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Abstract: Osteoarthritis (OA) is the most common joint disease in elderly individuals and seriously affects quality of life. OA has
often been thought to be caused by body weight load, but studies have increasingly shown that OA is an inflammation-mediated
metabolic disease. The current existing evidence suggests that OA is associated with obesity-related chronic inflammation as well as
abnormal lipid metabolism in obesity, such as fatty acids (FA) and triglycerides. Adiponectin, a cytokine secreted by adipose tissue,
can affect the progression of OA by regulating obesity-related inflammatory factors. However, the specific molecular mechanism has
not been fully elucidated. According to previous research, adiponectin can promote the metabolism of FA and triglycerides, which
indicates that it is a potential protective factor for OA through many mechanisms. This article aims to review the mechanisms of
chronic inflammation, FA and triglycerides in OA, as well as the potential mechanisms of adiponectin in regulating chronic
inflammation and promoting FA and triglyceride metabolism. Therefore, adiponectin may have a protective effect on obesity-
related OA, which could provide new insight into adiponectin and the related mechanisms in OA.
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Introduction
Osteoarthritis (OA) is the most common degenerative joint disease characterized by joint pain, swelling and dysfunction.
According to its causes, OA can be divided into primary and secondary forms.1 Although the detailed pathogenesis
pathways of primary OA are still unclear, most scholars agree that biomechanical, inflammatory, and metabolic factors
(obesity) are main risk factors in the occurrence and development of the disease. In addition, aging, endocrine (estrogen
deficiency) and muscle reduction factor has also been proposed.2 According to these different risk factors, Herero-
Beaumont3 proposed the existence of four clinical phenotypes-biomechanical OA, osteoporotic OA, metabolic OA
(obesity-related OA), and inflammatory OA. In the obese population, the occurrence of OA is related to joint overload
as well as chronic inflammation and abnormal lipid metabolism (Figure 1).4–6 In obesity-related OA, there are many M1
macrophages in adipose tissue and high levels of inflammatory factors such as interleukin-1 (IL-1), IL-6 and tumor
necrosis factor-α (TNF-α) produced by adipose tissue-derived M1 macrophages.7 These cytokines are considered to be
the main causes of chondrocyte damage and cartilage matrix degeneration.8 According to the researches, high levels of
fatty acids (FA) and triglycerides were found to be related to the occurrence and development of OA.9,10 FA can be
divided into saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs)
according to the length of the carbon chain and the number of double chains. PUFAs can be divided into omega-3 (n-3)
and omega-6 (n-6) PUFAs according to the double bond position.11 Although n-3 PUFAs can help reduce inflammation
and protect joints,12 SFAs and n-6 PUFAs have strong proinflammatory effects, and they play an important role in
promoting the secretion of inflammatory factors in chondrocytes and structural damage.13,14 Epidemiological studies
have shown that triglycerides can increase the risk of OA in the hand joints.6 Vitro experiments have found that
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triglycerides can promote the release of chondrocyte inflammation markers and the breakdown of extracellular matrix
(ECM).15 Therefore, FA and triglycerides may play an important role in the progression of OA.

Adiponectin is a protein hormone derived from adipose tissue. Previous studies have found that adiponectin and its
receptor are of great significance for the treatment of obesity-related diseases such as atherosclerosis and type 2 diabetes.
Adiponectin can significantly improve insulin sensitivity and has anti-inflammatory properties on endothelial cells and
macrophages.16,17 Meanwhile, adiponectin inhibits inflammation by regulating the proliferation and function of M1 and
M2 macrophages, and also promotes FA metabolism in liver and skeletal muscle by activating amp-activated protein
kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α).18 On the one hand, adiponectin can increase
the activity and expression of enzymes that promote triglyceride hydrolysis, such as lipoprotein lipase (LPL), hormone-
sensitive lipase (HSL) and adipose triglyceride lipase (ATGL); on the other hand, adiponectin can promote FA
decomposition to reduce the materials for synthesizing triglycerides.18–20 Therefore, adiponectin can regulate lipid
metabolism in obese people and reduce the circulating levels of FA as well as triglycerides. Therefore, adiponectin
can reduce the risk factors for obesity-related OA.

This review summarizes the role of chronic inflammation, FA and triglycerides in the progression of OA in obese
people, as well as the potential mechanism by which adiponectin to reduces chronic inflammation and promotes FA and
triglyceride metabolism (Figure 2).

