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Purpose: Lung diseases are the third leading cause of death worldwide. Stethoscope-based auscultation is the most commonly used,
non-invasive, inexpensive, and primary diagnostic approach for assessing lung conditions. However, the manual auscultation-based
diagnosis procedure is prone to error, and its accuracy is dependent on the physician’s experience and hearing capacity. Moreover, the
stethoscope recording is vulnerable to different noises that can mask the important features of lung sounds which may lead to
misdiagnosis. In this paper, a method for the acquisition of lung sound signals and classification of the top 7 lung diseases has been
proposed for improving the efficacy of auscultation diagnosis of pulmonary disease.
Methods: An electronic stethoscope has been constructed for signal acquisition. Lung sound signals were then collected from people
with COPD, upper respiratory tract infections (URTI), lower respiratory tract infections (LRTI), pneumonia, bronchiectasis, bronch-
iolitis, asthma, and healthy people. Lung sounds were analyzed using a wavelet multiresolution analysis. To choose the most relevant
features, feature selection using one-way ANOVA was performed. The classification accuracy of various machine learning classifiers
was compared, and the Fine Gaussian SVM was chosen for final classification due to its superior performance. Model optimization
was accomplished through the application of Bayesian optimization techniques.
Results: A test classification accuracy of 99%, specificity of 99.2%, and sensitivity of 99.04%, have been achieved for the 7 lung
diseases using the optimized Fine Gaussian SVM classifier.
Conclusion: Our experimental results demonstrate that the proposed method has the potential to be used as a decision support system
for the classification of lung diseases, especially in those areas where the expertise and the means are limited.
Keywords: auscultation, classification, denoising, discrete wavelet transform, feature extraction, lung diseases, lung sounds

Introduction
Lungs, the principal organs of the human respiratory system, can be affected by a variety of disorders. Chronic
obstructive pulmonary disease (COPD), asthma, pneumonia, upper respiratory tract infection (URTI), lower respiratory
tract infection (LRTI), bronchiectasis, bronchiolitis, and other disorders are examples. COPD is a common chronic
inflammatory lung disease that is primarily caused by smoking.1–3 It causes breathing difficulty, cough, production of
mucus (sputum), and wheezing.2,3 These symptoms are also common in asthma disease,4 which is another most common
and widespread lung diseases that is associated with airway obstruction in the lungs.4–6 It causes recurrent episodes of
wheezing, breathlessness, chest tightness, and coughing, particularly at night or early in the morning.5 Pneumonia is an
infection that can be caused by bacteria, viruses, and fungi and inflames the air sacs called alveoli in one or both lungs.7

It causes coughing that may cause mucus production, fever, chest pain, and shortness of breath. An upper respiratory tract
infection (URTI) is a respiratory illness that occurs commonly in both children and adults and is a major cause of mild
morbidity.8 It is caused by several families of viruses, such as rhinovirus, coronavirus, parainfluenza, respiratory
syncytial virus (RSV), adenovirus, human metapneumovirus, influenza, enterovirus, and the recently discovered
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bocavirus.8 URTIs affect the upper respiratory tract, including the nose, sinuses, pharynx, or larynx.9,10 LRTI symptoms,
on the other hand, vary and depend on the severity of the infection, and it is the leading cause of pediatric mortality and
morbidity in low and middle-income countries.10 The less severe infections can have the same symptoms as bronchiolitis
or bronchiectasis. Bronchiectasis is a long-term condition where the airways of the lungs become abnormally widened.11

It can make the lungs more vulnerable to infection, resulting in a build-up of excess mucus. It causes a persistent cough
which usually brings up phlegm (sputum), and breathlessness. Bronchiolitis is also a common lung infection among
infants that occurs when small breathing tubes (bronchioles) become infected.

