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Background: Mutations in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM). In particular, m.
A3243G is the most common T2DM-related mtDNA mutation in many families worldwide. However, the clinical features and
pathophysiology of m.A3243G-induced T2DM are largely undefined.
Methods: Two pedigrees with maternally inherited T2DM were underwent clinical, molecular and biochemical assessments. The
mtDNA genes were PCR amplified and sequenced. Mitochondrial adenosine triphosphate (ATP) and reactive oxygen species (ROS)
were measured in polymononuclear leukocytes derived from three patients with both the m.A3243G and m.T14502C mutations, three
patients with only the m.A3243G mutation and three controls without these mutations. Moreover, GJB2, GJB3 and GJB6 mutations
were screened by PCR-Sanger sequencing.
Results: Members of the two pedigrees manifestated variable clinical phenotypes including diabetes and hearing and vision
impairments. The age at onset of T2DM varied from 31 to 66 years, with an average of 41 years. Mutational analysis of mitochondrial
genomes indicated the presence of the m.A3243G mutation in both pedigrees. Matrilineal relatives in one of the pedigrees harbored the
coexisting of m.A3243G and m.T14502C mutations. Remarkably, the m.T14502C mutation, which causes the substitution of
a conserved isoleucine for valine at position 58 in ND6 mRNA, may affect the mitochondrial respiratory chain functions.
Biochemical analysis revealed that cell lines bearing both the m.A3243G and m.T14502C mutations exhibited greater reductions in
ATP levels and increased ROS production compared with those carrying only the m.A3243G mutation. However, we did not find any
mutations in the GJB2, GJB3 and GJB6 genes.
Conclusion: Our study indicated that mitochondrial diabetes is associated with the tRNALeu(UUR) A3243G and ND6 T14502C mutations.
Keywords: T2DM, mt-tRNA, ND6, m.A3243G, m.T14502C, mutations

Introduction
Mitochondria are present in most eukaryotic cells and are required for a variety of key deeply involved in various
important cell functions, especially energy production in the form of adenosine triphosphate (ATP) through oxidative
phosphorylation (OXPHOS).1 Mitochondria carry their own circular DNA, which exists in multiple copies per cell. The
inheritance of this DNA is only maternal.2 Moreover, because of the lack of protection of histones and a poor DNA repair
system, mtDNA has a higher mutation rate than nuclear DNA (nDNA).3 Mitochondrial diseases are a group of disorders
characterized by genetic or biochemical abnormalities of the OXPHOS.

Mitochondrial diabetes, defined as a mitochondrial disease with chronic hyperglycemia due to inappropriate secretion of
insulin, insulin resistance (IR) or combined defects, remains a big challenge for clinicians.4 It is a rare monogenic form of
diabetes with a frequency of 1% and classified into type l and type 2.5–7 Accumulating evidences shows that deletions,8 insertions
or point mutations9 of mtDNA are associated with diabetes mellitus (DM). Human biopsies have shown that mitochondrial
dysfunction caused bymtDNAmutations affects insulin-resistant metabolic tissues, includingmuscle, liver, and fat.10 It has been
proposed that an inefficient metabolism caused by mitochondrial dysfunction may inhibit insulin-stimulated glucose uptake or
reduce glucose-stimulated insulin secretion from pancreatic-β cells, thereby leading to the development of T2DM.11,12
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In most cases, mitochondrial diabetes is associated with m.A3243Gmutation, which was located in mt-tRNALeu(UUR).13 The
phenotypic expression of thismutation is quite variable, ranging frommild to severe clinical phenotypes. Notably, them.A3243G
mutation is an important cause of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS),14

aswell asmyoclonic epilepsy and ragged-red fiber disease (MERRF).15 Furthermore, themtDNAgenetic backgroundmay affect
the phenotypic expression of the m.A3243G mutation.16,17 However, the molecular pathogenesis is still unclear.

Human mtDNA encodes 13 proteins that are essential for OXPHOS. The only protein encoded on the mtDNA light-
strand, mitochondrial NADH-dehydrogenase 6 (ND6), plays a critical role in the proper assembly of complex I.18

Mutation of the ND6 gene causes severe mitochondrial respiratory dysfunction and several mitochondrial genetic
diseases.19 A recent study by Cao et al20 demonstrated that hypermethylation of hepatic mitochondrial ND6 provokes
systemic IR that is linked to T2DM, emphasizing the importance of the ND6 gene in diabetes.

