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Purpose: Titanium is commonly used for implants because of its corrosion resistance and osseointegration capability. It is well known
that surface topology affects the response of bone tissue towards implants. In vivo studies have shown that in weeks or months, bone
tissue bonds more efficiently to titanium implants with rough surfaces compared to smooth surfaces. In addition, stimulating early
endosseous integration increases the long-term stability of bone-implants and hence their clinical outcome. Here, we evaluated the
response of human MG-63 osteoblast-like cells to flat and solid, compared to rough and porous surface topologies in vitro 1–6 days
post seeding. We compared the morphology, proliferation, and attachment of cells onto three smooth surfaces: tissue culture (TC)
plastic or microscope cover glasses, machined polyether-ether-ketone (PEEK), and machined solid titanium, to cells on a highly
porous (average Ra 22.94 μm) plasma-sprayed titanium surface (composite Ti-PEEK spine implants).
Methods: We used immuno-fluorescence (IF) and scanning electron microscopy (SEM), as well as Live/Dead and WST-1 cell
proliferation assays.
Results: SEM analyses confirmed the rough topology of the titanium implant surface, compared to the smooth surface of PEEK, solid
titanium, TC plastic and cover glasses. In addition, SEM analyses revealed that MG-63 cells seeded onto smooth surfaces (solid
titanium, PEEK) adopted a flat, planar morphology, while cells on the rough titanium surface adopted an elongated morphology with
numerous filopodial and lamellipodial extensions interacting with the substrate. Finally, IF analyses of focal adhesions (vinculin, focal
adhesion kinase), as well as proliferation assays indicate that MG-63 cells adhere less and proliferate at a slower rate on the rough than
on a smooth titanium surface.
Conclusion: These observations suggest that bone-forming osteoblasts adhere less strongly and proliferate slower on rough compared
to smooth titanium surfaces, likely promoting cell differentiation, which is in agreement with other porous implant materials.
Keywords: cell adhesion and proliferation, implant surface topology, MG-63 cells, polyether-ether-ketone, PEEK, porous titanium
implants, Ti-PEEK

Introduction
Understanding bone structure, different types of bone cells, and how cells respond to environmental stimuli are important
to producing better regenerative bone implants and to obtain the highest, optimal implant integration. When osteoblasts
encounter a bone or a favorable material, they secrete and surround themselves with bone matrix turning into osteocytes.
These osteocytes control regeneration, maturation, and resorption, which is critical for fracture healing and
osseointegration.1 Spine implants are used to stabilize the fractured region of the backbone that is caused by trauma
or slipped vertebrae, eg, spondylolisthesis.2 Ideally, bone tissue integrates into and strongly bonds to the implant to
stabilize the injured region.

Much research has focused on osseointegration under load-bearing conditions as they impact implant’s lifetime
expectancy the most.3,4 This requires the implant material to be bioinductive and have matching elastic moduli.
A promising approach to accomplish this combination of properties for osseointegration is to make the implant core
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out of a polymer and coat it with a suitable metal. Polyether-ether-ketone (PEEK) is often used as a core, as it exhibits
similar mechanical properties to bone, can be machined well, and has favorable imaging characteristics.5 Among metals,
stainless steel, chromium, cobalt, and iron were used first, but eventually titanium became the metal of choice.6,7 In 1952,
Brånemark discovered that implanted titanium chambers strongly fused with rabbit femurs, an observation that then led
to the term “osseointegration”.6,8 From that point on, in general, titanium has been used as implant material for knee and
hip replacements, dental sockets, as well as spine implants.7 Titanium has good biocompatible properties including
minimal-to-no foreign body responses due to its resistance to corrosion by body fluids.7 It can osseointegrate with bone
and has a high fatigue life.9,10 Butterman states that 10 years after an Anterior Cervical Discectomy Fusion (ACDF)
surgery using autografts and rigid plate implants, 85–95% of patients stated that the treatment was successful, and that in
addition, narcotic usage to leverage pain decreased.11 Butterman also states that for ACDF surgery, caged titanium
implant’s lifetime expectancy was established to be at least 10 years if bone grafts were included.11 However, there is still
significant room for improvement of titanium-based bone implants.

It is now clear that surface characteristics of titanium implants, including roughness and porosity, similar to the
surface characteristics of other biomaterials, influence implant characteristics such as wettability, hydroxyapatite (HA)
deposition, and protein adsorption, and thus regulate implant/tissue integration.6,12–24 Clinical and in vivo studies, for
example, have shown that flat, polished, titanium implants are bio-inert and that they take a long time for bones to
attach.7,25 However, when manufacturing the titanium implant’s surface rough, an increase in bone cell and tissue
interactions was observed, thus a stronger bone-implant interface resulted.14,16,19,20,26 The fabrication procedure of such
rough titanium bone-implants employs either titanium plasma-spray (TPS) or sandblasting/acid-etching (SLA) processes.
TPS (characterized here) typically creates a highly porous surface with larger “roughness” (~micrometer scale) than
those prepared by the SLA process (~nanometer scale).27