There are several clinical options for diagnosing pulmonary diseases. For the diagnosis of pulmonary problems, imaging
modalities such as chest x-rays, CT scans, and magnetic resonance imaging (MRI) are employed. In contrast, the risk of
repeated doses of harmful radiation, the cost of machines, and the inconvenience of deploying them in remote regions are
only a few of the challenges of adopting imaging modalities, particularly for many third-world patients. Spirometers are
also commonly used to measure the volume of inspired and expired air by the lungs, as well as to detect abnormal
ventilation patterns. However, a spirometer requires a skilled operator, is expensive, ineffective at detecting obstructive-
restrictive defects, and necessitates a large number of patient breathing motions and forceful breathing.12 An arterial blood
gas analyzer (ABG) can also be used to assess lung problems using arterial blood gas exchange (pO2 and pCO2).13

However, the ABG test is expensive and requires an invasive procedure.
Despite rapid and continual technological advancements in the field of chest disease detection, auscultation remains

the most widely used and indispensable lung disease diagnostic tool.14 Lung sounds, which are collected using
a stethoscope, are key indicators of respiratory health and diseases. They provide vital information regarding the
health of the lungs.15,16 A stethoscope is a handy, easy, low-cost and completely non-invasive diagnostic tool used to
identify lung disorders based on lung sounds. On the other hand, auscultation with a stethoscope gives a limited and
subjective perception of respiratory sounds. Subjectivity leads to discrepancies in the interpretation of lung sounds by
various medical experts. Subjectivity and inconsistency are caused by the physician’s hearing capability, experience,
and ability to distinguish and define various sound patterns. Furthermore, the stethoscope recording is highly
susceptible to noise. Noise signals mask crucial characteristics of lung sound signals, thus leading to incorrect
diagnosis of lung diseases.

To overcome the constraints of the manual diagnosis technique, many machine learning and deep learning approaches
for automatic classification of lung disease based on lung sound signals have been developed in various literatures.12,17–22

For instance, Islam et al,12 proposed a Welch spectral method for estimation of power spectral density (PSD) of lung
sounds and a support vector machine (SVM) for classification of lung diseases as normal, asthma, and COPD claiming an
accuracy of 93.3%. Similarly, Haider et al,20 proposed a respiratory sound-based classification of pulmonary diseases as
normal or COPD using SVM and an accuracy of 83.6% was reported. Convolutional neural network (CNN) and deep
neural network (DNN) techniques have been also proposed in the literature for the classification of lung
abnormalities.15,23 Demir et al,15 employed a CNN-based approach for the classification of lung diseases (crackles,
crackles combined with wheezes, wheezes, and normal) and an accuracy of 63.09% was reported using spectrogram
images. Likewise, Quan et al,23 performed classification of asthma severity using DNN to classify asthma severity,
achieving a maximum classification accuracy of 91.1%.

However, the majority of these and other approaches proposed for lung disease classification are either designed for
specific or limited lung disease classification, are less accurate, or use the exclusive time or frequency domain analysis
technique, which is inefficient for analysis of non-stationary lung sound signals. This study presents the design and
construction of an electronic stethoscope for effective lung sound signal acquisition, as well as a multiresolution signal
analysis technique for multi-classification of the most common lung disorders using a machine learning approach.

Materials and Methods
The general procedure used in this study for the classification of pulmonary diseases using lung sound signals is
demonstrated in Figure 1. These methods involve the design and construction of an electronic stethoscope, data
acquisition, data pre-processing, feature extraction, feature selection, feature visualization and normalization, data
splitting, model training and evaluation, model optimization, and multi-class classification.
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Design and Construction of Electronic Stethoscope
Constructing an electronic stethoscope by modifying an acoustic stethoscope necessitates the use of a transduction device to
transform acoustic waves into comparable electrical signals. A dependable, cost-effective, and lightweight condenser
microphone with a consistent frequency response (working frequency range of 20 Hz to 16 KHz and a high (> 62 dB)
signal to noise ratio (SNR) was chosen and installed onto the stethoscope head for this purpose. The sensor (microphone) was
chosen in accordance with the recommendations of the computerized respiratory sound analysis (CORSA) specification.24

The materials used for the construction of the electronic stethoscope include head of traditional stethoscope, medical grade
tubing, condenser microphone, audio cable and computer installed with audacity software (audacity 2.4.2) (Figure 2)

Figure 1 A Proposed procedure for analysis of lungs sounds and classification of lung diseases.