Obesity-Related Biological Processes and OA
Chronic Inflammation and OA
Osteoarthritis (OA)21 is one of the most common chronic joint diseases. Advances in epidemiology and basic
medicine have given us a new definition of OA, metabolic OA, which is closely related to obesity.22 In addition to
mechanical load, an increasing number of experiments have shown that inflammatory factors produced by adipose
tissue play an increasingly important role in the occurrence of OA.23 As an endocrine organ, adipose tissue contains
a variety of immune cells, including macrophages, T cells, B cells and neutrophils, and it is an important source of
proinflammatory factors such as IL-1β, IL-6, and TNF-α.24 Macrophages are functionally classified into classically
activated M1 macrophages and alternatively activated M2 macrophage.25 Pro-inflammatory M1 macrophages can
secrete many inflammatory factors, such as IL-1β, IL-6, TNF-α, IL-8, IL-12 and IL-23,26 and the function of these
cytokines in OA has been well established. Although anti-inflammatory M2 macrophages generate anti-inflammatory
cytokines and anabolic factors, such as IL-4, IL-10, IGF-1 and transforming growth factor-β (TGF-β),27,28 these anti-
inflammatory cytokines are insufficient to counteract the catabolic inflammatory response, particularly during the

Figure 1 Possible mechanisms of obesity leading to osteoarthritis. IL-1β, interleukin 1 β. TNF-α, tumor necrosis factor-α.
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imbalance of a high pro-inflammatory (M1-like) to anti-inflammatory (M2-like) ratio.29,30 In obese tissues, anti-
inflammatory M2 macrophages are converted into pro-inflammatory M1 macrophages.27,28 In a rat model of obesity-
related OA, infiltrating macrophages in the synovium and bone marrow-derived macrophages in synovial fluid are of
the M1 phenotype,29 and inducing the polarization of M2-phenotype macrophages contributes to reducing the
progression of OA.31 Therefore, we have reasons to believe that M1 macrophages are the main causes of chronic
inflammation in obese people.

Among the inflammatory factors released by fat cells and infiltrating macrophages, IL-1β, TNF-α and IL-6 are the key
mediators involved in the progression of joint tissues in OA patients, although others also play very important roles, such
as IL-15, IL-17, and IL-18.8 IL-1β and TNF-α can induce ECM degradation of chondrocytes and upregulate the
expression of other factors such as iNOS, NO, COX-2, PGE2, MMPs and ADAMTS.8 These cytokines can regulate
the anabolic activities of chondrocytes and destroy the cartilage structure. Studies have shown that increased concentra-
tions of IL-1 and TNF-α can be observed in various anatomical structures of joints, such as synovial fluid, synovium,
cartilage and subchondral bone layer.32 After treatment with IL-1β and TNF-α, the secretion of MMPs are significantly
increased in chondrocytes, which have a key regulatory role in cartilage destruction.33 In articular cartilage, Type II
collagen in cartilage and type I collagen in adjacent tendons and bones sustain joint structure strength. MMPs mediate the
degradation of almost all collagen proteins.34 PGE2 can stimulate the expression and production of MMP-13 and
ADAMTS-5 in human chondrocytes. This result is related to the signaling pathway mediated by EP4, which is
a PGE2 receptor.35 In addition, PGE2 upregulates the expression of IL-6 mRNA and protein of T/C-28a2 chondrocytes
through the cyclic adenosine monophosphate (cAMP) signaling pathway, and the level is time- and dose-dependent.36

Experimental results have shown that IL-1β and TNF-α can promote the expression of ADAMTS family members, such
as ADAMTS-4 and ADAMTS-5.37 The ADAMTS family of enzymes can effectively cleave the aggregated proteins in
the extracellular matrix of chondrocytes.36 In animal experiments, after deletion of the catalytic domains of ADAMTS4
and ADAMTS5, the destruction of mouse chondrocytes was significantly reduced.38,39 Studies have shown that IL-1 and
TNF-α can promote iNOS activity, leading to over expression of NO in chondrocytes.40,41 On the one hand, NO can
promote chondrocyte MMP expression and increase the sensitivity of chondrocytes to oxidants. On the other hand, NO
indirectly participates in the production of inflammatory factors by promoting the production of TNF-α in synovial
cells.42 In addition, TNF-α can recruit osteoclasts to promote bone destruction. Lam J reported that although TNF-α alone
cannot induce the differentiation of macrophages into osteoclasts, TNF-α and RANKL, which are nuclear factor kappa-B
(NF-κB) receptor activator ligands, can significantly enhance the activity of NF-κB and stress-activated protein kinase/
c-Jun N-terminal kinase.43 These two signaling pathways are critical to the formation of osteoclasts. Therefore, TNF-α
can promote macrophages with permissive levels of RANKL to generate osteoclasts.