In this study, we reported here the molecular features of two Han Chinese pedigrees, DM1 and DM2 with maternally-
transmitted T2DM, which exhibit variable phenotypes including IR and hearing and vision impairments. Sequence analysis of
the whole mitochondrial genomes indicated the presence of the m.A3243G mutation in both families, as well as 56 mtDNA
variants. The m.T14502C mutation alters isoleucine to valine at amino acid position 58 in ND6, and presented in matrilineal
relatives of the DM2 pedigree but not in unaffected family members and 270 controls suggesting that this mutation may be
a potential modifying factor for T2DM predisposition. To further explore the synergistic role of them.T14502Cmutation inm.
A3243G-induced diabetes, we analyzed the mitochondrial functions in polymononuclear leukocytes (PMNs) derived from
three patients with both the m.A3243G and m.T14502C mutations, three patients carrying only the m.A3243G mutation, and
three controls without these mtDNA mutations. Additionally, mutations in connexins genes have been suggested to be
common etiologic factors of hereditary deafness.21 In particular, the majority of more than 300 reportedGJB2 gene mutations
account for about 50% of all cases of autosomal recessive non-syndromic hereditary deafness.22 While GJB3 has two exons
and 810 nucleotides, encoding a protein of 270 amino acids with a molecular mass of 30.8 kDa.23 Furthermore, GJB6 gene
mutations also cause hereditary deafness, ranging from moderate to profound.24 To examine the roles of these genes in
deafness expression, we performed PCR-Sanger sequencing to detect mutations in GJB2, GJB3 and GJB6.

Materials and Methods
Families and Subjects
We recruited two Han Chinese families with T2DM through Hangzhou First People’s Hospital (Figure 1). Additionally,
270 genetically unrelated healthy subjects including 120 males and 150 females, aged from 30 to 51 years, were recruited
as controls. The protocol used in this investigation was in accordance with the principles expressed in the 1975
Declaration of Helsinki, which was revised in 2008. The Ethics Committee of Hangzhou First People’s Hospital

Figure 1 Two Han Chinese pedigrees with maternally transmitted T2DM, arrows indicate the probands.
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approved this study (No. 2021-171-01). All participants, including seven matrilineal relatives in these pedigrees (DM1:
II-1, II-10 and III-7; DM2: II-2, II-4, III-4 and III-6) and controls, provided informed consent to participate in this study.
The written informed consent for participating in this study, as well as informed consent to have their case details
published were obtained from all subjects enrolled in this study.

The diagnosis of DM was based on the guidelines of the American Diabetes Association,25 which was as follows: (1)
fasting plasma glucose ≥ 7.0mmol/dL; (2) A 2-h plasma glucose level of 200mg/dL (11.1mmol/L) or higher during a 75-
g oral glucose tolerance test (OGTT); and (3) hemoglobin A1c (HbA1c) ≥ 6.5%.

Patients Assessment
Detailed demographics, vital parameters, medical and family histories were recorded for each participant through
personal interviews. Subjects of these pedigrees underwent a physical examination and laboratory assessment: body
mass index (BMI) was calculated as the body weight (kg) divided by the square of the height (m2).26 Obesity was
defined using the BMI for Chinese adults: normal = 18.5–24 kg/m2, overweight = 24–28 kg/m2 and obese ≥
28 kg/m2.