Figure 2 An electronic stethoscope for acquisition of lung sounds.
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Data Acquisition
Lungs’ sound data was collected using the constructed electronic stethoscope from the Pulmonology Unit at Jimma University
Medical Center (JUMC). Each record was obtained from a clinically hospitalized patient with a different chest location, such as
the left and right anterior, left and right posterior, and left and right lateral areas of the chest wall. The data was collected from nine
asthmatic patients, six bronchiectasis patients, four pneumonia patients, three URTI patients, six bronchiolitis patients, seven
LRTI patients, six COPD patients, and six healthy participants. A total of 60 asthma, 49 bronchiectasis, 23 pneumonia, 15 URTI,
47 bronchiolitis, 48 LRTI, 30 healthy, and 15 COPD lung sound signals were gathered from these patients. In addition, we
incorporated annotated lung sound recordings from the International Conference on Biomedical and Health Informatics (ICBHI)
respiratory sound dataset (10 asthma, 16 bronchiectasis, 37 pneumonia, 45 URTI, 13 bronchiolitis, 2 LRTI, 45 healthy, and 45
COPD). In total, 500 lung sound signals (287 from JUMC and 213 from the online dataset), including 75 healthy, 70 asthmatic,
60 pneumonia, 60 URTI, 50 LRTI, 60 COPD, 65 bronchiectasis, and 60 bronchiolitis lung sound recordings, were evaluated and
used for machine learning model training. For data uniformity, only lung sound signals that were acquired using a single channel
stethoscope were selected from the ICBHI database. In addition, all the local lung sound records were acquired (local records) or
resampled (public datasets) with the sampling rate of 44.1KHz and 16 bit-depths of analog to digital (A/D) conversion. Table 1
demonstrates the demographic information of self-collected (local) and online lung sounds.

Data Pre-Processing
Wavelet-based denoising techniques were employed to denoise the signals without affecting essential aspects of the lung sounds.
The discrete wavelet transform (DWT) is a time-frequency signal analysis approach that provides good localization in both the
time and frequency domains. DWT was used to denoise lung sound signals in three steps: decomposition, detail coefficient
thresholding, and reconstruction. Denoising the lung sound signals was accomplished using several wavelet functions and
threshold selection criteria. For the final denoising procedure, a wavelet function and level of decomposition with a higher SNR
value were used. The first (decomposition) phase involved selecting a suitable wavelet function and determining the level of
wavelet decomposition (sym13 at 6th level of decomposition). In the second step, for each wavelet decomposition level 1 to N ,
soft thresholding was applied to the detail (high frequency) coefficients of the signal. The final step, reconstruction, was done
using the original approximation coefficients of levelN and themodified detail coefficients of levels from1 toN . Furthermore, the
performance of the two thresholdingmethods (soft and hard thresholding) for the denoising of lung soundswas investigated using
four well-known standard threshold selection rules: heursure, rigrsure, minimaxi, and sqtwolog.25,26

Feature Extraction
The DWT-based feature extraction algorithm was used for the extraction of features of the lung sound signals. Feature
extraction was conducted using MATLAB (MATLAB R2019b). The extraction was performed in 7 steps.