Figure 2 Possible mechanisms by which adiponectin regulates risk factors for OA in obese patients.
Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; PPAR, peroxisome proliferator-activated receptor; NF-κB, nuclear factor kappa-B; Mgl-1,
macrophage galactose N-acetyl-galactosamine specific lectin-1; ERK, extracellular regulated protein kinases; LPL, lipoprotein lipase; HSL, hormone-sensitive lipase; ATGL,
adipose triglyceride lipase; Apo-CIII, apolipoprotein-CIII; TIMP-2, tissue inhibitor of matrix metalloproteinases-2; MMP-13, matrix metalloproteinase.
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High levels of IL-6 are detected in knee synovial fluid and surrounding tissues during the early stages of OA.44

Stannus et al reported that circulating levels of IL-6 were associated with JSN and cartilage loss in older adults.45

Latourte et al confirmed that IL-6 increases the production of the main proteases involved in OA pathogenesis, such as
MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5, which are induced by Stat3 and ERK1/2 signaling pathway in
chondrocytes. Blocking the effect of IL-6 with receptor blockers can reduce OA cartilage damage, osteophyte formation,
and the degree of synovial inflammation.46 In addition, IL-6 is related to metabolic disorders of subchondral bone tissue.
Peruzzi has reported that IL-6 inhibits the differentiation of osteoblasts into osteocytes through the SHP2/MEK2, SHP2/
AKT2 and IGFBP5 signaling pathways. In addition, after treating primary mouse osteoblasts with IL-6, the expression of
Runx2, collagen 1A2, and osteocalcin was reduced, which can be reversed by anti-IL-6 antibodies.47,48 RANKL and
osteoprotegerin (OPG) are key regulators of osteoclast formation. Semi-quantitative RT-PCR analysis showed that the
mRNA expressions of RANKL and OPG increased after 24 h incubation with human soluble IL-6 plus human soluble
IL-6R (both 100ng/mL).49 This biological process involves the STAT3 signaling pathway.50

In addition to the above mentioned proinflammatory factors, the pathological mechanism of OA also involves
several other chemokines, such as IL-15, IL-17, and IL-18. The level of IL-15 in joint fluids increases in early-stage
OA patients, and IL-15 significantly increases the levels of MMP-1 (mean ± SEM MMP-1 release: 843% ± 222 of
control) and MMP-3 (mean MMP-3: 206% ± 42 of control) secreted by articular cartilage. Moreover, IL-15 receptor α
gene (IL15RA) has been associated with the development of neuropathic pain-like symptoms after nerve injury.51 In
the serum and synovial fluid of OA patients, IL-17 levels are elevated and positively correlated with OA severity. Na
et al reported that IL-17 stimulates chondrocytes and fibroblasts to secrete proinflammatory factors such as IL-1β, IL-6
and TNF-α, which further promote cartilage destruction.52 Bao et al reported that treating chondrocytes with different
concentrations of IL-18 (0, 1, 10, 100 ng/mL) for 24 h, the mRNA expressions of Collagen II, Sox9 and Aggrecan
were downregulated in a dose-dependent manner. They also find that IL-18 promotes the proapoptotic effect of rat
chondrocytes by activating the PI3K/Akt/mTOR signaling pathway (Table 1).53

FAs and OA
In addition to low levels of systemic inflammation, another characteristic of obese patients is increased plasma levels of
free FAs.54 Based on the above classification, FAs can be further classified (Figure 3). For example, SFAs include

Table 1 Inflammatory Factor Involved in the Pathophysiology of OA

Inflammatory Factor Activities in OA

TNF-α and IL-1 Be observed synovial fluid, synovium, cartilage and subchondral bone layer.32 Increases MMPs.33 Promotes the

expression of ADAMTS.37 Promotes iNOS activity. Leading to overexpression of NO in chondrocytes.40,41

TNF-α Enhances the activity of NF-κB and stress-activated protein kinase/c-Jun N-terminal kinase.43

IL-6 Detected in knee synovial fluid and surrounding tissues.44 Associated with JSN and cartilage loss.45 Increases MMP-3,

MMP-13, ADAMTS-4 and ADAMTS-5.46 Blocking the effect of IL-6 to reduce OA cartilage damage, osteophyte

formation, and synovial inflammation.46 Inhibits the differentiation of osteoblasts into osteocytes.48 Reduces the
expression of Runx2, collagen 1A2, and osteocalcin.47 Increases the mRNA expressions of RANKL and OPG.49

IL-15 Increased in joint fluids is increased in early-stage OA.51 Increases the levels of MMP-1 and MMP-3.51 Associated with

the development of neuropathic pain-like symptoms.51

IL-17 IL-17 levels are elevated and positively correlated with OA severity.52 Stimulates the production of IL-1β, IL-6 and
TNF-α.52

IL-18 Downregulated the mRNA expressions of Collagen II, Sox9 and Aggrecan.53 Promotes the proapoptotic effect of
chondrocytes.53

MMPs Mediates the degradation of collagen proteins.34

PGE2 Stimulate the expression of MMP-13 and ADAMTS-5.35 Upregulates the expression of IL-6 mRNA.36

ADAMTS Cleave the aggregated proteins.36

NO Promote chondrocytes MMP expression, increase the sensitivity to oxidants.42 Promoting the production of TNF-α in
synovial cells.42

Abbreviations: MMPs, matrix metalloproteinase; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; iNOS, Inducible nitric oxide synthase; JSN,
joint space narrow; IL-1, interleukin 1; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TNF, tumor necrosis factor; PGE2, prostaglandin E2.
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palmitic acid (PA) and stearic acid (SA), MUFAs include oleic acid (OL) and palmitoleic acid (POA), n-3 PUFAs include
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and n-6 PUFAs include linoleic acid (LA) and
arachidonic acid (AA).55 Recent studies have shown that FAs are involved in the pathogenesis of OA and different
types of FAs have different effects on OA.56

