the drug release mechanism.52 The same model was observed fitted by Abdouss et al, 
where HNT-methionine nanocomposite was formulated for the controlled delivery of phenytoin, and by Mohebali et al, 
where HNT/PVA nanocomposite was developed for the controlled delivery of minocycline.47,53 The Korsmeyer–Peppas 
release constant (KKP) value was highest in formulations without HNTs (F1 and F2). The KKP was found to decrease 
proportionally with an increase in the amount of HNTs.54 The dissolution profile of optimized formulation (F6) after the 
Korsmeyer–Peppas model (r2 = 0.979) was found to best fit in the first-order release model (r2 = 0.979), indicating 
concentration-dependent drug release.

Figure 2 The in vitro release profile of propranolol HCl transdermal nanocomposite film formulations (F1–F8).
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In vitro Permeation Study
The permeation profile of all the transdermal film formulations is presented in Figure 3 along with permeation parameters 
as shown in Table 6. The amount of permeation per unit area was found to be improved with the incorporation of HNT. 
However, the flux of the drug from the formulations was found to be inversely proportional to the amount of HNTs in the 
formulation. Furthermore, the rate of permeation was observed improved in the formulations (F2, F4, F6, F8) containing 
menthol with a flux of 56.819 µg/cm2hr, 103.225 µg/cm2hr, 145.812 µg/cm2hr, and 87.724 µg/cm2hr as compared to the 
formulations (F1, F3, F5, F7) without menthol with a flux of 33.021 µg/cm2hr, 85.763 µg/cm2hr, 128.080 µg/cm2hr and 
78.484 µg/cm2hr respectively. It has been reported that menthol in a concentration of 1% w/v is a suitable permeation 
enhancer. It is believed that terpenes such as menthol form permeable boundary regions that enhance the drug permeation 
rate from the formulation. In one of the reported studies, Jeevan et al observed a flux of 122 µg/cm2hr.55

Table 5 Mathematical Modeling and Comparison of Propranolol HCl Release Profile from the Formulations

Mathematical Models Parameters F1 F2 F3 F4 F5 F6 F7 F8

Zero-order Ko (conc.mint.−1) 0.282 0.276 0.187 0.189 0.246 0.249 0.159 0.157

r2 0.4588 0.3583 0.6328 0.6963 0.7235 0.7261 0.6648 0.6660

First-order K1 (mint.−1) 0.125 0.181 0.005 0.005 0.026 0.026 0.003 0.003

r2 0.9883 0.9835 0.7724 0.8276 0.9631 0.9707 0.7524 0.7531

Higuchi KH (mint.−1/2) 5.968 5.916 3.871 3.866 5.003 5.056 3.263 3.234

r2 0.6317 0.5241 0.8013 0.8526 0.8719 0.8751 0.8258 0.8277

Korsmeyer–Peppas KKP (mint.−n) 61.299 73.288 26.090 22.900 27.767 26.968 21.538 20.924

n 0.069 0.032 0.150 0.174 0.186 0.193 0.153 0.157

r2 0.9713 0.9835 0.9655 0.9786 0.9821 0.9790 0.9792 0.9767

Figure 3 The in vitro permeation profile of propranolol HCl transdermal nanocomposite film formulations (F1–F8).
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The permeation rate of propranolol HCl was observed slowest from the film formulation (F1) without HNTs. The 
formulation F6 containing drug and HNTs in a ratio of 2:1 showed the highest amount (about 463 µg/cm2) of propranolol 
HCl permeated per unit square within 12 hours. In a study by Krishna and Pandit, about 1248 µg/cm2 propranolol was 
permeated in 24 hours from the optimized patch of size 2.5 cm2.56 An increase in the amount of drug permeation with 
a reduction in the ratio of HNTs can be related to a faster dissolution rate of the drug. This results in a more significant 
amount of drug available at the site of permeation and that too in the presence of menthol. It has been revealed that the 
nanotubes also enhance the permeation rate of the drug molecules. This might be due to the nano-size structure of the 
HNTs, enhancing the penetration power of the drug molecules across the barrier membrane.7,57 Similarly, the highest lag 
time was observed from the formulation (F1) without HNTs or the permeation enhancer, while the lag time was found 
reduced in the presence of the permeation enhancer or HNTs. Whereas, the lowest lag time was observed from the 
formulation F6, 0.336 h among the all. Similarly, a lag time of 0.50 h was observed by Jeevan et al. They reported 
a decrease in the lag time of propranolol in the presence of menthol.55

Based on the above results, film formulation, F6, was selected as the optimized formulation. It was therefore further 
evaluated for skin irritation, chemical interaction, surface morphology and stability.

