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Abstract: Current non-small cell lung cancer (NSCLC) chemotherapy and radiotherapy 

regimens, although showing definite survival benefit, still leave patients with a disappointing 

15% 5-year overall survival rate. Because of the need to improve traditional outcomes, research 

has focused on identifying specific tumorigenic pathways that may serve as therapeutic targets. 

The most successful strategies to date are those aimed at the epidermal growth factor receptor 

(EGFR), which is found to be upregulated in 40%–80% of NSCLC. Several tyrosine kinase 

inhibitors and monoclonal antibodies (mAbs) have been developed that inhibit the EGFR 

receptor and have demonstrated clinical benefit in trials as single agents and in combination 

regimens. Here we discuss one such agent, the mAb nimotuzumab, the background of its 

development, its clinical experience in NSCLC thus far, and the rationale for expanding its use 

to other NSCLC treatment settings.
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Introduction
Lung cancer remains the primary source of cancer mortality worldwide and continues 

to increase in incidence in developing countries such as India and China.1,2 Within the 

United States and Canada, where incidence rates are dropping, it still accounts for 

more deaths than the next four leading malignancies combined and recently surpassed 

cerebral vascular disease as the number two killer overall.3–5 As a result, treating this 

disease, especially non-small cell lung cancer (NSCLC), which accounts for roughly 

85% of pulmonary malignancies,6 has become a major undertaking at medical centers 

around the world.

Standard treatment for NSCLC involves surgical resection, platinum-based 

chemotherapies, and radical or palliative radiotherapies, yet, prognoses have plateaued 

and, even for the earliest stages, remain relatively reserved.7 The five-year survival 

rate ranges from 49% for stage IA to 1% for stage IV disease,8 the majority of  deaths 

being caused by distal recurrence. Underpinning this poor outcome is the tendency to 

establish diagnoses only at an advanced stage (in 70% of cases9) compounded by the 

comorbidities and decreased performance status of patients, who are often, or have been, 

chronic smokers. Given the limitations of traditional cytotoxic agents, novel targeted 

therapies became an exciting prospective field for NSCLC treatment in the late 90s and 

early 2000s. The most clinically relevant have been interventions aimed at the epidermal 

growth factor receptor (EGFR), including intracellularly acting tyrosine kinase inhibi-

tors (TKIs) and the extracellular-binding monoclonal antibodies (mAbs).
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Targeting the EGFR
EGFR and NSCLC
EGFR (also HER1 or ErbB1) is a tyrosine kinase receptor and 