Blood samples were collected in the morning between 07:00 and 10:00 after an overnight fast. The level of HbA1c
was detected by high-pressure liquid chromatography (Variant II; Bio-Rad, CA, USA). Moreover, serum glucose levels
were measured using enzymatic techniques and a Dax72 auto-analyzer (Bayer Diagnostic, New York, USA), while
plasma insulin (0h) was analyzed by chemiluminescent immunometric assay (Immulite 2000 System; Siemens Health
Diagnostics, USA). The IR was estimated using the homeostasis model assessment of IR (HOMA-IR) index, the
HOMA-IR = (fasting insulin [μU/mL] × fasting glucose [mmol/L])/22.5. Notably, a HOMA-IR ≥ 2.69 was regarded
as IR.27

Audiometric evaluations and otological examinations included otoscopy, pure tone audiometry (PTA), acoustic
immittance measurement, auditory brainstem responses, and distortion product otoacoustic emissions (DPOAE) were
evaluated. The PTA was calculated as the average of the thresholds measured at 0.5, 1.0, 2.0, 4.0, and 8.0 kHz. The
severity of hearing impairment was defined as mild (21–40 dB), moderate (41–70 dB), severe (71–90 dB), and profound
(>90 dB).28

Visual acuity was tested separately for each eye without refraction at 4m using Early Treatment Diabetic Retinopathy
Tumbling-E study charts (Precision Vision, La Salle, IL, USA) in a well-lit, indoor area.29 The degrees of visual
impairment were classified on the basis of visual acuity as follows: normal (>0.3), mild (0.1–0.3), moderate (0.05–0.1),
severe (0.02–0.05), and profound (<0.02).30

mtDNA Analysis
Genomic DNA was isolated from the peripheral blood using a DNA Isolation Kit (QIAGEN, Germany). The entire
mitochondrial genomes of matrilineal relatives from the two pedigrees (DM1: II-1, II-10 and III-7; DM2: II-2, II-4, III-4
and III-6) were PCR amplified using 24 primers as described previously.31 The PCR products were purified and
subsequently sequenced by ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). The sequence data were then
compared with the revised Cambridge sequence (rCRS, GenBank accession number: NC_012920.1) to detect the
mutations or variants.32 Furthermore, the allele frequencies of the m.A3243G and m.T14502C mutations in 270 controls
were examined by PCR-Sanger sequencing, using the protocol as described previously.31

Classification of mtDNA Haplogroups
Using the nomenclature of mitochondrial haplogroups,33 we assigned the entire mtDNA sequences of the probands
(DM1: III-7; DM2: II-2) to a certain mitochondrial haplogroup.

Phylogenetic Conservation Analysis
We compared human mtDNA nucleotide variation with 16 species to determine the conservation index (CI).34 A CI ≥
75% was regarded as having functional potential.35
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Cell Lines and Culture Conditions
The PMNs from three patients (DM2: II-2, II-4 and III-4) with both the m.A3243G and m.T14502C mutations, three
subjects (DM1: II-1, II-10 and III-7) with only the m.A3243G mutation, and three controls (DM1: III-1, III-2 and III-3)
without these mutations were first isolated from blood samples and then incubated for 45 min with dextran (3%). The
supernatant was centrifuged at 250×g for 25 min over Ficoll-Hypaque. Lysis buffer was added to the pellet and
centrifuged at room temperature (100g, 5 min), following the protocol as described previously.36 All cells were cultured
in RPMI-1640 medium (Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS), and incubated at
37°C in an atmosphere of 5% CO2.

Analysis of ATP Production
The levels of ATP in the three subjects with both the m.A3243G and m.T14502C mutations (DM2: II-2, II-4 and III-4),
three patients with only the m.A3243G mutation (DM1: II-1, II-10 and III-7) and three healthy individuals (DM1: III-1,
III-2 and III-3) without these mutations were determined by CellTiter-Glo® Luminescent cell viability assay (Promega,
G7572) in accordance with the protocol provided by the manufacturer’s protocol.37 Briefly, the assay buffer and substrate
were equilibrated to room temperature, and the buffer was then transferred and gently mixed with the substrate to obtain
a homogeneous solution. After a 30 min equilibration of the cell plate to room temperature, 100 µL of the assay reagent
was added into each well with 2×105 cells and the contents were mixed for 2 min on an orbital shaker to induce cell lysis.
After 10 min incubation at room temperature, the luminescence was read on a microplate reader.