Table 1 Demographic Information of Self-Collected and Online Lung Sound Data

Pulmonary Conditions Online Lung Sound Data Self-Collected Lung Sound Data

Age Group Gender (Quantity) Age Group Gender (Quantity)

Bronchiectasis 19–73 Male (2), Female (5) 21–38 Male (2), Female (4)

Pneumonia 4–81 Male (4), Female (2) 23–52 Male (3), Female (1)

URTI 0.67–16 Male (6), Female (8) 3–11 Male (1), Female (3)

Bronchiolitis 0.67–3 Male (4), Female (2) 1–4 Male (4), Female (2)

LRTI 0.58–3 Male (2) 1–2 Male (2), Female (1)

Asthma 70 Female (1) 57–72 Male (6), Female (3)

Healthy 0.25–16 Male (13), Female (13) 8–23 Male (5), Female (4)

COPD 45–93 Male (48), Female (15) 39–65 Male (5), Female (1)
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Step 1: The lung sound signals were decomposed into six detail sub bands using DWT at level N ¼ 6. The sub bands
are the details (high-frequency band coefficients) and the approximation (low-frequency band coefficients).

Step 2: The approximation coefficients were further decomposed to extract localized information from the sub bands
of detail coefficients. A six-level decomposition was performed using the Sym13 wavelet.

Step 3: All the six level detail band coefficients were then selected for further analysis and processing.
Step 4: For six detail sub bands, the frequency vector (in radians/sample) was extracted using the periodogram

function in MATLAB.
Step 5: The decomposed and modified signals were reconstructed using inverse-DWT.
Step 6: Then different time and frequency domain features were computed from the reconstructed signals.
Step 7: Finally, the extracted features for all the lung sound classes were tabulated in the feature table for

classification. The extracted features and their mathematical descriptions are illustrated in Table 2.

Feature Selection and Normalization
Prior to training machine learning models, feature selection was undertaken to choose the most important features and
remove undesired or redundant features. We chose and used one of the statistical filter feature selection approaches, One-

Table 2 Mathematical Description of Time Domain and Frequency Domain Features

Features Mathematical Descriptions

Mean Xmean ¼
∑N
i¼1 Xi
N N is number of samples and X is the signal.

Standard deviation (σ)
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Xi � Xmeanð Þ

2ð Þ
p

N

Root mean square (RMS)
XRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N ∑

N

i¼1
X2
i

s

Shape factor XSF ¼ XRMS
1
N∑N

i¼1 Xij j

Kurtosis Xkurt ¼
1
N ∑N

i¼1 Xi � Xmeanð Þ
4

ð1N ∑N
i¼1 Xi � Xmeanð Þ

2
Þ
2

Skewness Xskew ¼
1
N ∑N

i¼1 Xi � Xmeanð Þ
3

ð1N ∑N
i¼1 Xi � Xmeanð Þ

2
Þ
3=2

Peak value Xp ¼ max Xij j

Crest factor Xcrest ¼
Xpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N ∑N

i¼1 X2
i

p

Impulse factor XIF ¼ XP
1
N∑N

i¼1 Xij j

Clearance factor Xclear ¼
Xp

1
N∑N

1

ffiffiffiffiffi
Xij j

p� �2

Total harmonic distortion

(THD)

It is the ratio of the sum of all the powers of harmonic components to the

power of fundamental frequency.

average frequency favg
� �

¼
∑n
i� 1 fiXpi

∑n
i¼1 pi

p is power spectral density and f is the frequency vector.

Signal to noise and distortion
ratio (SINAD)

It is the ratio of total signal power to total noise plus the distortion power.

Peak amplitude It is the maximum amplitude value of the signal.

Band power It is defined as the area under the spectrum curve within the selected band limits.
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way ANOVA, with a minmax normalization scheme to choose the most important features in this study. ANOVA is the
process of ranking or ordering retrieved features based on the value of a scoring function. It typically assesses the usefulness
of features.27 Moreover, for numerical input and categorical output classification issues, ANOVA is the preferred method.27

After feature ranking and selection of the most relevant features, feature normalization was performed to avoid bias during
data training and classification.