member of the ErbB family of transmembrane proteins that 

homodimerizes or heterodimerizes with another ErbB receptor 

under the influence of an extracellular agonist, usually epider-

mal growth factor (EGF) or transforming growth factor α.10 

Extracellular substrate binding brings the intracellular tyrosine 

kinase domains from the two receptors into close proximity, 

promoting intracellular autophosphorylation at specific resi-

dues and subsequent recruitment of downstream intermediate 

signaling proteins.11 As part of the Ras–mitogen-activated 

protein kinase, Akt and phosphotidylinositol 3-kinase (PI3 K)–

c-Jun N-terminal kinase signaling cascades, these downstream 

molecules are implicated in a plethora of cellular functions, 

such as proliferation, angiogenesis, antiapoptosis, and cell 

adhesion.12 Not surprisingly, changes to these pathways can 

elicit dramatic phenotypic transformation, including tumor 

development and evolution, by encouraging uncontrolled cell 

division, increased cell survival, tumor vascularization, tis-

sue invasion, and metastases.12–15 Accordingly, dysregulation 

of EGFR signaling has been associated with several human 

cancers, stimulating an early interest in it as a target for anti-

cancer agents.16,17 In NSCLC, aberrant EGFR signaling can be 

caused by an amplified gene copy number, found in 40%–80% 

of tumors, as well as the acquisition of somatic, constitutively 

activating mutations, the majority residing in exons 19 and 

21.17,18 Additionally, EGFR can become overstimulated by 

greater access to its ligands, which are often overproduced 

in tumors.17

By whichever route EGFR becomes dysfunctional, 

evidence suggests that increased signaling is generally 

associated with more undifferentiated and advanced disease 

and an overall worse prognosis in certain cancers.19 Moreover, 

EGFR overexpression has been associated with less effective 

chemotherapy and radiotherapy treatments.20,21 In the case of 

radiotherapy, studies show that tumors may upregulate EGFR 

in response to DNA damage, perhaps resulting in apoptosis 

avoidance by increasing EGFR-dependent survival cues.21 

Therefore, inhibitors of EGFR may have a potential synergistic 

effect with radiotherapy in addition to their inherent anti-

neoplastic nature. However, correlations between EGFR and 

disease status, prognosis, or response have been contentious, 

especially in NSCLC.19 Nevertheless, taken in conjunction 

with the prevalence of EGFR upregulation in cancer and the 

importance of its downstream targets in tumorigenic processes, 

inhibition of EGFR was seen as an exciting avenue of pursuit 

for NSCLC in the late 1990s.

Tyrosine kinase inhibitors
Gefitinib (Iressa), a TKI, was the first such inhibitor of 

EGFR to be approved for NSCLC and was followed quickly 

by erlotinib (Tarceva). These lipid-soluble molecules 

block the adenosine triphosphate-binding pocket of the 

EGFR tyrosine kinase domain, eliminating its ability to 

phosphorylate targets.22 They have proven to have a beneficial 

role in second-line treatment of metastatic NSCLC.23 Several 

independent studies demonstrate that the presence of EGFR-

activating mutations renders cells remarkably sensitive to 

these agents and underpins their clinical results,17,18,24,25 a 

phenomenon associated with nonsmoking Asian females.26 

Recent trials have confirmed the remarkable clinical activity 

of these agents in this setting, which as a result are now 

approved for use to treat metastatic NSCLC as single agents 

in the first-line setting of EGFR mutation–positive patients 

on several continents.27,28 Their role in combination with 

chemotherapy, however, remains unproven.29

Monoclonal antibodies
Coincident with the development of small molecular inhibi-

tors, mAbs targeting the extracellular component of EGFR 

and other signaling proteins thought to be associated with 

tumorigenesis, such as ErbB230 and vascular endothelial 

growth factor (VEGF),31 were developed. The antineoplastic 

EGFR-binding mAbs demonstrating anticancer potential 

thus far include cetuximab, panitumumab, zalutumumab, 

matuzumab, necitumumab, and nimotuzumab. It is believed 

they work by attaching to extracellular EGFR epitopes and 

sterically hindering the protein from taking on its optimum 

dimerization conformation or alternatively blocking EGFR 

interactions, in either case, inhibiting the formation of dimers 

and the subsequent activation of the receptor.32 However, it 

is also accepted that a profound immunomodulatory effect 

may be a component of their antitumor activity.33

Nimotuzumab
Preclinical data
Nimotuzumab was originally isolated as a mouse immuno-

globulin (Ig)G2a antibody known as R3, developed against 

placental-derived EGFR at the Molecular Immunology 

Center in Havana, Cuba.34 The R3  mAb was humanized 

to reduce its human immunogenicity and slow clearance 

from the body by grafting its complimentarity determining 

regions into a human IgG1 gene to create h-R3-nimotuzumab. 

Recreation of 3-specific murine amino acids (Serine 75, Thre-

onine (Thr) 76, and Thr 93) in the new antibody’s variable 

fraction preserved their anti-EGFR activity.34 Although a 
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crystallized protein model has yet to be completed, a likely 

hypothesis for nimotuzumab binding to domain III of EGFR’s 

extracellular region was developed by Talavera et al35 based 

on observed competition with cetuximab and computer 

simulations. The binding affinity (Kd) of nimotuzumab to 

EGFR is 4.5 × 10−8 m and is similar to EGF’s own affinity 

for EGFR,36,37 but is .10-fold less than competing mAbs, 

cetuximab, and panitumumab. Nimotuzumab can therefore 

be described as a humanized IgG1 antibody that attaches to 

the extracellular domain III of EGFR with a moderate affinity, 

blocking EGF binding and sterically hindering the receptor 

from exposing its dimerization motif.