After measuring the deposited lipid composition in OA chondrocytes, it was found that the levels of FA, PA, SA, OL,
LA and AA increased.13,57 In several vitro experiments, PA increased the levels of IL-1β, IL-6, MMP-13, and ADAMTS
and reduced the expression of the anti-inflammatory factor IL-10.58–60 Sekar et al found that after feeding rats PA- and
SA-rich feed for 16 weeks, cartilage degeneration and OA-like changes in subchondral bone occurred in the knee joints,
indicated by surface irregularity, disorganization of the articular cartilage and loss of proteoglycans.61 In further research,
vitro data demonstrated an enhanced expression of the hypertrophic markers ADAMTS4 and ADAMTS5 and the
cartilage degenerative marker MMP-13 as well as a declining expression of ACAN, COL2, and SOX9 in MA-, PA-,
and SA-treated chondrocytes compared with LA treatment.61 Insulin-like growth factor-1 (IGF-1) plays an important role
in chondrocytes survival and ECM synthesis. PA can induce CHOP expression in human chondrocytes, which leads to
activation of the JNK signaling pathway and inhibits IGF-1 function.62 PA and SA activate the typical NF-κB signaling
pathway and promote autophagy in human chondrocytes.58 Miao et al found that SA can activate a novel lactate-HIF1α
pathway to induce mice chondrocytes to express IL-1β, IL-6 and TNF-α.63 In a recent study, it was found that PA causes
chondrocyte mitochondrial dysfunction and changes in glycolytic metabolism, and these effects can be partially reversed
by MUFAs (such as OL).64 In a study of the relation between diet and OA progression in 2092 OA patients, with
increasing levels of SFA, joint space width decreases were 0.25 mm, 0.26 mm, 0.33 mm, and 0.37 mm at 12, 24, 36, 48
months, respectively.65

Among MUFAs, the effect of OL on chondrocytes is controversial. On the one hand, OL can reduce the expression of
COX-2 and MMP-1 in chondrocytes and inhibit the destruction of chondrocytes.66 On the other hand, coincubation of
OL and PA stimulate chondrocytes the production of ROS and RNS such as O:�

2 , H2O2, and NO, respectively, as well as
the production of IL-6 and IL-8.67

In recent years, the relationship between the plasma levels of N-3 PUFAs and N-6 PUFAs and the progression of OA
has become a research hotspot. The most common N-6 PUFAs in the human diet are LA and AA, wherein LA is the
precursor of AA, and AA is the precursor of PEG2 and leukotrienes.68 After analyzing lipids in plasma and synovial
fluid, Wu found that most N-6 PUFAs were positively correlated with the severity of osteoarthritis and synovitis.69

Besides, in male patients with OA, plasma N-6 PUFA levels were positively correlated with joint effusion, knee joint
structural damage,13 osteophyte formation, synovitis.70 An vitro experiment proved that after culturing chondrocytes with
LA, the production of PGE2, IL-6 and NO increased.14,66,71 In addition, AA can upregulate the expression of PEG,
ADAMTS72 and COX-273 in animal chondrocytes. In contrast, research on n-3 PUFAs found that they may have
a protective effect on OA. Sibille et al reported that OA patients with a high n-6/n-3 ratio had more severe pain symptoms

Figure 3 Fatty acids subtype.
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and functional limitations, while the levels of n-3 PUFAs were inversely correlated with the levels of inflammatory
mediators and pain tolerance.74 The reduction in the n-3/n-6 PUFA ratio in IFP may contribute to the inflammation and
cartilage degradation of early OA.75 Previous studies have shown that N-3 PUFAs significantly reduced the expression
levels of ADAMTS-4, ADAMTS-5, MMP-3, MMP-13, TNF-α, IL1-β, IL-6, and COX-2. Among N-3 PUFAs, EPA is the
most effective.76–78 Correspondingly, Dai et al reported that N-3 PUFAs can reduce the expression of Col-X and Runx2
to inhibit the hypertrophy and differentiation of chondrocytes.79 Moreover, Kubo et al reported that the preoperative
serum EPA + DHA levels and (EPA + DHA)/AA ratio were found to be negatively associated with the serum d-ROMs (a
biomarker of oxidative stress resulting from IR injury) at 96 h after surgery and ∆ d-ROMs (Table 2).80