ROS Analysis
To analyze the ROS level, a total of 2×106 cells were first incubated with the fluorescent probe 2,7-dichlorodihydro-
fluorescein for 30 min, after which the cells were analyzed using a fluorescence plate reader, as described previously.38

Mutational Analysis of the GJB2, GJB3, and GJB6 Genes
Mutations in GJB2, GJB3, and GJB6 are the important causes of hearing loss.39 To examine the contributions of these genes to
deafness expression, we conducted a mutational screening of GJB2, GJB3, and GJB6 in matrilineal relatives of these pedigrees.
The primer sequences for the GJB2 gene were: forward-5’-TATGACACTCCCCAGCACAG-3’ and reverse-5’-
GGGCAATGCTTAAACTGGC-3’. While the primers for genetic amplification of the GJB3 were: forward-5’-
GTCACCTATTCATTCATACGATGG-3’ and reverse-5’-TCACTCAGCCCCTGTAGGAC-3’. The primer sequences for
amplification of the GJB6 were: forward-5’-CCTTAAAATAAAGTTGGCTTCAG-3’, reverse-5’-GGAACTTTCAGGT
TGGTATTG-3’. After PCR amplification and direct Sanger sequencing, the data were compared with the wild-type sequences
ofGJB2, GJB3, andGJB6 (GenBank accessible numbers:M86849, AF052692 andNG_008323, respectively) to detect variants.

Statistical Analysis
Student’s t-test was used to assess the statistical significance between unpaired samples. All analyses were performed
using SPSS software version 20.0. We regarded the p < 0.05 as statistically significant.

Results
Clinical Presentations
We recruited two Chinese families (DM1 and DM2) with maternally-transmitted T2DM from Hangzhou First People’s
Hospital (Figure 1). A comprehensive history was obtained and physical examinations were performed to identify any
clinical abnormalities, and genetic factors related to diabetes in the members of these two families. In the DM1 family,
the proband (III-7) was a 38-year-old woman who came from Hangzhou city of Zhejiang Province; she suffered from
T2DM when she was 36. She also exhibited IR and obesity (HOMA-IR=6.57, BMI=27.0 kg/m2). Moreover, the family
history suggested that other matrilineal relatives (II-1 and II-10) were T2DM carriers. In particular, the subject II-10 had
moderate hearing loss (55 dB at right ear and 30 dB at left ear), mild vision loss (0.2 in the right eye and 0.1 in the left
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eye), and IR. These matrilineal relatives showed no other clinical abnormalities, such as coronary heart disease or cancer
(Table 1).

In the DM2 family, the proband (II-2) was a 68-year-old woman who went to Hangzhou First People’s Hospital for
regular treatment of DM. As shown in Table 1, laboratory analysis suggested that she suffered from T2DM, profound
hearing loss (90 dB at right ear and 100 dB at left ear), and vision impairment (0.1 for both eyes). Genetic counseling
revealed that the matrilineal relatives (II-4, III-4 and III-6) were also diabetes carriers. The clinical and biochemical
features of the two families are listed in Table 1.

Analysis of mtDNA Mutations
The maternal transmission observed in these families suggested that mitochondrial dysfunction may be the molecular
basis of their T2DM. Compared with the rCRS,32 PCR-Sanger sequencing identified 57 mutations in mitochondrial
genomes from matrilineal relatives (Table 2), which belonged to the mitochondrial haplogroups M7c and M10a,
respectively.33 Among these, there were 13 variants in the D-loop, four variants in 12S rRNA, two variants in 16S
rRNA, and one mutation in tRNALeu(UUR), together with a 9-bp common deletion (CCCCCTCTA). The other mutations
were mainly localized in OXPHOS-related genes. In particular, nine missense mutations were identified, namely ND2
G4491A (Val to Ile), A8 C8414T (Leu to Phe), A6 G8584A (Ala to Thr), A8701G (Thr to Ala) and A8860G (Thr to Ala),
ND6 T14256C (Ile to Val) and T14502C (Ile to Val), and Cytb C14766T (Thr to Ile) and A15326G (Thr to Ala).

To identify putative deleterious mtDNA mutations, these variants were further evaluated using the following
criteria: (1) missense mutations; (2) CI ≥ 75%, proposed by Ruiz-Pesini and Wallace,40 especially the nucleotide
sequences compared with mouse,41 bovine42 and Xenopus laevis sequences.43 (3) absent in 270 control subjects and
(4) potential structural and functional alterations. We found that, except for the m.A3243G and m.T14502C
mutations (Figure 2), the others were not well conserved and may not play active roles in T2DM progression.
Furthermore, the m.A3243G and m.T14502C mutations were not detected in 270 control subjects, emphasizing their
pathogenic roles in T2DM.