Drug Content
The content uniformity test results of all the transdermal formulations are given in Table 4. The results indicated that the 
mean amount of drug in all formulations was within a limit of 90–100%. The propranolol HCl content in the F6 was 
found to be 94.60% ± 1.74% (see Figure 4), meeting the official compendia limit (90.0–110.0%) for the drug content.58

Fourier Transform Infrared (FTIR) Spectroscopy
The FTIR spectra of the film (containing the propranolol HCl, HNTs, PVA, and menthol) and pure propranolol HCl were 
recorded at 4000 to 400 cm−1 scanning range. The spectra results were then compared (see Figure 5 and Figure S1). The 
spectra of propranolol HCl showed naphthalene stretch at 796 cm−1, O–CH bond stretch at 1240 cm−1, C=C stretching at 
1579 cm−1, C–H bending at 2983 cm−1 and O–H bending vibrations at 3691 cm−1.59 The equivalent FTIR peaks in the 
formulated film were at 796 cm−1, 1240 cm−1, 1579 cm−1, 2921 cm−1 and 3676 cm−1. A slight change in bending 
vibration at 2983 cm−1 and 3691 cm−1 was observed. It might be due to the C–H bond of PVA and O–H group present at 
HNTs’ surface.51,60 It can be concluded that there is no chemical interaction between the film components.

Table 6 Permeation Parameters of Propranolol HCl Transdermal Nanocomposites

Formulations Flux (J) Permeability 
Coefficient (PC)

Lag Time  
(tlag)

Diffusion 
Coefficient (D)

µg/cm2hr cm/hr hr cm2/hr

F1 33.021 0.050 0.644 2.329E-06

F2 56.819 0.086 0.386 3.88E-06

F3 85.763 0.129 0.341 4.39E-06

F4 103.225 0.156 0.336 4.45E-06

F5 128.080 0.194 0.339 4.42E-06

F6 145.812 0.220 0.336 4.45E-06

F7 78.484 0.118 0.353 4.24E-06

F8 87.724 0.132 0.371 4.04E-06
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Differential Scanning Calorimetry (DSC)
The DSC plots of propranolol HCl, PVA, HNT, PVA/HNT nanocomposite and the optimized formulation F6 are 
presented in Figure 6 and Figure S2). Halloysite nanotubes have a very stable structure, and apart from the removal 

Figure 4 HPLC-UV chromatogram of propranolol HCl (A and B) and transdermal nanocomposite formulation F6 (C and D).

Figure 5 FTIR spectrum of the propranolol HCl, HNT’s, PVA, methanol and transdermal nanocomposite formulation F6.
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of surface and intercalated moisture, which is evident by a broad endothermic event from ~45–140 °C, there is no other 
thermal phenomenon observed.61 Since PVA is a partially crystalline polymer with varying levels of hydrogen bonding 
with the surface –OH groups of nanotubes, the characteristic endothermic phenomena (~173 °C) were found to shift to 
higher temperature values in the HNT-PVA composites.15 In the case of optimized formulation (F6), however, the sharp 
endothermic drop at ~44 °C is attributed to the melting of menthol in a small amount in the formulation (permeation 
enhancer 1%) along with its thermal oxidation at around ~138–150 °C.62 This thermal event in the F6 (optimized 
formulation) is fused with the melting of the propranolol HCl in the formulation, which would be present in the 
amorphous form as reported for various drugs loaded onto HNTs and propranolol HCl adsorption on clays.63–65 

Moreover, the melting of the drug was followed by volatilization at around ~179 °C.63 As confirmed by the FTIR and 
HPLC analysis, the drug was found chemically stable in the films. The composite’s high mechanical and thermal stability 
is largely responsible for slow release of the drug for the formulation.23,66

Figure 6 Thermograms, representing thermal transitions, of (A) propranolol HCl (B) HNT (C) PVA (D) PVA/HNT nanocomposite film and (E) optimized formulation F6.