Triglycerides and OA
Epidemiological studies of abnormal blood lipid metabolism and OA have found that elevated serum triglycerides are
risk factors for the progression of OA.81 Davies-Tuck et al reported that triglycerides are associated with the prevalence
of BMLs in asymptomatic middle-aged women for more than two years. The results of this study provide a basis for the
hypothesis that vascular pathological changes are involved in the progression of OA.82 In another study, it was reported
that triglycerides increased the risk of hand OA.6 Abourazzak et al found that hypertriglyceridemia was associated with
a higher pain visual analogue scale and Lequesne index.83 Pan et al divided the pain into three groups according to the
pain trajectory: minimal pain, mild pain, and moderate pain. After adjusting for potential confounding factors, it was
found that hypertriglyceridemia was associated with moderate pain.84 Pan et al found that hypertriglyceridemia was
independently associated with volume loss of the medial tibial cartilage on MRI. Moreover, triglycerides significantly
increased the size of the BML in the medial compartment BML.85 Some studies have provided evidence for this link
between hypertriglyceridemia and OA. High ECM catabolism and excessive chondrocyte death are the two main
pathological features of OA.86,87 Research by Xie showed that triglycerides can promote NF-κB nuclear translation by
inducing endoplasmic reticulum stress, which leads to the release of proinflammatory factors such as collagen-II and
MMP-3, thereby enhancing the catabolism of the ECM.15,88

Table 2 FAs Involved in the Pathophysiology of OA

FAs Activities in OA

SFA FA, PA, SA, OL, LA and AA Increases in OA chondrocytes.13,57

PA and SA Increases the levels of IL-1β, IL-6, MMP-13, and ADAMTS and reduced the expression of the IL-
10.58–60 Cartilage degeneration and OA-like changes appear.61 Promotes chondrocytes
autophagy.58

MA, PA and SA Enhances expression of the hypertrophic markers ADAMTS4, ADAMTS5 and MMP-13.

Declines the expression of ACAN, COL2, and SOX9.61

PA Induces CHOP expression.62 Causes chondrocyte mitochondrial dysfunction and changes in

glycolytic metabolism.64

SA Induces the expression of IL-1β, IL-6 and TNF-α.63

SFA Decreases joint space width.65

MUFAs OL Reduces the expression of COX-2 and MMP-1.66

OL and PA Stimulates the production of ROS and RNS such as O:�
2 , H2O2, NO, IL-6 and IL-8.

67

N-6 PUFAs N-6 PUFAs Positively correlated with the severity of osteoarthritis and synovitis.69 Positively correlated

with joint effusion, knee joint structural damage,13 osteophyte formation, synovitis.70

LA The production of PGE2, IL-6 and NO increased.14,66,71

AA Upregulate the expression of PEG, ADAMTS72 and COX-2.73

n-3 PUFAs n-3 PUFAs Inversely correlated with the levels of inflammatory mediators and pain tolerance.74 Reduces

the expression levels of ADAMTS-4, ADAMTS-5, MMP3, MMP-13, TNF-α, IL1-β, IL-6, and
COX-2.76–78 Reduces the expression of Col-X and Runx2.79

EPA + DHA Negatively associated with the serum d-ROMs.80

Abbreviations: MMPs, matrix metalloproteinase; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; IL-1, interleukin 1; TNF: tumor necrosis
factor; ACAN, aggrecan; COL2, collagen type II; SOX9, SRY-related HMG box-containing 9; CHOP, a protein marker for ER stress; COX-2, cyclooxygenase-2; ROS, reactive
oxygen species; RNS, reactive nitrogen species; PGE2, prostaglandin E2; Col-X, type X collagen; Runx2, Runt-related transcription factor 2.

https://doi.org/10.2147/DMSO.S359330

DovePress

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:151310

Jiang et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Biological Actions of Adiponectin on Obesity-Induced OA
Adiponectin
Adiponectin, also known as AdipoQ, Acrp30, ApM1, or GBP28, is a protein hormone produced exclusively by
adipocytes that was first reported in 1995.89-91 This cytokine is a 28–30 kDa collagen-like protein composed of 244
amino acids. The interaction between the disulfide bonds at the amino terminus of adiponectin can form polymers of
different molecular weights, including low-molecular-weight adiponectin (trimer), medium-molecular-weight adiponec-
tin (hexamer) and high-molecular-weight adiponectin (HMW).92 Yamauchi T first confirmed AdipoR1 and AdipoR2 as
adiponectin receptors in 2003.16 AdipoR1 is mainly expressed in skeletal muscle, while AdipoR2 is abundant in the liver.
Adiponectin can activate AMPK, PPAR-α, PPAR-γ and other signaling pathways through these two receptors to
participate in metabolic regulation.18

Adiponectin and Chronic Inflammation
Adiponectin, as a typical anti-inflammatory and antioxidant stress active substance, has been proven to have a protective
effect on diabetes and atherosclerosis. However, the role of adiponectin in osteoarthritis has not been well studied.93

Recently, numerous animal and human studies have shown that adiponectin delays the progression of OA through anti-
inflammatory factors. Honsawek et al94 reported that the concentration of adiponectin in blood and synovial fluid was
significantly negatively correlated with the grade of OA by KL grading criteria, which suggested that it might have
a potentially protective effect. Zheng and Chen et al94,95 found that plasma adiponectin levels were positively correlated
with synovial fluid levels and that plasma adiponectin levels were significantly higher than synovial adiponectin levels.
These results indicate that the main source of adiponectin in synovial fluid is blood. Moreover, Yusuf et al96 reported that
patients with higher serum adiponectin triplets had a 70% reduced risk of developing hand OA compared with patients
with the lowest serum adiponectin triplets over 6 years.