Cultured cells expressing high levels of EGFR and 

treated with nimotuzumab show less receptor activation 

after being assayed with ligand.38 These in vitro results have 

been observed mainly in A431 cells, a vulvar epidermoid 

carcinoma cell line, characterized by high EGFR expression.39 

However, they have also been demonstrated in cells exhibiting 

wild-type and constitutively active EGFR, suggesting that 

nimotuzumab is equally successful at EGFR inhibition in 

both normal and mutant backgrounds.21 In vivo xenograft 

models have also confirmed this antitumor effect on A431 

cells in mice, an effect similar to that induced by cetuximab 

in the same model.38 More recent in vivo data demonstrates 

significant antitumor effect of nimotuzumab in xenografts 

utilizing the NSCLC cell lines H460, Ma-1, and H292.21 

This in vivo data hints strongly at an increasingly profound 

antitumor effect from nimotuzumab as the extent of EGFR 

expression rises from low in H460, to moderate in Ma-1, and 

to high in H292.21

Interestingly, in vitro cells bound by nimotuzumab do 

not exhibit an apoptotic phenotype.39 In vivo treated tumors, 

on the other hand, display a 5-fold increase in apoptotic 

activity generating a marked tumor regression within solid 

A431 severe combined immunodeficiency mice carcinomas.39 

This distinction between in vitro and in vivo response of 

nimotuzumab points toward a specific apoptotic mechanism 

unique to the in vivo environment. Crombet-Ramos et al39 

hypothesize that a decrease in angiogenesis is the major cause 

of in vivo tumor cell death by diminished VEGF production, 

a theory that has been supported by acquired resistance in 

cells constitutively producing VEGF.40 However, it should be 

pointed out that there are many other downstream targets that 

have not yet been ruled out as contributors to this effect.41 

Furthermore, a tumor-binding IgG1 antibody may augment 

any inherent antineoplastic effect by triggering the antibody-

dependent cell-mediated cyotoxicity immune mechanism to 

attack cancer cells independent of EGFR inhibition.38,42

Clinical experience
Solid tumors
Promising preclinical results with nimotuzumab led to its 

introduction into clinical trials in 2003, beginning with 

a Phase I Cuban trial.37 In this Phase I study, 12 patients 

were enrolled to receive a one-time dose of 50, 100, 200, 

or 400 mg of nimotuzumab, and, although 7 participants 

experienced mild or moderate adverse reactions, in contrast 

to the experience with other anti-EGFR agents, none 

developed the classic anti-EGFR acneiform rash. There-

after, nimotuzumab was administered to more than 9,000 

recipients43 in over 30 Phase I and II trials (see Table 1) 

that confirm the lack of a severe skin reaction and other 

adverse reactions (reviewed44). Notably, a Canadian dose-

escalation Phase I study reported excellent tolerability of 

the drug in up to 800-mg weekly infusions, with only one 

dose-limiting toxicity of grade 3 fatigue being reported at 

the 100-mg level.45 Most other studies have mainly focused 

on head and neck squamous cell carcinomas (HNSCCs)46–49 

and brain malignancies50 (reviewed51), where nimotuzumab 

has shown an efficacy equal to or greater than comparable 

anti-EGFR mAbs.

The largest of the Phase II trials involving nimotuzumab 

(BEST trial), completed at multiple centers in India, included 

92 patients with HNSCC who were randomized to receive 

chemotherapy with nimotuzumab, chemoradiotherapy 

with nimotuzumab, or chemotherapy and chemoradiation 

alone.52 This trial demonstrated a clinically significant 

30-month survival advantage with nimotuzumab over 

combined chemotherapy and radiotherapy (69.57% 

with nimotuzumab vs 21.74% without nimotuzumab, 

P  =  0.0011).53 Because of these and other successful 

trials (reviewed44), nimotuzumab has been approved for 

use in either HNSCCs or gliomas or both in 23 countries, 

including China, India, and Brazil.54

Non-small cell lung cancer
Although an occasional NSCLC patient had been enrolled into 

dose-escalating Phase I trials up to this point, no clear signal 

of efficacy could be elicited based on such small numbers. On 

this basis, given the molecular rationale for targeting EGFR 

in NSCLCs, the early success of nimotuzumab in other solid 

tumors, and its benign side-effect profile, nimotuzumab use 

was expanded to a NSCLC population.