Intriguingly, as shown in Table 1, patients carrying both the m.A3243G and m.T14502C mutations exhibited more
severe clinical phenotypes (IR, high myopia and profound hearing loss) than the patients with only the m.A3243G
mutation, suggesting that the m.T14502C mutation may increase the clinical expression of m.A3243G-induced diabetes.

Reductions in Mitochondrial ATP Production
As shown in Figure 3, the levels of ATP production in the mutant cells bearing only m.A3243G, and both the m.A3243G
and m.T14502C mutations were 78.2% and 60.6% of the average values of control cells, respectively (p = 0.0037 and p =
0.0002, respectively). Thus, it seemed that patients with both mtDNA mutations exhibited much lower levels of ATP
production than patients with only one mtDNA mutation.

Increased of ROS Production
The levels of ROS generation in the mutant cells carrying only the m.A3243G mutation and both the m.A3243G and m.
T14502C mutations were 129.6% and 156.2% of the mean values measured in the control cell lines, respectively (p =
0.0011 and p < 0.0001, respectively). Thus, patients with both mtDNA mutations had much higher ROS levels than
patients with only m.A3243G mutation (Figure 4).

Analysis of Nuclear Gene Mutations
To examine the contributions of nuclear genes to the expression of deafness, we performed mutational screening of the
exons of the GJB2, GJB3, and GJB6 genes in the matrilineal relatives of the two families. However, no mutations were
found.

Discussion
Herein, we reported the clinical, genetic, molecular, and biochemical characterizations of two families with maternally-
transmitted T2DM. The age-at-onset of DM in the affected matrilineal relatives of the two families varied from 36 to 62

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15 https://doi.org/10.2147/DMSO.S363978

DovePress
1691

Dovepress Ding et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 Clinical and Molecular Characterizations of Some Members in Two Chinese Pedigrees with T2DM

Subjects Gender BMI
(kg/
m2)

Age at
Onset
(Year)

Age
at
Test
(Year)

Fasting
Glucose
(mmol/
L)

Fasting
Insulin
(μU/
mL)

HOMA-
IR

HbA1c
(%)

Ketoacidosis Visual
Acuity
Right/
Left
Eye

Level of
Vision
Loss

PTA
(dB)
Right/
Left
Ear

Level of
Hearing
Loss

Clinical
Presentations

Functional
mtDNA
Mutations

DM1: II-1 Female 25.5 51 55 16.3 13.2 9.56 7.6 No 0.5/0.4 Normal 24/24 Normal T2DM; IR m.A3243G

DM1: II-10 Male 26.4 58 61 15.0 11.1 7.4 6.9 No 0.2/0.1 Mild 55/30 Moderate T2DM; IR;

myopia; hearing

loss

m.A3243G

DM1: III-7 Female 27.0 36 38 8.80 16.8 6.57 7.4 Yes 0.4/0.3 Normal 20/25 Normal T2DM; IR m.A3243G

DM2: II-2 Male 23.5 60 68 8.14 6.9 2.49 7.2 No 0.1/0.1 Moderate 90/100 Profound T2DM; myopia;

hearing loss

m.A3243G

and m.

T14502C

DM2: II-4 Male 27.8 62 70 7.95 17.9 6.32 7.0 No 0.05/

0.05

Severe 90/90 Profound T2DM; IR;

myopia; hearing

loss

m.A3243G

and m.

T14502C

DM2: III-4 Male 28.5 39 39 7.21 11.0 3.52 6.8 Yes 0.2/0.2 Mild 60/70 Severe T2DM; IR;

myopia; hearing

loss

m.A3243G

and m.

T14502C

DM2: III-6 Male 26.0 40 41 7.33 10.5 3.42 6.6 Yes 0.1/0.2 Moderate 85/80 Severe T2DM; IR;

myopia; hearing

loss

m.A3243G

and m.