Many studies have shown that adiponectin can regulate the proliferation and function of M1 and M2 macrophages to
exert its anti-inflammatory properties.97–99 In vitro, adiponectin promotes the production of IL-10 and IL-1 receptor
antagonist in monocytes, monocyte derived macrophages and dendritic cells.100 Yokota et al reported that adiponectin
inhibits the proliferation of bone marrow monocyte progenitor cells by inducing apoptosis and inhibite the functions of
mature macrophages, including phagocytosis and the release of TNF-α.97 Wulster-Radcliffe et al found that adiponectin can
inhibit the production of IL-6 and TNF-α in pig-derived adipocytes and macrophages. This biological effect is partly
mediated by inhibiting the NF-κB signaling pathway and ERK1/2 activity.101,102 In adiponectin knockout mice, M1
markers, including TNF-α, IL-6 and MCP-1, were increased. Conversely, M2 markers, such as arginase-1, macrophage
galactose N-acetyl-galactosamine specific lectin-1 and IL-10, were remarkably reduced.99 In addition, Wang et al previously
reported that adiponectin inhibits proinflammatory cytokines, including IL-1, IL-6 and TNF-α in alveolar macrophages
through the TLR2/4 signaling pathway and inhibits macrophage polarization through the COX-2/PGE2 signaling
pathway.103 In subcutaneous white adipose tissue, adiponectin can promote the proliferation of M2 macrophages by
activating AKT.98 Full-length adiponectin promotes the transformation of the M1 to M2 state through the AdipoR2→IL-
4→STAT-6-dependent signaling pathway and AdipoR2→AMPK signaling pathway.104 In addition to the AMP-activated
protein kinase and peroxisome proliferator activated receptor (PPAR)-γ, adiponectin also mediates the differentiation of
monocyte macrophages into M2 macrophages through PPAR-α. Adiponectin can reduce macrophage markers in adipo-
nectin knockout mice through these two signaling pathways.105 Therefore, adiponectin suppresses the activation of M1
subtype macrophages and enhances the proliferation of anti-inflammatory M2 subtype macrophages. However, the
mechanism needs further exploration.

Chen et al reported that adiponectin can upregulate tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) and
downregulate IL-1β-induced MMP-13 in human chondrocyte.95 TIMP-2 has good inhibitory properties on the activity of
MMPs and ADAMTS.106 After treating ATDC5 mouse chondrocytes with 0.5μg/mL adiponectin, increases in chon-
drocyte proliferation, proteoglycan synthesis and matrix mineralization were observed, which as reflected by the
upregulation of type II collagen, aggrecan, Runx2 and type X collagen in chondrocytes. The underlying mechanism
may be that adiponectin upregulated the expression of cartilage signaling molecules, such as IHH, PTHrP, Ptc1, FGF18,
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BMP7, IGF1 and P21.107 HU reported that subsequent to 6 h of H2O2 treatment, significant reduction in rat chondrocyte
viability was demonstrated in the treated groups. However, the percentage of H2O2 induced apoptotic significantly
reduced in chondrocytes pretreated with 0.5 µg/mL global adiponectin for 24 h by activating AMPK/ mTOR Signaling
pathway.108 As mentioned above, adiponectin may have a protective effect on OA by reducing the inflammatory level in
obese people and resisting the degradation of cartilage extracellular matrix.

In contrast, some studies have found that adiponectin has proinflammatory effects on OA. On the one hand, Korkmaz
et al confirmed the positive correlation between adiponectin level and OA severity in Ahlback classification.109 On the
other hand, Honsawek et al suggested that plasma adiponectin levels are negatively correlated with OA severity.94 Tang
et al reported that treatment of osteoarthritis synovial fibroblast (OASF) with adiponectin (0.1–30μg/mL) for 24 h, the
production of IL-6 is in a concentration-dependent manner and time-dependent manner. Further, mRNA levels of IL-6
and AdipoR1 subtype receptor were evidently increased after 12 h of adiponectin (3μg/mL) treatment. These results
suggest that AdipoR1 may be involved in adiponectin-induced expression and release of IL-6 in OASF.110 Zuo et al
showed that AdipoR1 may mediate adiponectin to induce synovial fibroblasts to produce PGE2 in a concentration-
dependent manner.111 Tong et al reported that qPCR analysis showed that the expression of MMP-3 mRNA was
significantly increased after the chondrocytes were incubated with adiponectin (30 ng/mL) for 24 h.112 Chen suggested
that adiponectin up-regulates the production of Intercellular adhesion molecule-1 (ICAM-1) in human OASF via the
LKB1/CaMKII, AMPK, c-Jun, and AP-1 signaling pathway.113 Besides, adiponectin could elicit perpetuate cartilage-
degrading processes by inducing expression of vascular cell adhesion molecules-1 (VCAM-1) in chondrocytes, which is
responsible for infiltration of leukocyte and monocyte into OA joints.114 These conflicting findings, showing protective
and damaging properties, may also suggest a dual or more complex role for adiponectin in OA. Consequently, current
evidence indicates that the role of adiponectin in the pathogenesis of OA has not been completely elucidated.