In the first such study (see Table 2), Bebb et al55 initiated 

a trial investigating the feasibility of adding the anti-EGFR 

mAb to palliative radiation in NSCLC patients of varying 

stages (IIB, III, and IV) deemed unsuitable for radical 
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therapy. Significantly, this cohort presented many of the 

classic challenges of NSCLC patient, being elderly and of 

less than ideal performance status (median age of 69 years 

and 5 of 18 patients were Eastern Cooperative Oncology 

Group performance status of 2). A similarly designed Korean 

trial by Choi et al56 documented almost identical results in a 

comparable, albeit, East Asian population. These two trials 

confirmed the minimal toxicity at each dose of nimotuzumab 

in combination with thoracic radiation, while also demon-

strating favorable results compared with historical controls57 

in a NSCLC setting (Table 2).

The overall impression gleaned from these studies is that 

nimotuzumab can be safely administered with doses of up to 

36 Gy of external beam ionizing radiation with minimal skin 

toxicity or esophagitis in an elderly NSCLC population. The 

fact that similar results were obtained in a North American 

and a Southeast Asian setting is notable. Unfortunately, the 

trials were not designed to assess the efficacy of nimotuzumab 

as a single agent, and although there were reports of response 

in tumors outside the radiation field, they remain anecdotal. 

These results are now set to be corroborated in randomized 

Phase II trials currently enrolling patients in Japan, South 

Africa, and Canada.

Brain metastases
The evolution of brain metastases from NSCLC heralds a 

grave prognosis, with only radiation and steroids being the 

mainstay of treatment. Given the excellent tolerability of nim-

otuzumab and its promising efficacy in primary brain tumors, 

assessing its efficacy in the setting of NSCLC metastatic to 

brain is logical. This was first done in a Phase II Cuban trial 

comparing nimotuzumab and radiation in NSCLC brain 

metastases with radiotherapy alone.58 A preliminary report 

cites a disease control rate (DCR) of 91.6% (DCR = complete 

responses, partial responses, and stable disease) with a 

statistically significant improvement over irradiation only 

treated patients (P =  0.0039). Randomized Phase II trials 

designed to confirm these encouraging findings are also 

Table 1 Trials of nimotuzumab in solid tumors (excluding NSCLC)

Authors Phase Location No. of 
patients

Cancer 
stages

ORR DCR MST(mo) vs controls

Crombet et al37 
(2003)

I Cuba 12 Advanced 
epithelial

Winquist et al46 
(2002)

I Canada 17 HNSCC 87.5%

Crombet et al70 
(2004)

I/II Cuba 22 HNSCC 88%@200  
or 400 mg

8.6@50 
and 100 mg; 
44.3@200 
and 400 mg

Rojo et al47 
(2008)

I Spain 10 Advanced 
HNSCC

80%

Reddy et al48 
(2007)

II India 17 III or IVA, 
HNSCC

76% 90% increase 
ORR

Brade  
(2007)

I Canada 16 Advanced 
refractory 
CRC

43.8%

Crombet et al66 
(2006)

II Cuba 29 Gliomas 37.9%

Crombet 
(2008)

II/III Cuba 65 GB, AA 68.6% 37.2% increase 
DCR 

Bode  
(2007)

II Germany 46 Pediatric 
brain 
cancer

30.4% 45.5% 10 150% increase 
MST

Bode  
(2008)

III Germany 42 Pediatric 
brain 
cancer

Shah et al76 
(2009)

II Canada 61 Refractory 
CRC

50% 9.3

Reddy et al 
(2007)

II India 20 III or IVA 
HNSCC

100% 42.9% increase 
in ORR

Notes: ORR = complete responses + partial responses. DCR = ORR + stable disease. vs controls are comparisons of nimotuzumab to non-nimotuzumab controls.
Abbreviations: NSCLC, non-small cell lung cancer; ORR, objective response rate; DCR, disease control rate; MST, median survival time; HNSCC, head and neck squamous 
cell carcinomas; CRC, colorectal cancer.
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now underway and recruiting in North America and South 

Africa.