The rough titanium surface examined here is derived from titanium plasma-sprayed PEEK (composite Ti-PEEK)
implants.13 They are hollow cylindrical spinal fusion cage implants (Figure 1A) that are inserted between two vertebrae.
In addition to implant insertion, bone grafts (small bone pieces) are inserted in between the two vertebrae. The goal is to
accomplish complete osseointegration by permanently fusing all bone pieces (bone grafts inside the cage and the two
flanking vertebrae) with the implant, and thus having patients’ life and function normally without deliberating back
pain.28 ArcadiusXP L Ti-PEEK implants investigated here consist of a PEEK polymer core that is coated with a plasma-
sprayed titanium layer (Figure 1A), combining the favorable mechanical and imaging properties of PEEK with the strong
tissue bonding properties of rough, porous titanium.13,17,23 To better understand how cells react and respond to surface
topologies, we have investigated adhesion, proliferation, and morphology of human MG-63 osteoblast-like cells adhering
and proliferating on the rough titanium implant surface and compared it to cells on smooth surfaces, specifically,
machined solid titanium, machined inert PEEK derived from the implant core, tissue culture (TC) plastic, or poly-
L-lysine-coated microscopic cover glasses using scanning electron and immunofluorescence light microscopic analyses,
as well as enzymatic and more direct live-cell staining and cell counting-based assays.

Materials and Methods
Sample Description
Four types of materials were investigated in this study: Solid titanium (Fisher Scientific, Catalog # AA4239406 for
3.175 mm diameter rods used for WST-1 assays in 96-well plates, and Catalog # AA13999BP for 12.7 mm diameter
rods used for Live/Dead and immunofluorescence analyses; both are of identical composition with ≥99.99% purity),
highly porous plasma sprayed titanium (ultra-pure, the coating of ArcadiusXP L spine implants), surgical grade PEEK
(polyether-ether-ketone, an organic polymer), the core of the ArcadiusXP L spine implants (PEEK-Optima™; Invibio,
Lancashire, UK), and as a control, TC plastic and poly-L-lysine-coated microscope cover glasses. Aesculap Implant
Systems, LLC. provided the vacuum plasma-sprayed titanium-coated PEEK implants (ArcadiusXP L).
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Cutting and Sterilizing Samples
Planar, approximately 1–2 mm thick, 3–5 mm in diameter disks were cut from the surface (including the Ti-coating) and
the core (PEEK only) of the implants using a Struers, abrasive aluminum oxide (Al2O3), high-quality cut-off wheel on
a Struers Accutom-50 high-speed circular saw. Water was used as a coolant/lubricant during cutting. Similarly, solid
titanium disks were cut from the rods. Samples were cleaned and sterilized by heating to 121°C at 115 kPa pressure in an
autoclave, running a “Dry” cycle for one hour (30 minutes “sterilize” and 30 minutes “dry”) and were kept in sterilized
containers until used in experiments. Attachment and proliferation of cells growing on the samples were compared to
cells growing in tissue culture (TC) plastic dishes and on poly-L-lysine-coated microscopic cover glasses.

Surface Roughness Analyses
An Alpha-Step D-500 Stylus Profiler (KLA Instruments, Milpitas, CA) was used to measure the surface roughness (Ra)
of solid titanium and PEEK discs after they were cut. The plasma-sprayed titanium surface was too rough to be measured

A

B

Figure 1 Substrate surface microstructure. (A) Aesculap Implant Systems, LLC ArcadiusXP L vacuum titanium plasma-spray coated (PlasmaporeXP) PEEK spine implant.
Planar, approximately 1–2 mm thick disks were cut from the core (PEEK only (a)) and the surface (the Ti-coating on a thin layer of PEEK) (b)) of the implants. Disks were cut
into smaller pieces before being used in our experiments. (B) Representative scanning electron microscope images acquired at indicated magnifications of disks cut from
solid titanium, PEEK core, and plasma sprayed titanium coat that were used as substrates in this study. Images demonstrate the relatively smooth surfaces of solid titanium
(av. Ra 0.54 μm) and PEEK (av. Ra 2.10 μm), compared to that of plasma sprayed titanium (av. Ra 22.94 μm). Scale bars are given in cm in (A) and μm in (B).
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with this instrument as the instrument stylus could not penetrate the pores completely. However, this surface was
characterized previously.13 Microscopic cover glasses and TC plastic surfaces were optically smooth.

Scanning Electron Microscopy (SEM) Analyses
To characterize the surface topology of the three sample types, disks were mounted on a sample holder with a carbon
tape, then sputter-coated (EM/SEM Specimen Coating – Model EMS575X) with iridium for 30 seconds to prevent
charging. Afterwards, samples were investigated using a Hitachi 4300 Field Emission (FE) SEM, operated in secondary
electron mode using a 5.0 kV acceleration voltage and imaged under identical conditions. Images of samples at 150x,
1000x, and 8000x magnifications are shown.

To investigate the ultrastructural morphology, cells were seeded (10,000 cells/cm2) on top of each sample and
incubated at 37°C for four days. After incubation, cell media were aspirated off and replaced with 1xPBS. Next, cells
were fixed in 4% glutaraldehyde (Sigma, St. Louis, MI, cat. # G5882) at 4°C overnight followed by dehydration in
a series of ethanol dilutions (twice 35%, 60% - 10 min each; 80%, 90%, 100% ethanol – 15 min each). Lastly, samples
were incubated for 10 min in hexamethyldisilazane (HMDS; Sigma, St. Louis, MI, cat. # 52619) for complete removal of
residual moisture.29 Dehydrated samples were stored in a desiccator until analysis. Just before examination by SEM,
samples were prepared as described above and examined. Images of cells at 150x, 1000x, and 8000x magnifications are
shown. To determine cell sizes on the different substrates, 10 cells/substrate were outlined in ImageJ software, and cell
area was determined in μm2 using the ImageJ measuring tool.