T14502C

DM1: III-1 Female 21.3 / 30 5.5 6.6 1.61 5.0 No 0.5/0.5 Normal 20/16 Normal Normal None

DM1: III-2 Female 22.8 / 28 5.2 5.4 1.25 5.3 No 0.6/0.8 Normal 17/21 Normal Normal None

DM1: III-3 Male 23.5 / 29 5.0 7.0 1.55 5.7 No 0.6/0.6 Normal 15/15 Normal Normal None

Abbreviations: BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance; PTA, pure-tone audiometry; dB, decibel; T2DM, type 2 diabetes mellitus; IR, insulin resistance.
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Table 2 mtDNA Variants in Two Pedigrees with T2DM

Gene Position Sequence
Variant

Amino Acid
Change

Conservation
(H/B/M/X)a

DM1 DM2 rCRSb Previously
Reportedc

D-loop 73 A to G G G A Yes

146 T to C C T Yes

195 T to C C C T Yes

310 T to CTC CTC T Yes

524 delC delC C Yes

16,051 A to G G G A Yes

16,111 C to T T C Yes

16,182 A to C C A Yes

16,189 T to C C C T Yes

16,274 G to A A A G Yes

16,311 T to C C T Yes

16,519 T to C C C T Yes

16,569 T to C C T Yes

12S rRNA 709 G to A G/G/A/- A G Yes

750 A to G A/A/A/- G G A Yes

1041 T to C A/T/T/T C T Yes

1438 A to G A/A/A/G G G A Yes

16S rRNA 2706 A to G A/G/A/A G G A Yes

3107 delN delN delN N Yes

tRNALeu(UUR) 3243 A to G A/A/A/A G G A Yes

ND1 3483 G to A A G Yes

3970 C to T T C Yes

4071 C to T T C Yes

4161 C to T T C Yes

ND2 4491 G to A Val to Ile V/I/I/V A A G Yes

4769 A to G G G A Yes

4883 C to T T C Yes

4895 A to G G A Yes

CO1 6392 T to C C T Yes

7028 C to T T T C Yes

CO2 7785 T to C C T Yes

8020 G to A A G Yes

(Continued)
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years, with an average of 49 years. Using genetic and molecular approaches, we identified two mtDNA mutations:
tRNALeu(UUR) A3243G and ND6 T14502C, as potential risk factors for T2DM. Notably, the DM2 pedigree, which
harbored both the m.A3243G and m.T14502C mutations, had a higher penetrance of T2DM (40%) than the DM1
pedigree that only carried the m.A3243G mutation (27.2%). Interestingly, patients in the DM2 pedigree exhibited more
complex clinical phenotypes: four individuals developed both hearing and vision loss as compared with the DM1
pedigree in which only one individual had hearing and vision impairments; and three patients exhibited IR as compared

Table 2 (Continued).

Gene Position Sequence
Variant

Amino Acid
Change

Conservation
(H/B/M/X)a

DM1 DM2 rCRSb Previously
Reportedc

NC7 8271–79 del 9-bp 9-bp

del

9-bp Yes

A8 8414 C to T Leu to Phe L/F/M/W T C Yes

A6 8584 G to A Ala to Thr A/V/V/I A A G Yes

8701 A to G Thr to Ala T/S/L/Q G G A Yes

8856 G to A A G Yes

8860 A to G Thr to Ala T/A/A/T G A Yes

CO3 9540 T to C C T Yes

10,136 A to G G A Yes

ND4 10,873 T to C C T Yes

11,719 G to A A A G Yes

12,091 T to C C T Yes

ND5 12,361 A to G G A Yes

12,705 C to T T T C Yes

13,401 T to C C T Yes

13,563 A to G G A Yes

ND6 14,256 T to C Ile to Val I/M/I/V C T Yes

14,502 T to C Ile to Val I/I/I/I C T Yes

Cytb 14,766 C to T Thr to Ile T/S/T/S T T C Yes

14,783 T to C C C T Yes

15,043 G to A A G Yes

15,301 G to A A A G Yes

15,326 A to G Thr to Ala T/M/I/I G G A Yes

15,346 G to A A G Yes

15,784 T to C C T Yes

15,850 T to C C T Yes

Notes: aConservation of amino acid for polypeptides or nucleotide for RNAs in human (H), bovine (B), mouse (M), and Xenopus laevis (X). brCRS: reversed Cambridge
Reference Sequence. cSee online mitochondrial genome databases http://www.mitomap.org.
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with the DM1 pedigree, in which two patients showed IR. These observations strongly suggest that the m.T14502C
mutation may increase the expression of diabetes in families carrying the m.A3243G mutation, as in the case of m.
A4435G mutation in m.G11778A-induced Leber hereditary optic neuropathy (LHON).44