Adiponectin and FAs
As a candidate for the treatment of obesity-related metabolic syndrome, adiponectin can reduce plasma free FA levels
after meals,115 increase plasma lipid clearance,116 and promote FA oxidation in the liver and muscle.117 Adiponectin can
increase the activity of carnitine palmityl transferase I to enhance the oxidation of FAs in the liver, and it can also reduce
the activities of two key enzymes involved in FA synthesis, including acetyl-CoA carboxylase (ACC) and FA synthase
(FAS).118 Studies have found that full-length adiponectin can increase the level of AMPK in isolated liver cells and
promote ACC phosphorylation and FA oxidation.119 Correspondingly, the production of malonyl-coenzyme A is reduced,
which relieves the inhibition of carnitine palmitoyl transferase-1 (CPT-1) activity and enhances the entry of FA into the
mitochondria for β oxidation.120 Schindler et al reported that adiponectin upregulated the mRNA levels of the FA
transporters CD36, FATP4, FABP4 and HSL through the AMPK signaling pathway.121 The inhibition of FAS is due to
adiponectin decreasing the expression of FA genes in the liver.118 CPT-1 is a potential regulator of FA β oxidation and
can promote lipid inflow to the mitochondria for oxidation.122 Awazawa et al found that adiponectin inhibits the
expression of sterol regulatory element binding protein (SREBP1c), which is the main regulator of enzymes related to
FA synthesis in hepatocytes.123 They also found that adiponectin can inhibit SREBP1c through AdipoR1. For example,
deleting LKB1, an upstream kinase of AMPK, can eliminate the negative effects of adiponectin on SREBP1c expression.
These data indicate that adiponectin inhibits SREBP1c through the AdipoR1/LKB1/AMPK pathway, which suggests that
adiponectin may inhibit the synthesis of FAs in the liver.123,124 In addition, adiponectin promotes FA oxidation by
participating in the activation of peroxisome proliferator-activated receptor (PPAR-α).125,126 Adiponectin activates
PPAR-α through AdipoR2 to promote triglyceride decomposition, intracellular FA transport, and mitochondrial FA β -
oxidation.127,128 Blocking AdipoR1 and R2 leads to increased tissue triglyceride content, inflammation and oxidative
stress.18 Fruebis et al reported that globular adiponectin can improve the systemic metabolic environment by promoting
the oxidation of skeletal muscle FAs.116,117 Yamauchi etal reported that after treating C2C12 cardiomyocytes with
adiponectin, the phosphorylation levels of FA oxidation, AMPK and ACC increased.119 Yoon et al reported that
adiponectin promotes FA oxidation in muscle cells by sequentially activating AMPK, p38 MAPK and PPAR-α.125

Besides, adiponectin can increase the expression of PPAR-α target genes in C2C12 myotubes, such as ACO, CPT1 and
FABP3.125,129,130 Overexpression of adiponectin can significantly upregulate the expression of genes involved in
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intracellular mitochondrial FA transport (LPL, CD36, CPT1B) and lipolysis (HSL, ATGL).20 Rice found that AdipoR1
overexpression in retinal pigment epithelial cells enhanced DHA uptake (Table 3).131 Since adiponectin can reduce the
levels of local and circulating adiponectin by promoting FA oxidation, they are able to reduce the progression of OA.
Future research may focus on revealing the relationship between adiponectin and various subtypes of FAs.

Adiponectin and Triglycerides
Most existing epidemiological studies have supported that circulating adiponectin is negatively correlated with
serum triglycerides.132,133 Studies have shown that serum HMW adiponectin is negatively correlated with
triglyceride-rich very low-density lipoprotein (VLDL) in univariate regression. Additionally, in multivariate
regression analysis, adiponectin was the most significant predictor of plasma VLDL apolipoprotein B (apoB)
concentration.134 Lipoprotein lipase (LPL) is highly expressed in tissues that use and store triglycerides, such as
heart, skeletal muscle and fat, and LPL is an important target of adiponectin to regulate triglyceride catabolism.134

LPL can catalyze the hydrolysis of large amounts of triglycerides in VLDL.135 Studies have found that there is
a positive correlation between LPL and adiponectin in normal subjects, patients with metabolic syndrome and
T2DM136 After treatment of mice with globular adiponectin, LPL activity released by heparin was significantly
increased. Additionally, the activity of LPL in epididymal white adipose tissue and heart also increased.137