Cell Culture
The human MG-63 osteoblast-like osteosarcoma cell line (ATCC CRL-1427; American Type Culture Collection,
Manassas, VA, USA) was used to allow comparison with an earlier study.13 Cells were cultured in Eagle’s Minimal
Essential Medium (EMEM) (ATCC, Manassas, VA, USA, Cat. # 30-2003) supplemented with FBS (10% final conc.)
(R&D Systems, Minneapolis, MN, USA, Cat. # S11150), L-Glutamine (2 mM final conc.) (Gibco, Fisher Scientific,
Nazareth, PA, USA, Cat. # 25030081), Penicillin (50 units final conc.) and Streptomycin (50 μm final conc.) (Gibco,
Fisher Scientific, Nazareth, PA, USA, Cat. # 15070063) in a cell culture incubator at 37°C, 100% humidity and 5% CO2

atmosphere. Media were exchanged every 48 hours. Cells were cultured until reaching confluency (~5–7 days) and
passaged at a ratio of 1:10 using trypsin-EDTA (0.25%, Gibco, Fisher Scientific, Nazareth, PA, USA, Cat. # 25200056).
For experiments, confluent dishes were trypsinized, cells counted using a hemocytometer, and seeded into 35 and 60 mm-
diameter tissue culture dishes and 6 and 96-well plates at 1000 and 10,000 cells/cm.2

Live/DeadTM Staining and Imaging
To observe cells directly when proliferating on the samples, they were seeded into the wells of 6-well plates (each well
containing one sample type), and into 35-mm diameter TCP plastic dishes (supplemented or not with poly-L-lysine
coated glass coverslips) as control. On days 1, 2, 4, 5, and 6, medium was removed, and each dish was stained for 15–20
minutes with a LIVE/DEAD™ Viability/Cytotoxicity Kit for mammalian cells (Invitrogen, Fisher Scientific, Nazareth,
PA, USA, Cat. # L3224) at room temperature (RT) according to manufacturer’s instructions. For every 10 mL of 1xPBS
used, 5 µL of calcein-AM (green fluorescence) and 20 µL of ethidium homodimer-1 (red fluorescence) were used.
Samples were placed upside down into glass-bottom dishes (Mattek, Ashland, MA Cat #P35G-1.5–14-C) in 1xPBS and
imaged using a Nikon Eclipse TE2000-U inverted fluorescence microscope equipped with a 20x air objective and
a SPOT Advanced CCD camera with version 5.1 software. At least 3 images of representative regions of the samples
were acquired. Once all cells on the images of all samples and at all time points were counted and graphed, average, and
standard deviations for each sample were calculated using Microsoft Excel software. Average cell-duplication times
(hours/generation) were calculated from the graphs to determine cell proliferation rates on the different substrates.30

Immunofluorescence (IF) Staining and Imaging
To investigate the rate and strength of cell attachment on the samples, cells were washed with 1xPBS and fixed using
3.7% formaldehyde for 15 minutes at RT followed by permeabilization with 0.2% Triton X-100 (15 minutes at RT) and

https://doi.org/10.2147/MDER.S360297

DovePress

Medical Devices: Evidence and Research 2022:15106

Levin et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


blocking in 5% BSA/PBS solution at RT for 1 hour, or overnight. Samples were incubated with anti-vinculin (mouse
monoclonal, Sigma, Cat. # V9131) and anti-tyrosin397-phospho-focal adhesion kinase (FAK) (rabbit polyclonal, Fisher
Scientific, Cat. # 700255) specific primary antibodies diluted 1:300 and 1:500, respectively, in blocking solution at room
temperature for 1 hour by placing samples upside-down on a drop (50 µL) of antibody solution. After washing in 1xPBS
cells were incubated in blocking solution containing Alexa488 or Alexa568-conjugated goat-anti-mouse (Molecular
Probes/Invitrogen, Grand Island, NY, Cat. # A32723TR and A11031) and goat-anti rabbit (Molecular Probes/Invitrogen,
Grand Island, NY, Cat. # A32731TR and A11036) secondary antibodies (diluted 1:300 or 1:500), Alexa488 (or
Alexa568)-conjugated phalloidin (Molecular Probes/Invitrogen, Grand Island, NY, Cat. # A12379 and A12380) (diluted
1:100), and DAPI (1 μg/mL, Molecular Probes/Invitrogen, Grand Island, NY, Cat. # 62248) at room temperature for
1 hour. Samples were mounted facing up-side down on a drop (50 µL) of Fluoromount-GTM Mounting Medium
(SouthernBiotechTM, Birmingham, AL, Cat. # 0100-01) placed into a 35 mm diameter glass bottom dish (Mattek).
Cells on reference cover glasses were mounted onto microscopic glass slides and sealed with nail polish. Samples and
slides (latter placed upside-down on the microscope stage) were imaged using a Nikon Eclipse TE2000-U inverted
fluorescence microscope equipped with a 60x NA1.4 oil-immersion objective, and a SPOT Advanced CCD camera. To
quantify the number of focal adhesions per cell on the different substrates, phalloidin and anti-vinculin-stained cells were
marked using the multi-point tool in ImageJ and focal adhesions counted in 28 cells/substrate. Similarly, to quantify the
number of active focal adhesions/cell on the different substrates, phalloidin/anti-FAK, and anti-vinculin/anti-FAK-stained
cells were marked and active focal adhesions counted in 18 cells/substrate.