Data Splitting
Prior to model training and classification, the data was divided into training and testing. Initially, the dataset was split
using the hold-out method. Then, an eightfold cross-validation was applied. This allows the training and validation sets to
cross-over in successive rounds so that each data point will have a chance of being validated against 8 separate times.
Accordingly, 80% of the data (400) were used for training and the rest 20% (100) were used for testing.

Model Training and Evaluation
A total of 8 models from the 4 machine learning models including Naive Bayes, K-nearest neighbor (KNN), Ensemble
and support vector machine (SVM) models were trained and compared for classification of lung diseases. Naive Bayes
models are a group of classification algorithms based on Bayes’ theorem. Naive Bayes algorithms classify the data in two
steps. In the first step, using the training data, the method estimates the probability distribution of the parameters by
assuming each predictor is conditionally independent given the class. Then, in the prediction step, for any new data, the
method computes the posterior probability distribution of that sample belonging to each class. KNN classifiers, on the
other hand, classify the object based on the distance between the new object and the defined objects. The new object is
assigned to the class K that has the shortest distance to class K which is defined as the nearest neighbor.28 Ensemble
classifiers mix results from many weak learners into one high-quality ensemble model. The SVM algorithm represents
the training data as points in a flat separated space by an apparent gap. Then, the new objects are mapped into space with
the forecast category based on which side of the gap they fall. It classifies the data by finding the best hyperplane which
separates data points of one class from those of the other classes.

After training of the selected machine learning models using the extracted and selected features, the best model with
higher classification accuracy was selected. Then, the classification performance of the selected algorithm was further
evaluated using different performance metrics.

Model Optimization and Evaluation
Bayesian optimization techniques were used to optimize our model for improving classification performance. There are
different ways to perform Bayesian optimization technique including fitcauto and fitrauto, classification learner and
regression learner apps, fit function, and bayespot.29 In this study, we used a classification learner app to automatically
build an optimized model using Bayesian optimization scheme. Finally, different performance metrics such as accuracy,
sensitivity, and specificity of the final optimized model were determined from the true positives (TP), false negatives
(FN), true negatives (TN), and false positives (FP) of the model classification result (Equations 1–3).

Sensitivity ¼
TP

TPþ FN
(1)

Specificity ¼
TN

TN þ FP
(2)

Accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
(3)

https://doi.org/10.2147/MDER.S362407

DovePress

Medical Devices: Evidence and Research 2022:1594

Abera Tessema et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Results
Data Pre-Processing
A DWT-based denoising of the lung sound signals which involves three steps including decomposition, detail
coefficient thresholding, and reconstruction was applied for all recorded signals prior to feature selection and model
training. Figure 3 demonstrates sample signal decomposition using the DWT technique. Following the decomposition,
performance of soft and hard thresholding techniques using different wavelet functions at different levels of decom-
position was evaluated as demonstrated in Table 3. The highest SNR values were obtained for Symlet 13 (Sym13)
wavelet function at the 6th level of decomposition (SNR values of 22.50 dB and 22.48 dB using soft and hard
thresholding methods, respectively). Hence, the Sym13 wavelet function at 6th level decomposition with soft thresh-
olding method was selected for decomposition and denoising of the lung sound signals. The effect of the four
threshold selection rules including Rigrsure, Sqtwolog, Heursure, and Minmax, were also compared during denoising
of lung sound signals using the selected wavelet function (demonstrated in Table 4). As indicated in Table 3, the
highest SNR values of the Sym13 wavelet function were observed when using the Sqtwolog threshold selection rule.
Hence, the sym13 wavelet function with soft thresholding method and Sqtwolog threshold selection rule was selected
and applied to denoise all the lung sound signals. Sample results of DWT decomposition on healthy and COPD patient
lung sound signals are demonstrated in Figure 3. Figure 4 shows samples of the denoised and reconstructed lung sound
signals of healthy and COPD subjects.