Figure 3 Analysis of ATP levels in three patients with the m.A3243G and m.T14502C mutations, three patients with the only m.A3243G mutation and three controls
without these mtDNA mutations.

Figure 2 Identification of tRNALeu(UUR) A3243G and ND6 T14502C mutations by direct sequencing.
Abbreviations: WT, wild type; MT, mutant.
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The A-to-G transition at position 3243 of the mtDNA is reported the most prevalent mutation for mitochondrial diabetes
worldwide, with a prevalence varying from 0.1% to 10%.4 In a Tunisian diabetic population, this mutation was only reported
in 1.07%,45 which was similar to the values reported in Japanese46 and French diabetic populations.47 In an Asian Indian
population, the prevalence of this mutation was 7.8%.48 However, Khalaf Alharbi et al found that the m.A3243G mutation
played no role in Saudi women diagnosed with gestational diabetes, probably because of the small sample size.49 Interestingly,
a recent meta-analysis revealed that patients with the m.A3243G mutation and pigmentary retinopathy maintained highly-
functional visual acuity until around the fifth decade of life, after which significant visual decline ensued.50 Importantly, cybrid
cell lines containing them.A3243Gmutation above a certain heteroplasmy threshold led to a reduction in oxygen consumption
and OXPHOS.51 This mutation also affected the processing of longer mitochondrial RNA precursors and the post-
transcriptional modification of tRNALeu(UUR).52–54 In cybrid cells containing the m.A3243G mutation, an approximately
75% reduction in the steady-state level of tRNALeu(UUR) was observed, as well as in the aminoacylation ability,55,56 thereby
causing a reduced rate of mitochondrial protein synthesis and respiration defects.57

Because the phenotypes associated with the m.A3243G mutation are highly variable and heterogeneous, modifica-
tions to other factors, such as nuclear genes, mitochondrial genetic background and environmental factors may contribute
to the clinical expression of m.A3243G-induced DM.58–60 For this purpose, we examined mutations in nuclear genes
(GJB2, GJB3 and GJB6), but we did not identify any functional variants, suggesting that nuclear genes may not play
important roles in T2DM expression.

To uncover the contribution of the mtDNA genetic background to diabetes, we summarized 19 diabetic pedigrees
with the m.A3243G mutation (Table 3). We found that the penetrances of DM in these families varied from 18.4% to
55.5%; moreover, matrilineal relatives bearing functional mtDNA deletions (10.4-kb or 1.0-kb) or mutation (m.
T15402C) may increase the expressivity of the T2DM-associated m.A3243G mutation.61–77

Indeed, the m.T14502C mutation occurred in homoplasmy only in the maternal lineage of the DM2 pedigree, and the
isoleucine at amino acid position 58 is extremely conserved in the ND6 polypeptide between different organisms.78 This
mutation is also associated with LHON78–81 and other clinical abnormalities (Table 4).82 In a recent study, functional analysis

Figure 4 Analysis of ROS production in three patients with the m.A3243G and m.T14502C mutations, three patients with the only m.A3243G mutation and three controls
without these mtDNA mutations.
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Table 3 Summary of Clinical and Molecular Data for 19 DM Pedigrees Carrying tRNALeu(UUR) A3243G Mutation

Family
Number

Country Number of
Matrilineal Relatives

Number of
Affected Relatives

Penetrance of
DM (%)