Water-Soluble Tetrazolium 1 (WST-1) Enzyme Assay
To determine the number of cells proliferating on the substrates by their enzymatic activity, cells were seeded at 10,000
cells/cm2 into the wells of 96-well plates each supplemented with one sample type. MG-63 cells grown without a sample
served as control to generate a standard absorption curve. At days 1, 4, 5, and 6 cell numbers were determined using an
enzymatic, Cell Proliferation Reagent WST-1 assay kit (Sigma Aldrich, Milwaukee, WI, USA, Cat. # 11644807001)
according to manufacturer’s instructions. Samples were incubated at 37°C for 3–4 hours for accurate absorbance
readings. WST-1 assay absorbance at OD 450 nm was read and corrected by subtracting the reading of the reference
wavelength (OD 600 nm) as described by the manufacturer using a Tecan Infinite M200 Pro Plate reader (Tecan
Instruments, Männedorf, Switzerland). Three independent experiments were performed, and averages and standard
deviations calculated. In addition, average cell-duplication times (hours/generation) were calculated from the graphs
and compared to cell-duplication times calculated by counting Live/Dead stained cells.30

Statistical Analyses
For the quantification of MG-63 cell counts in Live/Dead stained and WST-1 enzyme assays, two-way ANOVA analyses
were performed in Microsoft Excel to determine whether overall cell proliferation on the different substrates was
statistically significant from each other. One-tail Student’s t-tests were also performed in Microsoft Excel to individually
compare cell numbers on the substrates to each other on each day. For the quantification of total focal adhesions/cell
(anti-vinculin-stained) and active focal adhesions/cell (anti-FAK-stained), one-tail Student’s t-tests were performed in
Microsoft Excel to individually compare numbers of focal adhesions, and active focal adhesions per cell on the different
substrates to each other. For the quantification of average MG-63 cell-size on each substrate, one-tail Student’s t-tests
were performed in Microsoft Excel to individually compare cell sizes on the individual substrates to each other. All data
are presented as mean ± s.e.m. p-values of p<0.05 (*), p<0.01 (**), and p <0.001 (***) were considered statistically
significant.

Results
Microstructure and Composition of Substrates
To compare bone cell response to smooth and rough titanium as well as other smooth surfaces, we investigated
attachment and proliferation of human MG-63 osteoblast-like cells grown for 1 to 6 days on disks cut parallel to the
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plasma-sprayed titanium surface of composite Ti-PEEK spine implants, disks cut from the implant’s PEEK-polymer core,
and disks cut from solid titanium rods (Figure 1A). Cells grown on optically smooth tissue culture (TC) plastic or
microscope glass coverslips were analyzed as controls. First, we performed scanning electron microscopic (SEM)
analyses of all three samples to analyze and compare their surface characteristics.

The representative SEM images shown in Figure 1B demonstrate that the surface of cut solid titanium as well as
PEEK, although unpolished are much smoother than the plasma sprayed titanium coating (solid Ti: Ra 0.54 ± 0.06 µm;
PEEK: Ra 2.10 ± 0.43 µm). Images of the titanium coating acquired at different magnifications clearly show a rough
surface topology composed of solidified molten Ti-droplets creating deep pockets, irregular peaks, and angled surfaces.
In a previous publication, the Ti-PEEK implant surface was characterized as having 35–60% porosity and 60–150 μm
thickness range (average Rz value 136.5 ± 6.3 μm) with an average Ra value of 22.94 ± 0.98 μm.13 The SEM surface
image shown here, together with an SEM cross-section image, as well as an AFM surface image presented in Cheng et al
illustrate the rough, porous topology consisting of deep pockets intermixed with titanium peaks created by the plasma-
spray technique.13 Together, our findings confirm and complement findings by Cheng et al and convincingly demonstrate
the rough surface topology of the plasma-sprayed titanium surface compared to all other surfaces tested here.13

Proliferation Rate of MG-63 Cells on Different Substrates
To investigate bone cell proliferation and overall morphology directly, Live/Dead-stained cells were counted and
morphologically evaluated for 6 days post seeding. In addition, cell proliferation was evaluated indirectly based on
enzymatic activity using WST-1 assays. Figure 2A shows representative fluorescence light microscopic images of Live/
Dead stained MG-63 cells acquired at the indicated time points. Figure 2B describes the corresponding growth data of
three independent experiments, and Figure 2C the growth data of three independent enzymatic WST-1 assays. Tables 1–3
summarize average cell numbers/mm2 and cell-duplication time in hours (average generation times) that were calculated
from the corresponding growth curves.

Only live cells take up calcein-AM and fluoresce green, while dead cells take up ethidium homodimer-1 and fluoresce
red. The data show that cells attach to and proliferate on all four surfaces, however with significantly different rates. Cells
proliferate almost twice as fast on TC plastic and flat and solid titanium compared to cell proliferation on PEEK and
porous titanium (Figure 2A and B and Tables 1 and 3). Similar results were obtained when cell proliferation was
evaluated using colorimetric enzyme activity (Figure 2C and Tables 2 and 3). In addition, 15.9 ± 7.2 and 18.1 ± 4.4
calcein-AM stained cells were detected per mm2 on TC plastic and solid titanium 24 hours post seeding (day 1),
respectively, compared to only 8.2 ± 2.8 and 9.9 ± 5.1 cells/mm2 on PEEK and rough titanium, suggesting that more of
the seeded cells adhered to TC plastic and solid titanium compared to PEEK and rough titanium, however a trend that
was not reproduced by enzymatic WST-1-based cell proliferation assays (Tables 1 and 2). In addition, no cells that took
up the ethidium homodimer-1 (red, dead) were visible on the smooth surfaces, while a few dead cells were visible on the
porous titanium surface. It is possible that dead cells were dislodged from the smooth surfaces during staining and
washing procedures, while some dead cells remained lodged in the highly porous plasma sprayed titanium surface
(Figure 2A). Note that PEEK visibly auto-fluoresces, especially in the red channel, a common feature of PEEK in
fluorescence microscopic applications, and overpowers immunofluorescence cell stains (Figures 3–5).31–33 However, its
autofluorescence is not strong enough to overwhelm the calcein-AM and ethidium homodimer-1 staining (Figure 2A).