Feature Extraction, Selection and Normalization
Following denoising, important features were extracted from all of the lung sound signals. Then, feature ranking was
utilized to choose the greatest predictors or characteristics for discriminating between distinct classes. For the selection of
the most discriminative features, a one-way ANOVA feature ranking approach was used. Table 5 displays the results of
feature ranking using one-way ANOVA. The final three time-domain features with the lowest score values (skewness,
peak value, and total harmonic distortion (THD)) were removed from the feature list, and the remaining features were
chosen for model training. Following feature selection, features were normalized by removing each mean from the value
of the feature and dividing it by the standard deviation.

Model Training, Evaluation and Optimization
The classification accuracy of 8 machine learning models trained using the same data and extracted features are
demonstrated in Figure 5. Among the 8 models, Fine Gaussian SVM outperformed the rest with training
classification accuracy of 97.8%, and was selected for our purpose. For further improvement of classification

Figure 3 Wavelet decomposition of lung sound signals using Sym13 at 6th level from (A) healthy patient (B) COPD subjects.
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accuracy, the selected model was optimized using Bayesian optimization technique and a final accuracy of 98.8%
was achieved. The performance of the Fine Gaussian SVM classifier after optimization is demonstrated in the
confusion matrix of Figure 6.

Table 4 SNR Values of the Four Threshold Selection Rules for Denoising Lung Sound Signals Using Sym13
Wavelet Function at 6th Level Decomposition with Soft Thresholding Method

Thresholding Method Soft

Wavelet Function Sym13 at 6th Level Decomposition

Threshold selection rules Heursure Rigrsure Minimax Sqtwolog

Performance measure SNR (dB) SNR (dB) SNR (dB) SNR (dB)

Asthma 22.5274 7.9084 20.8074 22.5437

Bronchiectasis 18.3032 18.3383 18.3459 18.3573

Bronchiolitis 22.7513 22.7919 22.7030 22.7142

COPD 11.8043 6.7031 11.6804 11.8150

Healthy 22.5302 22.4980 22.4411 22.4537

Pneumonia 21.8823 21.9152 21.9101 21.8736

LRTI 22.5367 22.6272 22.4426 22.5723

URTI 22.3549 22.2753 22.3364 22.3901

Table 3 SNR Results Obtained When Denoising the Lung Sound Signals Using Different Wavelet Functions at Different Levels of
Decomposition with Soft and Hard Thresholding Methods and Sqtwolog Threshold Selection Rule. (Db4=Daubechies 4, Db10=
Daubechies 10, Sym5= Symlet 5, and Sym13= Symlet 13.)

SNR (dB)

Wavelet
Function

Level 3 Level 4 Level 5 Level 6 Level 7

Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard

Db4 16.73 15.99 18.32 17.89 20.29 20.29 20.38 20.33 20.01 19.87

Db10 17.32 16.66 19.10 18.98 21.45 21.43 22.39 22.38 21.32 20.99

Sym5 16.83 16.02 19.66 18.77 20.33 20.42 21.34 21.33 20.98 19.83

Sym13 17.89 17.23 19.66 19.28 21.59 21.49 22.50 22.48 21.65 21.31

Figure 4 Denoising of lung sound signals using Sym13 wavelet function at 6th level with soft thresholding method. (A) healthy, (B) COPD.
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Model Testing
As a final evaluation, testing was performed on the final optimized model with a new dataset. A total of 100 lung sound
signals were used for testing. The classification performance of the final optimized model is demonstrated in the
confusion matrix presented in Figure 7. Accordingly, an average classification accuracy of 99%, sensitivity of 99.04%
and specificity of 99.2% were achieved using the new dataset.