Figure 7 SEM image of PVA film (A) without HNTs and (B) with HNTs.
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Scanning Electron Microscopy (SEM)
The surface morphology of the transdermal PVA film with or without the HNTs was analyzed on SEM. The presence of 
HNTs increased the roughness of the film comparable with PVA without HNT (see Figure 7). The PVA film can be seen 
properly covered with the HNTs. The good bonding between PVA and HNTs enhances the mechanical stability of the 
composite. The nanotubes wrapped with the polymer also increase the stability of the film.66 The absence of agglomera-
tion or fractured surfaces on the film indicates a uniform distribution of the film components.

Skin Irritation Study
The transdermal films were applied to the mice and evaluated for skin irritation such as edema or erythema. A moderate 
erythema reaction was observed in control group mice (Figure 8). There was almost no skin irritation observed in the test 
group mice compared to the control group, and the films were found safe. The transdermal delivery systems containing 
propranolol HCl were observed non-irritant to the skin and suggested to be safe in other studies also.67,68

In silico Modeling and Simulation
The systemic absorption and disposition prediction for optimized propranolol HCl formulation (F6) was carried out using 
the TCAT® model. Contemplating the oral administration of 80 mg propranolol and to simulate the systemic disposition 
into individuals with an average weight of 75 kg as a comparison parameter, the three-compartmental model was selected 
with the help of the PKPlus® module.69 Different formulations, pharmacokinetics, and physiological parameters are 
illustrated in Table 2. The mean pharmacokinetic parametric values (Table 7) for F6 were calculated as 32.113 ng/mL 
(Cmax), 16.58 h (Tmax), 942.34 ng/mL×h (AUCt) and 1102.9 ng/mL×h (AUCinf). After selecting different application areas 
and dosage strength, the model integrated pharmacokinetic parameters and TCAT® model for F6 using values of a dose 
of 20 mg and 9 cm2 as the application surface area.

The predicted plasma concentration profiles after 80 mg oral and 20 mg transdermal administration of propranolol 
HCl are shown in Figure 9A. A similarity between bioavailability profiles can be readily observed from both the curves 
though having different dosage strengths. This may be explained by the fact that propranolol HCl undergoes more than 

Figure 8 Irritation study on mice. (A) animals in the animal cage (B) animal skin shaved (C) film applied on the shaved skin (D) the skin after removal of the patch (E) 
control animal after treatment with formalin, irritation or redness on the skin can be seen.

Table 7 Predicted Values of Pharmacokinetic Parameters for Transdermal 
Nanocomposite Film of Propranolol HCl

Parameter Oral (80 mg) TD (20 mg) TD (20 mg × 4)

Cmax (ng/mL) 36.653 32.113 51.959

Tmax (h) 6.014 16.58 84.68
AUC 0 → inf (ng*hr/mL) 434.66 1102.9 4642.5

AUC 0 → t (ng*hr/mL) 405.33 942.34 3604.6
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75% first-pass metabolism via the oral route.18 A cumulative increase in the plasma concentration of propranolol 
administered by a transdermal route was a bit slower when compared with the oral route. However, it was found to be 
equal after 9 hours of transdermal application. However, continuous therapy with multiple dosing suggests that the 
plasma profile is maintained in the therapeutic window (see Figure 9B) and the plasma levels are retained above the 
minimum therapeutic concentration (20 ng/mL).70

This 20 mg dose of propranolol HCl, which is four-fold lesser than the oral route would suggest that the transdermal 
system embedded with halloysite nanotubes would be implicit in promoting drug diffusion across the skin compartments 

Figure 9 Plasma concentration–time profiles of (A) propranolol HCl oral 80 mg tablet formulation and simulated 20 mg transdermal nanocomposite propranolol film 
formulation F6 (B) propranolol HCl oral 80 mg tablet formulation and simulation of multiple doses (4 doses) of F6 using GastroplusTM PBPK modeling software.
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and effectively delivering therapeutic concentrations of propranolol HCl. This is an important feature of the transdermal 
route as the release kinetics, and cutaneous absorption can provide controlled plasma drug concentrations.71 Based on the 
results obtained from in silico pharmacokinetic modeling, it is observed that the viability of halloysite nanotubes in the 
transdermal route as an alternative to oral administration for hypertension therapy diminishes hepatic first-pass load and 
possible adverse effects.