Cells growing on smooth TC plastic, solid titanium and PEEK surfaces mostly exhibit an elongated, epithelioid
morphology, while cells on the rough plasma sprayed titanium surface mostly appear rounded and irregularly shaped and
are significantly smaller in diameter (compare Figure 6). Taken together, cells interacting with any of the smooth surfaces
(TC plastic and poly-L-lysine treated microscopic cover glasses, solid titanium, or PEEK) share similar morphological
characteristics, while cells on the rough titanium surface have a distinctly different morphology. In contrast, cell proliferation
characteristics do not exhibit a comparable trend correlating with PEEK polymer’s inert biological properties.

Adhesion of MG-63 Cells to Different Substrates
To further investigate adhesion of MG-63 cells to the different substrates, we visualized vinculin (a protein component of
cellular focal cell adhesions that links their trans-membrane integrin receptors with the actin cytoskeleton), and

https://doi.org/10.2147/MDER.S360297

DovePress

Medical Devices: Evidence and Research 2022:15108

Levin et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


phosphorylated focal adhesion kinase (FAK) (the kinase component of focal adhesions) by indirect immunofluorescence
techniques using anti-vinculin and anti-phospho-FAK-specific antibodies. In addition, the actin cell cytoskeleton was
labeled by decorating actin filaments (F-actin) with fluorescence-labeled phalloidin, and the cell nucleus by staining with
DAPI. Focal adhesions are dynamic macromolecular assemblies in which cells assemble to signal via integrin receptors

A

B C

Figure 2 Proliferation rate of MG-63 cells on different substrates. MG-63 cells were seeded at equal density (1000 cells/cm2) on the surface of thin discs as shown in
Figure 1A consisting of solid titanium, porous titanium, machined PEEK, and into tissue culture (TC) plastic dishes. Cell proliferation was determined by staining cells with
a fluorescent Live/Dead staining kit (live cells fluoresce green, dead cells red) and counting cells at indicated times (A and B), and by determining their enzymatic activity
using a WST-1 assay kit (C). Representative images of stained cells in (A), and proliferation data of 3 independent experiments in (B and C). Data are mean ± s.e.m.; ns, not
significant; *p<0.05, **p<0.01, ***p<0.001. A scale bar representative for all images is given in μm.
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between the extracellular matrix and the cell nucleus and thus can serve as representative structures to characterize the
significance and strength of cell to substrate attachment.34,35 Thus, the presence of robust focal adhesions (indicated by
robust vinculin staining) indicates a strong adhesion of the cell to its substrate. In addition, in actively signaling focal
adhesions, FAK is phosphorylated on tyrosine 397. Thus, phosphorylated FAK is routinely used as a representative
marker for the characterization of functional, actively signaling focal adhesions.36 In Figure 3A, representative fluores-
cence light microscopic images of MG-63 cells are shown in which focal adhesions (vinculin) and the connecting actin
cytoskeleton (phalloidin) were stained and visualized. In Figure 4, representative micrographs of MG-63 cells are shown
in which active focal adhesions (phospho-FAK) and the connecting actin cytoskeleton (phalloidin) were visualized; and
in Figure 5A, representative micrographs of MG-63 cells are shown in which vinculin and active, phosphorylated FAK
were stained. Figures 3B and 5B show quantitative analyses of total and active focal adhesions of cells assembled on the
different substrates.

MG-63 cells growing for four days on microscopic glass coverslips and solid, flat titanium disks showed canonical,
robust focal adhesions (reddish/yellowish coma) located at the tips of F-actin stress fibers (visible especially in the merged

Table 1 Average Cell Numbers per mm2 of Live/Dead Stained MG-63 Cells of Three
Independent Experiments Counted on Indicated Days

Live/Dead Staining [Cells/mm2]

Days Tissue Culture Solid Ti PEEK Porous Ti

1 15.9 ± 7.2 18.1 ± 4.4 8.2 ± 2.8 9.9 ± 5.1

2 33.2 ± 4.0 36.3 ± 4.6 23.9 ± 3.9 12.6 ± 5.3

4 98.5 ± 18.9 128.2 ± 15.6 52.6 ± 9.3 49.5 ± 4.1

5 121.5 ± 19.3 148.9 ± 16.8 98.6 ± 13.8 130.7 ± 17.2

6 233.4 ± 12.3 299.3 ± 28.3 139.1 ± 16.4 181.8 ± 13.1

Table 2 Average Numbers of MG-63 Cells per mm2 Calculated from Their Enzymatic Activity
(WST-1 Assay) on Indicated Days

WST-1 Assay [Cells/mm2]