Discussion
Auscultation of lung sounds provide vital information about the physiology and pathology of lungs and airways
obstruction.19 Accurate lung diagnosis of lung sounds requires the ability to distinguish normal breathing sounds from
various abnormal adventitious sounds. Many spectral analysis techniques including Fourier transform (FT), fast Fourier
transform (FFT)-Welch, autoregressive (AR), AR-Burg, autoregressive moving average (ARMA), and Mel-frequency
cepstral coefficients (MFCC) have been used in the literature for lung sound signal analysis.19,20,30,31 Time domain
analysis techniques such as empirical mode decomposition and multiscale entropy techniques have been also used for
analysis of lung sounds.32–34

However, frequency-domain or time-domain analysis techniques alone cannot provide enough information of the non-
stationary lung sound signals. Due to this, time-frequency domain analysis techniques have been also employed in
literature for analysis of the non-stationary lung sound signals.15,19,35 Short-time Fourier transform (STFT)-based
analysis techniques provide both time and frequency information of signals but unable to extract multiple features due
to single and fixed window regions.

Table 5 Results of Features Rank Using One-Way ANOVA Feature
Ranking Method

Features One-Way ANOVA Score
Values

Shape factor 875.078

Standard deviation (Std.) 550.53

Root mean square (RMS) 550.312

Crest factor 450.617

Clearance factor 432.095

Impulse factor 419.692

Signal to noise ratio (SNR) 419.064

Signal-to-noise and distortion ratio

(SINAD)

416.626

Band power 231.186

Peak amplitude 95.6772

Mean 65.935

Kurtosis 61.0681

Peak frequency 29.0683

Skewness 19.7747

Peak value 2.3584

Total harmonic distortion (THD) 0
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In this study, acquisition and wavelet multiresolution analysis of lung sounds using DWT and classification of most
common lung diseases using machine learning techniques has been proposed. Lung sounds of 7 top lung diseases and
health subjects were recorded using a custom designed and constructed electronic stethoscope. In addition, online
annotated lung sound signals were also included in our dataset. All the lung sound records were normalized at the
same sampling rate of 44.1KHz and bit-depth of 16 bits. Furthermore, DWT-based denoising of the lung sound signals
involving decomposition, detail coefficient thresholding, and reconstruction was performed on all signals. Four wavelet

Figure 6 Confusion matrix demonstrating the performance of optimized Fine Gaussian SVM classifier per each true class.

Figure 5 Accuracy achieved on different machine learning models.
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functions (Db4, Db10, Sym5, and Sym13) and four different threshold selection rules (Rigrsure, Sqtwolog, Heursure, and
Minmax) were compared in denoising the lung sound signals. The SNR results for the different wavelet functions were
calculated at different levels of decomposition (3rd to 7th) for comparison. After evaluation, the Sym13 wavelet function
at 6th level decomposition with soft thresholding method and Sqtwolog threshold selection rule outperformed the others
and was selected for denoising operation.

A DWT-based feature extraction technique was applied to extract important features from the lung sound signals.
A total of 16 features were extracted from the lung sound signals. After pertinent feature extractions, feature selection by
a means of variable or feature ranking was done to select the most discriminative features. A one-way ANOVA feature
ranking method using minmax normalization scheme was implemented and 13 out of 16 most discriminative features
were selected to train different machine learning models. Then, feature normalization was performed to all extracted
feature values to avoid bias to the classifier during model training and classification. After feature normalization, the
whole data was split into training (80%) and testing (20%). Then, an eightfold cross-validation technique was applied to
the training dataset. 8 machine learning models from 4 families were trained and validated to select the best performing
model.