Another study found that adiponectin can promote LPL and VLDL receptor (VLDLr) mRNA levels in mouse
skeletal muscle, and the activity of LPL in mouse skeletal muscle was significantly increased by 41%.19 These
results indicate that adiponectin promotes the catabolism of VLDL to reduce plasma triglyceride levels. The
reduction of serum apo-CIII, a well-known LPL inhibitor, induced by adiponectin may be another mechanism by
which adiponectin promotes triglyceride degradation. According to reports, there is a negative correlation between
circulating adiponectin and serum apo-CIII.138,139 Moreover, after adiponectin treatment of human HepG2
hepatocytes, apo-CIII mRNA levels were downregulated.19 Lopez et al found that in vitro model, adiponectin
can upregulate the mRNA levels of HSL and ATGL, which can promote the catabolism of triglycerides and
release free FAs.20 Yamauchi et al reported that adiponectin stimulates FA oxidation through the AMPK and
PPAR-α pathways, which may be a potential mechanism for adiponectin to reduce triglycerides.18 The mechanism
is as described above.

Table 3 Adiponectin and FAs

Author Activities on FAs

Liver Berg AH, Fruebis J and

Yamauchi T

Adiponectin can reduce plasma free FA levels after meals.115 Increases plasma lipid clearance,116 and

promotes FA oxidation in the liver and muscle.117

Xu A and Yamauchi T Increases the activity of carnitine palmityl transferase I and Reduces the activities of ACC and FAS.118,119

Schindler M Adiponectin upregulates the mRNA levels of the FA transporters.121

Xu A Decreases the expression of FA genes.118

Awazawa M Adiponectin inhibits the expression of SREBP1c.123

Pawlak M and Ishtiaq SM Promotes triglyceride decomposition, intracellular FA transport, and mitochondrial FA β -oxidation.127,128

Yamauchi T Blocking AdipoR1 and R2 leads to increased tissue triglyceride content, inflammation and oxidative

stress.18

Muscle Fruebis J and Yamauchi T Adiponectin promotes the oxidation of skeletal muscle FAs.116,117

Yamauchi T Adiponectin increases the phosphorylation levels of FA oxidation, AMPK and ACC.119

Yoon MJ Adiponectin promotes FA oxidation by activating AMPK, p38 MAPK and PPAR-α.125

Yoon MJ, Shabani P and

Nakamura MT

Adiponectin can increase PPAR-α target genes such as ACO, CPT1 and FABP3.125,129,130

Lopez-Yus M Adiponectin can upregulate the expression of genes involved in intracellular mitochondrial FA transport
(LPL, CD36, CPT1B) and lipolysis (HSL, ATGL).20

Abbreviations: FA, fatty acids; ACC, acetyl CoA carboxylase; FAS, fatty acid synthase; SREBP1c, sterol regulatory element-binding protein 1c; AMPK, AMP-activated
protein kinase; PPAR-α, peroxisome proliferator activated receptor alpha; ACO, acetyl CoA carboxylase oxidase; CPT1, carnitine palmitoyl transferase 1; FABP3, fatty
acid binding protein 3; LPL, lipoprotein lipase; CPT1B, carnitine palmitoyl transferase 1B; HSL, hormone-sensitive lipase; ATGL, adipose triglyceride lipase.
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Conclusion
In vivo andin vitro research continues to provide scientific evidence for the relationship between obesity and OA. The
levels of inflammatory factors, FAs and triglycerides in obese people are higher than those in healthy people. Many M1
macrophages present in adipose tissue will replace M2 macrophages and release inflammatory factors, leading to
cartilage cell destruction and matrix degradation. In addition, recent studies have shown that FAs and triglycerides
play important roles in the progression of OA through different mechanisms. Adiponectin is a classic anti-inflammatory
and antioxidant cytokine. On the one hand, adiponectin can reduce the level of inflammation in the body by regulating
the proliferation and function of macrophages. On the other hand, adiponectin inhibits the secretion and function of
MMPs after IL-1β treatment of chondrocytes. However, studies have shown that adiponectin is involved in the
inflammation of synovial membrane and chondrocytes. Therefore, the relationship between adiponectin and OA is
controversial. Moreover, adiponectin can promote the decomposition of FAs in the liver and skeletal muscle and can
also promote the decomposition of triglycerides by regulating the metabolism of VLDL, a lipoprotein that contains the
most triglycerides. Although the role of adiponectin in OA has not been elucidated, it has been indicated to be effective in
decreasing inflammatory factors and promoting the metabolism of FA and triglyceride. Therefore, adiponectin may be
one of the important factors involved in the molecular events that prevent the development of OA. Future studies need to
explicitly study the anti-inflammatory activity of adiponectin in different clinical OA subtypes and levels. Investigating
the clinical significance of adiponectin in the normal and pathological process of OA may provide a potential therapeutic
target for disease treatment. In conclusion, adiponectin may have a protective effect on obesity-related OA.
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