Days Tissue Culture Solid Ti PEEK Porous Ti

1 15.5 ± 0.6 15.9 ± 0.6 15.1 ± 0.5 14.8 ± 0.5

4 116.9 ± 5.0 66.7 ± 2.7 62.8 ± 2.6 55.0 ± 2.3

5 187.0 ± 8.0 113.9 ± 5.6 65.9 ± 2.7 86.0 ± 3.6

6 191.1 ± 8.1 197.9 ± 8.3 60.0 ± 2.5 110.5 ± 4.6

Table 3 Average Times in Hours Required for Cells to Double in Number Calculated from the
Growth Curve Generated of Live/Dead Stained Cells, and from Enzymatic (WST-1 Assay)
Activity

Average (Hours/Generation)

Tissue Culture Solid Ti PEEK Porous Ti

Live/Dead 24.7 ± 2.8 22.6 ± 2.7 31.2 ± 2.4 41.4 ± 12.8

WST-1 28.8 ± 4.8 33.6 ± 1.9 45.6 ± 12.0 38.4 ± 1.9
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higher magnified inserts and labeled with arrows), and a well-assembled dense actin-based cytoskeletal network (green
filaments; especially well visible on glass coverslips) as is typical for cells adhering to hard substrates (Figure 3A).37 Cell
nuclei (blue) are visible as well. In contrast, none, or only a very limited number of focal adhesions and actin stress fibers
were detectable in the cells growing on the rough, plasma-sprayed titanium surfaces, as is typical for cells growing on soft
substrates.38 In these cells, both vinculin and actin appear more or less homogenously distributed in the cell cytosol. Cell
nuclei are clearly visible located within the cell bodies (Figure 3A). While MG-63 cell nuclei are visible on the PEEK sample
surfaces, focal adhesions (vinculin) and actin filaments (phalloidin) remain obscure and cannot be detected in our experi-
ments due to PEEK’s strong autofluorescence properties at these wavelengths.

A

B

Figure 3 Adhesion of MG-63 cells to different substrates, focal adhesions and actin cytoskeleton. MG-63 cells were seeded on solid and porous titanium discs, PEEK discs,
and on poly-L-lysine-coated microscopic glass coverslips, and incubated for 4 days, then processed for indirect immunofluorescence analysis. (A) Focal adhesions were
visualized using an anti-vinculin (a focal adhesion protein component) specific antibody (green), the actin cytoskeleton was decorated with Alexa568-conjugated phalloidin
(red), and cell nuclei were stained with DAPI (blue). Merged images, and magnified images zoomed in on selected areas (boxed) are shown below. Numerous typical focal
adhesions (green puncta, depicted by arrows) and actin stress fibers (reddish and greenish filaments) were clearly detectable on solid titanium and coverslips, but not on
porous titanium. (B) Total number of focal adhesions per cell were determined by counting vinculin-positive adhesions (bright green comma on the tips of actin filaments) in
27 cells on each substrate. Data are mean ± s.e.m.; **p<0.01, ***p<0.001. Scale bars representative for all images and zoomed in areas are given in μm.
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In addition, cells on coverslips as well as on solid titanium samples spread out flat and exhibit typical epithelioid
morphology including large lamellipodial and filopodial extensions (eg, on coverslips), while cells on the rough titanium
surface exhibit a more rounded, much less spread-out morphology, and appear much smaller. However, filopodial and
lamellipodial extensions are visible in all representative images of cells on rough titanium as well (Figures 3–5).

Similar results were obtained when the cells were stained for their actin cytoskeleton and phosphorylated FAK
(Figure 4), or focal adhesions were double stained for vinculin and phosphorylated FAK (Figure 5A, indicated by the two
co-localizing red and green stains resulting in a yellow appearance). Cells growing on PEEK are not shown in Figures 4,
and 5 due to their intense autofluorescence at these wavelengths. Note that in all cells, not all vinculin, phosphorylated
FAK, and F-actin molecules are located in focal adhesions and stress fibers, and partially localized to the cell body as the
cytosol serves as the default location for vinculin, FAK, and actin proteins not assembled in focal adhesions and stress
fibers (indicated by a diffuse green or red cytosolic stain in all micrographs).

Taken together, cells growing on smooth surfaces (solid titanium and especially coverslips) assemble significantly
more total and active focal adhesions, and well-organized actin-based stress fibers, compared to cells growing on the

Figure 4 Adhesion of MG-63 cells to different substrates, active focal adhesions and actin cytoskeleton. MG-63 cells were seeded on solid and porous titanium disks, and on
poly-L-lysine-coated microscopic glass coverslips, and incubated for 4 days, then processed for indirect immunofluorescence analysis. Actively signaling focal adhesions were
visualized using a phospho-specific (pTyr397) anti-focal adhesion kinase (FAK) antibody (red), and the actin cytoskeleton was decorated with Alexa488-conjugated phalloidin
(green). Merged images, and images zoomed in on selected areas (boxed) are shown below. Numerous active focal adhesions (red puncta, depicted by arrows) and actin
stress fibers (green filaments) were clearly detectable on solid titanium and coverslips, but not on porous titanium consistent with data presented in Figure 3. Scale bars
representative for all images and zoomed in areas are given in μm.
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rough titanium surface (Figures 3B and 5B). These observations are in agreement with MG-63 and MC3T3-E1
osteoblastic cells growing on smooth and highly porous bioactive glass surfaces we have analyzed previously (see
Discussion).