Better results were achieved by Gaussian Naive Bayes and Kernel Naive Bayes algorithms with an accuracy of 94.8%
and 95.8%, respectively. KNN classifiers typically have best predictive accuracy in low dimensions but might not be
good in high dimensions.22 Additionally, KNN classifiers have high memory usage and are not easy to interpret. Naive
Bayes classifiers are easy to interpret and useful for multiclass classification.22 However, the Naive Bayes algorithms
need a small amount of training data for estimating the vital parameters which made the algorithms extremely fast
compared to more sophisticated methods.36 In addition, ensemble algorithms, RUS Boosted trees and Bagged trees were
trained, and an accuracy of 96.5% and 97.3%, respectively, were achieved. Ensemble classifiers tend to be slow to fit
because they often need many weak learners.36 SVM algorithms including Cubic SVM and Fine Gaussian SVM were
also trained and a relatively higher accuracy of 97.5% and 97.8%, respectively, were achieved. Accordingly, the model
with the highest classification accuracy, Fine Gaussian SVM was selected and further optimized using Bayesian

Figure 7 Test result of the final optimized model using unseen dataset.
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optimization technique for accuracy improvement. After model optimization, the accuracy of our model was improved to
98.8%. Furthermore, the optimal model parameter values of box constraint level and kernel scale were found to be
417.88 and 24.82, respectively. Finally, the optimized model was tested using unseen (new) dataset and an overall
accuracy of 99%, sensitivity of 99.04% and specificity of 99.2% were achieved.

The proposed method delivered considerably improved results compared to similar lung sound signal processing,
analysis and classification methods proposed in the literature. A summary of comparison between related works and the
current work is illustrated in Table 6.

The results found in the current work for the classification of most common lung disease using lung sound signals
demonstrate the proposed methods’ potential in helping physicians in the diagnosis of lung disease. We acknowledge that
the lung sound signals used for model training were acquired using a single channel data acquisition system. Multichannel
data acquisition systems could be more efficient to gather more adequate information about the lungs pathology.

Conclusion
In this study, a cost-effective electronic stethoscope for acquisition of lung sounds, DWT for the time-frequency
multiresolution analysis of lung sound signals, and different machine learning classifiers were employed for multi-
class classification of most common lung diseases.

The Sym13wavelet functionwith soft thresholdingmethod and sqtwolog threshold selection rule was used for decomposition
and denoising of the lung sound signal. DWT-based feature extraction was performed for the extraction of different features from
the lung sound signals. A single way ANOVAwas used to select the most discriminative features used to train different machine
learning models. After model selection, optimization, training, and testing, an overall accuracy of 99%, a sensitivity of 99.04%,
and a specificity of 99.2% were acquired using a Fine Gaussian SVM model. The proposed method delivered a considerably
improved result for the classification of most common lung diseases including asthma, pneumonia, COPD, URTI, LRTI,
bronchiectasis, bronchiolitis, and healthy. The experimental results demonstrate that the developed system has the potential to
be used as a decision support system for physicians, especially in low resource settings and in the diagnosis of lung disease.

Table 6 Comparison of the Current Work with Related Literature

Authors Analysis Technique and Classification Model Used Accuracy %

Islam et al, 2018.12 Fast Fourier transform-Welch + Support vector machine (SVM) 93.3

Aykanat et al, 2017.19 Mel frequency cepstral coefficient + SVM 75.75

Haider et al, 2019.20 (Median frequency, Linear predictive coefficients) + SVM 83.6

Mondal et al, 2014.32 (Empirical mode decomposition, Hilbert Transform) + Extreme learning machine 92.86

Don et.al, 2020.30 Random subset feature selection + K-nearest neighbor (KNN) 94.1

Sengupta et al, 2016.31 Cepstral features + Artificial neural network (ANN) 97.83

Rizal et al, 2018.34 Multiscale entropy + Message passing neural network (MPNN) 97.67

Rizal et al, 2018.33 Mean percentage error + MPNN 97.98

Pamono et al, 2019.35 Continuous wavelet transform + ANN 94.02

Aykanat et al, 2017.19 Short time Fourier transform (STFT) + Convolutional neural network (CNN) 76

Demir et al, 2019.15 STFT + SVM 65.5
STFT + Deep CNN (DCNN) 63.09

Hosseini et al, 2020.37 DCNN 83

The current work Multi-resolution analysis (DWT) + SVM 99
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