Stability Study
The stability study of the optimized transdermal film formulation (F6) was carried out at the room and at accelerated 
temperature. The physical characteristics, drug content, release, and permeation of the propranolol HCl were determined 
at different time intervals during the study, as shown in Table 8. The nanocomposite was observed to be satisfied 
physically, and no substantial change in the physical appearance was observed. The content of propranolol HCl was 
found to be 96.13 ± 0.42% at room temperature and 95.56 ± 0.51% at accelerated temperature. Although no significant 
difference in the drug content was observed, a slight decrease at higher temperatures might be due to the effect of certain 
environmental factors such as heat, moisture, and oxygen that could influence the stability of the drug and reduce the 
shelf life of the formulation.72 Similarly, the permeation of the drug was observed to decrease after prolonged storage, 
especially at accelerated temperature. The permeation parameters were calculated, and it was revealed that the flux rate 
decreased (140.878 µg/cm2h and 138.299 µg/cm2h) while the lag time increased (0.363 hr and 0.370 hr) after 3 months 
of storage. The loss of permeation enhancers after prolonged storage might be responsible for the reduction in permeation 
of the drug substance through the barrier membrane.72 The shelf life of propranolol HCl transdermal nanocomposite 
films was calculated and found to be 35.46 months at 28–30 °C and 19.66 months at 40–45 °C. Therefore, it can be 
proposed that the transdermal formulation should be stored at room temperature. The same has also been suggested for 
the propranolol HCl oral formulation.73

Conclusion
Halloysite nanotubes-based transdermal nanocomposite films of propranolol HCl with different ratios of HNTs were 
formulated and evaluated. The nanocomposite films have a satisfactory appearance and mechanical stability, insignificant 
variation in weight and thickness and sufficient drug content. It was revealed that the drug release from the formulation 
was controlled with the increase in HNTs, and the permeation was enhanced. The menthol 1% concentration also 
enhanced the permeation of propranolol HCl through the barrier membrane. The drug release was found following the 
Korsmeyer–Peppas model with an n value of less than 0.5, representing Fickian diffusion. The formulation F6, which 

Table 8 Drug Content, Dissolution and Permeation Performance of Transdermal Nanocomposite Kept at 
Room and Accelerated Temperature for 3 Months

Period Room Temperature (25°C 
± 2°C and 60% RH ± 5%)

Accelerated Temperature 
(40°C ± 2°C and 75% RH ± 5%)

Drug content (%) 1 Week 96.371±0.220 96.294±0.605

Dissolution test (%) 79.829±0.780 79.191±2.331

Permeation test (µg/cm2) 459.380±9.170 465.055±7.919

Drug content (%) 1.5 Months 96.242±0.311 95.852±0.433

Dissolution test (%) 78.280±0.245 81.708±0.583

Permeation test (µg/cm2) 462.308±10.019 455.843±6.727

Drug content (%) 3 Months 96.138±0.428 95.567±0.518

Dissolution test (%) 80.289±1.164 79.739±1.036

Permeation test (µg/cm2) 451.581±9.161 441.321±2.073
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contained the 2:1 ratio of drug to HNTs, was selected as optimized due to a suitable release and permeation profile. The 
optimized formulation was considered safe and non-irritant to the skin. Moreover, the formulation was found mechani-
cally stable, while the components were chemically non-reacting to the drug product, and the surface morphology 
revealed uniform distribution of HNTs in the composite. A maintained therapeutic window was also predicted from the in 
silico model. Furthermore, the formulation was found more stable at room temperature. Based on the data obtained, the 
HNTs could be a potential candidate for developing a transdermal drug delivery system, and the PVA/HNTs nanocom-
posite can be used for the design of a cost-effective and commercially viable transdermal drug delivery system with 
fewer regulatory challenges.
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