A

B

Figure 5 Adhesion of MG-63 cells to different substrates, vinculin and phospho-FAK co-localization. MG-63 cells were seeded on solid and porous titanium disks, and on
poly-L-lysine-coated microscopic glass coverslips, and incubated for 4 days, then processed for indirect immunofluorescence analysis. (A) Focal adhesions were visualized
using anti-vinculin specific antibodies (red), active focal adhesions were visualized using phospho-specific (pTyr397) anti-FAK antibodies (red), and cell nuclei were stained with
DAPI (blue). Merged images, and images zoomed in on selected areas (boxed) are shown below. Numerous typical focal adhesions (yellow/orange puncta, depicted by
arrows) double-labeled with both antibodies were clearly detectable on solid titanium and coverslips. Some may also be present in cells on porous titanium. (B) Total
number of active focal adhesions per cell were determined by counting phospho-FAK positive adhesions (yellow/orange comma) in 18 cells on each substrate. Data are mean
± s.e.m.; *p<0.05, ***p<0.001. Scale bars representative for all images and zoomed in areas are given in μm.
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Ultrastructural Morphology of MG-63 Cells Attached to Different Substrates
To investigate the morphology of cells attaching to the different surfaces on an ultrastructural level, we examined PEEK,
solid, and rough titanium samples onto which MG-63 cells were seeded at equal densities (10,000 cells/cm2) 4 days prior
to processing for scanning electron microscopy (SEM). SEM images of MG-63 cells growing on TC plastic and
microscopic cover glasses have been published previously.39–41 Their morphology closely resembles that of cells
growing on the flat, solid titanium examined here (see below). Figure 6A shows representative SEM images taken at
indicated magnifications. Note that cells in the 1000x magnification image were in addition pseudo-colored transparent

A

B

Figure 6 Ultrastructural morphology of MG-63 cells attached to different substrates. MG-63 cells were seeded on solid and porous titanium and on PEEK disks and
incubated for 4 days, then processed for scanning electron microscopic analyses. (A) Representative images at indicated magnifications are shown. Cells at 1000x
magnification were in addition pseudo-colored transparent blue to better visualize cells and the areas covered by cells. Note pronounced difference in numbers and
ultrastructural morphology of cells attached to the smooth and rough titanium, and the PEEK surface. (B) The average size of cells was determined by outlining 10 cells per
substrate and measuring their area in mm2. Data are mean ± s.e.m.; ns = not significant, *p<0.05. Scale bars are given in μm.
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blue for better visualization of the covered area as it can be challenging to make out the cells in these monochrome SEM
images.

SEM analyses clearly showed that not only did cells attach to all samples but also cell number, size, and overall
morphology were quite different. Correlating with Live/Dead and WST-1-based proliferation assays described above,
cells were almost confluent on solid titanium covering almost the entire sample surface, while on the rough titanium
surface and especially on the PEEK surface much fewer cells were present. In addition, their morphology and size
differed significantly from the morphology and size of cells attached to solid titanium (Figure 6B). Cells on solid titanium
were spread out flat, covered significantly larger areas, exhibited triangular and epithelioid morphology, and exhibited
extended robust extensions of their cell body, correlating with their morphology observed by fluorescence microscopy
(Figures 3–5). In contrast, cells on PEEK, and even more prominently on rough titanium, overall were significantly
smaller (Figure 6B) and exhibited a more spindle-like morphology with a large number of elaborate wider and thinner
cell extensions. In addition, cells were often observed to be located with their cell body suspended in the titanium-free
voids, only attaching to the substrate via cell-body extensions. Note that the size of the cells on the rough titanium
surface is often smaller than the size of the voids in the porous titanium contours, especially visible in the 1000x
magnified image.

Discussion
It is well known that the surface topology of titanium implants plays an important role in bone integration and that
a rough titanium surface manufactured by sandblasting/acid-etching (SLA) or, in particular by plasma spraying (TPS)
leads to stronger tissue bonding.13,14,16,17,19,23,42,43 However, our knowledge on how exactly the surface roughness of
a biomaterial influences cell behavior is still limited. To better understand how cells react and respond to different surface
topologies, we investigated the adhesion, proliferation, and morphology of human MG-63 osteoblast-like cells to smooth
surfaces (solid titanium Ra = 0.54 ± 0.06 μm; smooth PEEK, Ra = 2.10 ± 0.43 μm; TC plastic and microscopic glass
coverslips, optically smooth), compared to a very rough and porous plasma-sprayed titanium surface (Ra = 22.94 ± 0.98
μm, Rz = 136.59 ± 6.3 μm). We (i) confirmed smooth and rough surface topology of our samples by SEM analyses
(Figure 1); (ii) investigated cell proliferation directly by loading cells with calcein-AM (green, live) and ethidium
homodimer-1 (red, dead) (Live/Dead staining) followed by counting cells 1 to 6 days post seeding, and indirectly by
measuring cell’s enzymatic activity (WST-1 assays) (Figure 2); (iii) characterized cell attachment by staining cells with
antibodies specific for focal adhesion marker proteins (vinculin, focal adhesion kinase (FAK)) and decorating the actin
cytoskeleton with fluorescent phalloidin (Figures 3–5); and (iv) determined cell size and morphology on an ultrastructural
level (Figure 6).