The anti-EGFR side-effect profile
EGFR targeting TKIs and mAbs has been associated with 

several side effects, especially within organs with high 

levels of proliferation and EGFR expression, most notably 

the epidermis and intestinal lining. These include grade 3 

and 4 severe adverse events that can significantly impact a 

patient’s quality of life and result in a reduction or cessation 

of continued treatment. The dermatological reaction has 

been extensively described as an acneiform rash (although 

this term may be inaccurate)59 and is present in up to 90% 

of mAb-treated cases,60 38% of which are grade 3 or 4 

reactions.61 Furthermore, experience in the head and neck 

cancer population suggests that the radiation-induced 

dermatitis and mucositis may be exacerbated by the addition 

of an anti-EGFR monoclonal antibody.62–65

In contrast, these side effects are rare in cases of nimotu

zumab use and are mainly limited to grade 1 or 2 adverse 

events.66 Most conspicuously, the typical grade 3 or 4 skin 

toxicity found in other anti-EGFR drugs has thus far remained 

virtually absent in nimotuzumab trials.44 In fact, when nimo-

tuzumab was tested for toxicity in the large mammal model 

Cercopithecus aethiops sabaeus (green monkeys), it was 

found to not display any dermatological side effects, even at 

doses 10 times the amount recommended for human use.36 

The cutaneaous manifestations of nimotuzumab treatment 

were investigated in the recently completed Korean Phase I 

trial,56 in which skin biopsies from a clinically normal skin 

area were collected before the first dose of nimotuzumab 

and after 2–8 weeks of treatment from 10 patients in the 

200 and 400 mg cohorts. Histologically, the characteristic 

thinning of the stratum corneum and folliculitis induced 

by other EGFR inhibitors was not observed, whereas at 

the molecular level, nimotuzumab did not suppress EGFR 

phosphorylation, receptor signaling, or keratinocyte pro-

liferation (Ki-67),56 echoing findings in a head and neck 

cancer trial.67 Nimotuzumab’s benign side-effect profile is 

not limited to the epidermis though, as it also includes the 

absence of severe hypomagnesemia and a lack of grade 3 or 

4 gastrointestinal side effects, commonly seen in this class 

of agents.68,69

The pharmacokinetic mechanism for why nimotuzumab 

seems to have similar antitumor activity to other EGFR-

targeted mAbs without the severe side effects could be its 

intermediate binding affinity. Decreased affinity to EGFR 

allows for an optimal dose of nimotuzumab that is below 

the toxic dose. Experimental mathematical models have 

predicted that for anti-EGFR mAbs to balance maximal 

tumor targeting with minimal normal cell toxicity, the 

binding affinity (Kd) should be in the range of 10−8–10−9 

M.70 Although nimotuzumab is within this range, cetuximab 

has a binding affinity 10-fold stronger. It has more recently 

been hypothesized by Tikhomirov et al71 that in contrast to 

other in-class mAbs, mainly cetuximab and panitumumab, 

nimotuzumab’s capacity to bind EGFR is heavily dictated 

by cell surface receptor density. This is attributed to the 

difference between monovalent and bivalent binding of 

nimotuzumab, which is transiently bound monovalently, 

and strongly bound bivalently to EGFR epitopes.71 In 

normal cells (eg, skin epithelial cells), EGFR expression is 

too low to cause nimotuzumab bivalent binding, therefore 

avoiding unwanted skin toxicities. Overexpressing tumor 

cells, on the other hand, will have enough receptor density 

for nimotuzumab to bind bivalently and robustly inhibit 

the EGFR.71,72 Whatever the reason, the absence of severe 

toxicity especially the skin rash could be a critical clinical 

Table 2 Nimotuzumab trials in NSCLC

Authors Phase Location No. of 
patients

Cancer Dosage ORR DCR MTP OST

Bebb et al55 I Canada 18 NSCLC 7@100 mg; 
6@200 mg; 
5@400 mg

66%a 94%a 5.4 mob 9.8 moc

Choi et al56 I Korea 15 NSCLC 5@100 mg; 
5@200 mg; 
5@400 mg

46.7%a 100%a 164 dd 298 de

Macias et al58f II Cuba 21 NSCLC brain 
metastases

200 mg 91.6%

Notes: a ORR and DCR within radiation field; b 95% CI, 0.9–9.9 months; c 95% CI, 6.5–13.1 months; d 95% CI, 26–302 days; e 95% CI, 199–397 days; f Based on preliminary 
results.
Abbreviations: NSCLC, non-small cell lung cancer; ORR, objective response rate; DCR, disease control rate; MST, median survival time; OST, overall survival time; 
CI, confidence interval.
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bonus if nimotuzumab is shown to be efficacious in Phase 

II trials in NSCLC.