Other Functional
mtDNA Mutations

References

1 China 11 3 27.2 None This study

2 China 10 4 40 ND6 T14502C mutation This study

3 Italy 9 3 33.3 10.4-kb deletion [61]

4 Tunisia 9 5 55.5 1.0-kb deletion [62]

5 Taiwan 5 1 20 None [63]

6 Taiwan 18 6 33.3 None [64]

7 China 9 3 33.3 None [65]

8 USA 11 3 27.2 None [66]

9 USA 13 4 30.7 None [67]

10 Japan 10 3 30 None [68]

11 Japan 5 2 40 None [69]

12 Japan 11 2 18.2 None [70]

13 Sweden 23 6 26.1 None [71]

14 Sweden 22 6 27.2 None [72]

15 Netherlands 25 11 44 None [73]

16 Portugal 11 3 27.2 None [74]

17 Switzerland 16 6 37.5 None [75]

18 Norway 38 7 18.4 None [76]

19 Germany 7 2 28.6 None [77]

Abbreviations: DM, diabetes mellitus; mtDNA, mitochondrial DNA.

Table 4 Overview of Clinical Presentation of Mitochondrial ND6 T14502C Mutation

Number Age Gender Clinical Features Family History References

1 17 Female LHON Yes [78]

2 4 Male LHON Yes [78]

3 40 Female LHON Yes [78]

4 30 Male LHON Yes [79]

5 38 Female LHON Yes [80]

6 24 Male LHON Yes [80]

7 26 Female LHON Yes [80]

8 19 Male LHON Yes [80]

9 32 Female LHON Yes [81]

10 43 Male Hypertrophic Cardiomyopathy No [82]

Abbreviation: LHON, Leber’s hereditary optic neuropathy.
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of cybrid cells bearing the m.T14502C mutation showed mild effects on mitochondrial functions when compared with the
cells containing both the m.T14502C and m.G11778A mutations. Additionally, the m.T14502C mutation altered the
assembly of complex I, thereby aggravating the respiratory phenotypes associated with m.G11778A mutation.83 Similarly,
cell lines bearing both the m.A3243G and m.T14502C mutations exhibited more severe mitochondrial dysfunctions than
those in the cells carrying only the m.A3243G mutation (Figures 3 and 4), although the observed decreases of approximately
40% in ATP production in cells bearing both the m.A3243G and m.T14502C mutations were below a proposed threshold
level to develop a clinical phenotype.84 Conversely, cells harboring both the m.A3243G and m.T14502C mutations exhibited
greater levels of ROS than either cells carrying only the m.A3243G mutation or controls. Therefore, a lower level of ATP and
a higher level of ROS production may lead to the impairment of mitochondrial functions, which could be involved in the
pathogenesis and progression of T2DM in the DM2 pedigree. Thus, our study highlights the critical role of the m.T14502C
mutation in the pathogenesis of T2DM, manifestated by its synergy with the m.A3243G mutation.

The strength of this study was that we analyzed the synergistic roles between the m.T14502C and m.A3243G
mutations, and we found that the m.T14502C mutation may modulate the clinical expression of the diabetes-associated
m.A3243G mutation. The main limitation of the current study was the relatively small sample size; thus, further studies
including more DM samples are needed to verify this conclusion.

Conclusions
In this study, we showed that mitochondrial diabetes was associated with the tRNALeu(UUR) A3243G and ND6 T14502C
mutations. Moreover, the m.T14502C mutation may increase the penetrance of m.A3243G-induced T2DM. In the future,
functional studies of patients with putative T2DM-associated mtDNA pathogenic mutations should be undertaken.

Abbreviations
mtDNA, mitochondrial DNA; T2DM, type 2 diabetes mellitus; PMNs, polymononuclear leukocytes; mt-tRNA, mito-
chondrial tRNA; ATP, adenosine triphosphate; ROS, reactive oxygen species; OXPHOS, oxidative phosphorylation;
nDNA, nuclear DNA; IR, insulin resistance; MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis and
stroke-like episodes; MERRF, myoclonic epilepsy and ragged-red fiber disease; ND6, NADH-dehydrogenase 6; OGTT,
oral glucose tolerance test; HbA1c, hemoglobin A1c; BMI, body mass index; BP, blood pressure; HOMA-IR, home-
ostasis model assessment of IR; PTA, pure tone audiometry; DPOAE, distortion product otoacoustic emissions; rCRS,
revised Cambridge sequence; CI, conservation index; FBS, fetal bovine serum; LHON, Leber’s hereditary optic
neuropathy.
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