We found that cells interacting with any of the smooth surfaces (TC plastic, coverslips, solid titanium, or PEEK)
shared similar morphological characteristics, while cells on the rough titanium surface exhibited a different morphology.
In contrast, cell proliferation characteristics did not correlate with cell morphology. Cells on smooth titanium and TC
plastic proliferated rapidly (24.7 ± 2.8 and 22.6 ± 2.7-hour generation time), while cells on PEEK and rough titanium
proliferated much more slowly (31.2 ± 2.4 and 41.4 ± 12.8-hour generation time), correlating with PEEK polymer’s inert,
less favorable biological properties,5 and with other rough surfaces including porous bioactive glasses that we char-
acterized previously.44–49 Our findings also correlate with an earlier study performed on the plasma sprayed Ti-PEEK
composite implants investigated here.13

Staining with calcein-AM and counting cells on indicated days, as well as calculating cell numbers by enzymatic
activity (WST-1 assays) gave comparable results, both indicating a significantly slower proliferation rate on rough
compared to smooth titanium. It is well known that cell proliferation inversely correlates with cell differentiation,
suggesting that a slower proliferation rate on the rough titanium surface will likely promote cell differentiation.50,51

Indeed, this has been seen previously on the Ti-PEEK implants investigated here as indicated by the upregulation of cell
differentiation markers such as alkaline phosphatase (ALP), and bone morphogenic proteins (BMPs) as well as on other
rough titanium surfaces engineered by plasma spray, or sandblast/acid-etch techniques.12–14,17

Loading cells with calcein-AM, and more convincingly by examining the ultrastructure of cells by SEM and staining
the actin cytoskeleton and focal adhesions, all techniques consistently showed that cells on the smooth surfaces (TC
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plastic, microscopic glass coverslips, and solid titanium) adhered stronger, spread out more and covered more area, and
were more cuboidal shaped with less pronounced cellular extensions compared to cells attaching to the rough titanium
surface. This is indicated by the formation of extensive stress fibers and many robust, actively signaling focal adhesions
(based on pTyr397-specific staining). In contrast, on rough titanium, the actin cytoskeleton and focal adhesions were much
less developed. Cells attaching to PEEK showed morphology and adhesion characteristics in between that correlated with
PEEK’s inert biological properties.5 To our knowledge, cytoskeletal structure, cell adhesion, and ultrastructural mor-
phology of osteoblastic cells have not been investigated on plasma sprayed titanium surfaces before, however they were
investigated on sandblasted/acid-etched or otherwise roughened titanium surfaces and their findings correlate with
ours.21,52,53

We were surprised to find efficient adhesion and proliferation of MG-63 cells to our smooth machined solid titanium
surfaces (Ra = 0.54 ± 0.06 μm) as smooth titanium does not bond well to tissues as it forms a layer of titanium oxides on
its surface that causes its bio-inertness.27 However, titanium attracts calcium and phosphate ions, readily adsorbs
proteins, and stimulates cells to secrete hydroxyapatite (HA) and extracellular matrix proteins and to form an osteogenic
microenvironment.27,54,55 It is likely that these surface modifications also occurred on the smooth titanium samples under
our culture conditions. Several studies have, however, shown that the process is strongly enhanced on rough titanium
surfaces.20,27,54,55

Interestingly, many of the biological characteristics described for rough and porous titanium implants are shared by
other engineered implant materials, eg, highly porous bioactive glasses that we fabricated and characterized in detail
previously.44–49 Porous bioactive glasses, as described for roughened titanium surfaces above, form a layer of HA,
readily absorb proteins, reduce osteoblast adhesion and proliferation, and stimulate pre-osteoblast differentiation.44–49

Furthermore, research including our own has shown that these cellular responses are largely driven by the material’s
chemical and physical surface characteristics.14,16,17,19,23,44,46,47,49 Taken together, it becomes clear that increasing
surface roughness and porosity not only increase the reactive surface area of the biomaterial, but more importantly
that osteoblastic cells are able to detect surface topology on a wide nanometer scale range (tens to hundreds of
nanometers), and will react differently, according to specific surface parameters.12,14,15,24,44,46,47,49 While a large number
of studies suggest that rough titanium surfaces offer a better implant performance compared to smooth titanium surfaces,
in part because of their increased surface roughness, ultrahigh values of roughness (Ra of 52–74 μm) are not correctly
sensed by osteoblastic cells and thus are not compatible with optimal titanium implant performance.12,14–17,19,23,42,43,54,55

Interestingly, osteoclasts (bone-degrading cells), were found to react to smooth and rough titanium surfaces similarly to
osteoblasts.56 Thus, in vitro studies, such as this one, are helpful to better understand much more complex in vivo
implant/tissue interactions.

Conclusions
Here, we examined the response of MG-63 osteoblast-like cells including cell adhesion, proliferation, and ultrastructural
morphology to a rough and porous plasma-sprayed titanium surface and compared it to MG-63 cells seeded onto smooth
surfaces including solid titanium, PEEK, TC plastic, and microscopic cover glasses. We found that cells adhered stronger
and proliferated faster on smooth surfaces compared to the rough titanium surface, suggesting that the rough titanium
surface promoted cell differentiation more strongly than any of the smooth surfaces. Our findings are mostly in
agreement with previously published results examining cell response to rough, plasma sprayed, sandblasted/acid-
etched, or otherwise roughened titanium surfaces.

Interestingly, our findings on rough titanium also correlate with osteoblastic cell adhesion, proliferation, and
differentiation on highly porous bioactive glasses that we have engineered and characterized previously. The shared
results indicate that osteoblastic cells are capable of sensing and discerning surface topology of an implant material in
a wide nanometer range (tenth to hundreds of nanometers), materials and surface characteristics influence the amount and
topology of adsorbed HA and proteins, and that these in turn stimulate adhesion, proliferation, and differentiation
characteristics of interacting cells, and ultimately the clinical performance of an implant material. In summary, our data
convincingly demonstrate that surface topology even of the same material (in this case titanium), drastically affects cell
proliferation, adhesion and cell morphology, and that surface topology considerably modulates cell response.
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