Nimotuzumab predictive markers
The paradigm of molecularly directed treatment, well defined 

in the world of leukemia and lymphoma, is also established in 

certain solid tumors such as breast cancer, where estrogen and 

progesterone receptor positivity has long-guided treatment 

and HER2 testing has helped direct the use of trastuzumab. 

Even in the colorectal cancer (CRC) world, several recent 

Phase III studies have shown that K-ras mutations preclude 

benefit from anti-EGFR mAb therapy in metastatic CRC.73–75 

The “realness” of this effect is supported by its demonstration 

in several line settings, with more than one anti-EGFR mAb, 

and when such an agent is used alone or in combination with 

chemotherapy. In a small Phase II trial of nimotuzumab with 

irinotecan in refractory CRC, there was a difference in overall 

survival between patients whose tumors were K-ras wild type 

compared with those with K-ras mutant tumors, suggesting 

that K-ras status may also be relevant in nimotuzumab use in 

CRC.76 However, this phenomenon does not seem to extend 

to NSCLC. Disappointingly, the role of K-ras as a predictive 

marker for the use of the anti-EGFR mAb cetuximab with 

platinum-based systemic treatment in stage-IV NSCLC was 

recently discredited in the FLEX study,77 which suggested 

that K-ras status is not a predictor of response to these agents 

in the treatment of metastatic NSCLC.78

Attempts at finding predictive markers specifically for 

nimotuzumab have to date not been forthcoming. Molecular 

determinants of response were investigated in both Phase I 

trials of nimotuzumab with palliative radiation in NSCLC. 

Markers investigated were EGFR status by immunohis-

tochemistry, EGFR gene copy number by fluorescence in 

situ hybridization analysis, and K-ras mutational status by 

sequencing. However, the paucity of high-quality biopsy 

material meant that only 10 of 18 patients in the Canadian 

study and 5 of 15 patients in the Korean study had tis-

sue available for molecular interrogation, and so, no clear 

molecular correlates could be established in either study. This 

is not unusual in lung cancer; a low proportion of analyz-

able samples is a conspicuous feature of all NSCLC trials 

that include molecular correlative studies in their design and 

sometimes leads to over interpretation of the significance of 

predictive molecular markers.79,80

Several explanations have been put forward to account 

for the difference in significance of K-ras mutations in 

NSCLC compared with CRC. An understudied factor may 

be the relative magnitude of the immune-modulatory effect 

of anti-EGFR mAbs in NSCLC compared with CRC. It has 

been demonstrated that the in vitro extent of cetuximab-

mediated lysis of HNSCC cells is influenced not only by 

EGFR expression and cetuximab concentration but also by 

FcγR polymorphism.81 FcγR polymorphisms have also been 

implicated in conferring different survival in CRC patients, 

even in those with K-ras mutation-bearing tumors.82,83 These 

studies strongly suggest that immune factors play a role in 

determining anti-EGFR mAb response irrespective of K-ras 

status. The relative magnitude of this effect in the efficacy 

of each anti-EGFR mAb is unknown. Future trials of these 

agents, including nimotuzumab, must incorporate attempts 

to better quantify this effect in NSCLC.

A second issue may be the very nature and role of K-ras 

mutations in NSCLC compared with CRC. Revisiting 

intriguing observations from the 1990s84 suggests that K-ras 

mutations differ in NSCLC compared with CRC in several 

ways, such as being less common (21% vs 39%), virtually 

absent in squamous cell tumors, more likely to be smoking 

associated (69% vs 38%), and more likely to be a transversion 

rather than a transition (3.0 vs 0.8). The relative importance 

of K-ras in each tumor must also be considered. It has been 

suggested that the PI3 K pathway assumes a greater impor-

tance in NSCLC than in CRC, thereby diminishing the role 

of K-ras in this setting.

Visions of nimotuzumab’s role  
in NSCLC management
As mentioned, a classic challenge of NSCLC management is 

that patients typically present in a disadvantaged condition. 

Median age at presentation is in the late 60’s and often comes 

with several comorbidities, a 33% probability of chronic 

obstructive pulmonary disease alone, and a performance 

status of 1 or more.85 Consequently, a large proportion of 

NSCLC patients is restricted in the degree of radical treat-

ment they can undergo, if any at all, not just by the stage of 

their cancer but by their overall health. Unpublished analysis 

at our own center suggests that only 23% of stage-IV NSCLC 

patients actually receive systemic treatment. In end-of-life 

circumstances where palliation and quality of life are the ulti-

mate objectives, a systemic therapeutic agent that can be used 

with minimal toxicity is obviously desirable. Nimotuzumab 

clearly fills these criteria but needs level I evidence based on 

randomized Phase III trials to support its use.

Adding a benign systemic treatment to palliative radia-

tion in individuals deemed too weak to receive standard 

cytotoxic therapy would also be quite attractive. The rela-

tionship between ionizing radiation and EGFR remains 
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intriguing. If, as proposed, radiation therapy increases EGFR 

cell surface concentrations and nimotuzumab activity is 

EGFR concentration dependent,21 then its activity should 

be more profound when used in conjunction with radio-

therapy.86 Additionally, in locally advanced cases where 

combined modality treatment results in long-term remission 

in only 15%–20%, the possibility of adding a well-tolerated, 

targeted systemic agent is welcomed. The presently enroll-

ing Phase II protocols in this setting will confirm whether 

nimotuzumab is as promising as preclinical and Phase I 

results suggest.

Although there have yet to be trials that test nimo-

tuzumab with chemotherapy in NSCLC, it also holds 

the potential to be a beneficial treatment paradigm. The 

possibility of achieving the same effect as cetuximab in 

the first-line setting in stage-IV NSCLC but with mini-

mal toxicity is of course alluring. At present, a Japanese 

study is enrolling patients for a Phase II examination of 

nimotuzumab with docetaxel in chemotherapy-refractory 

or resistance advanced NSCLC.

Unfortunately, as single agents, anti-EGFR therapeutics 

might be beneficial in the short-term, but inevitably tumors 

develop resistance to these drugs. It has been postulated that 

a significant mechanism of resistance is the utilization of 

alternate receptor pathways, such as the insulin-like growth 

factor-I receptor (IGF-IR) to bypass EGFR signaling block-

age or acquired mutations to molecular targets, like is seen 

in TKIs with EGFRvIII transmutation.87–89 Combined therapy 

against EGFR and potential resistance pathways has shown 

efficacy in some cases88 and therapies targeting more than one 

signaling receptor.90 Future NSCLC treatment may include 

the use of nimotuzumab to target the extracellular domain of 

EGFR in concert with TKIs inhibiting the cytosolic kinase 

and other targeted therapies acting against cancerogenic and 

resistance pathways, including VEGF and IGF-IR. However, 

this type of multimodal management strategy is only in 

the preclinical and early phases of clinical development, 

and unfortunately, some early studies record surprisingly 

detrimental effects.91,92 Obviously, more investigations are 

needed before this becomes an established paradigm for 

nimotuzumab in NSCLC management.

Summary
Nimotuzumab is a humanized anti-EGFR mAb that has 

demonstrated promising efficacy in the treatment of several 

EGFR-expressing solid tumors. Its tolerability in NSCLC 

has been demonstrated in two Phase I trials at doses of up 

to 400  mg in conjunction with external beam palliative 

radiation in both a Canadian and Korean population. Its 

utility in NSCLC will be demonstrated by ongoing Phase II 

trials. The most significant feature of nimotuzumab’s clinical 

experience to date is an intriguingly profound absence of the 

cutaneous anti-EGFR toxicity that is so characteristic of other 

anti-EGFR mAbs. This phenomenon has been attributed to 

a density-dependent binding to EGFR-expressing cells and 

may underpin a more optimal therapeutic window when 

nimotuzumab is used in conjunction with ionizing radiation. 

A politically unfavorable site of origin has hindered invest-

ment and the participation of US-based centers in clinical 

trials, but the recent initiation of manufacturing process in 

India may overcome this challenge. Meanwhile it is possible 

that nimotuzumab will find a niche in some markets where 

it will be promoted as a minimally toxic, less expensive 

anti-EGFR mAb. If the efficacy of this molecule compares 

favorably with other anti-EGFR mAbs in current clinical 

trials, then its lack of toxicity will make it a very attractive 

therapeutic agent indeed.
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