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Abstract: Helicobacter pylori is one of the most common pathogenic bacterium worldwide, infecting about 50% of the world’s
population. It is a major cause of several upper gastrointestinal diseases, including peptic ulcers and gastric cancer. The emergence of
H. pylori resistance to antibiotics has been a major clinical challenge in the field of gastroenterology. In the course of H. pylori
infection, some bacteria invade the gastric epithelium and are encapsulated into a self-produced matrix to form biofilms that protect the
bacteria from external threats. Bacteria with biofilm structures can be up to 1000 times more resistant to antibiotics than planktonic
bacteria. This implies that targeting biofilms might be an effective strategy to alleviate H. pylori drug resistance. Therefore, it is
important to develop drugs that can eliminate or disperse biofilms. In recent years, anti-biofilm agents have been investigated as
alternative or complementary therapies to antibiotics to reduce the rate of drug resistance. This article discusses the formation of H.
pylori biofilms, the relationship between biofilms and drug resistance in H. pylori, and the recent developments in the research of anti-
biofilm agents targeting H. pylori drug resistance.
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Introduction
Helicobacter pylori is a Gram-negative microaerobic spiral rod-shaped bacterium that was first cultured and identified by
Professors Marshall and Dr. Warren.1 This bacterium primarily colonizes the gastric mucosal surface and has been linked
to chronic gastritis, peptic ulcer, gastric mucosa-associated tissue lymphoma (MALT), gastric cancer, and other upper
gastrointestinal disorders.2 Standard triple therapy (proton pump inhibitor + two antibiotics) and bismuth quadruple
therapy (proton pump inhibitor + bismuth + two antibiotics) are the most commonly used during eradication therapies for
H. pylori.3

H. pylori secrete proteins, polysaccharides, extracellular DNA (eDNA), and other molecules to create extracellular
polymeric substances (EPS) after colonizing the gastric mucosa, which are wrapped and adhered to each other by
bacteria to form biofilms.4 Unlike planktonic bacteria, colonies that form biofilm structures are highly resistant to the
harsh external environment, including antibiotic exposure.5 It is well established that when bacteria develop biofilms,
their resistance to antibiotics increases by up to 10–1000 times.6 Therefore, the formation of H. pylori biofilms is most
likely the primary cause of long-term chronic infection, multiple drug resistance, and treatment failure.

Consequently, strategies targeting biofilms can be applied to alleviate H. pylori drug resistance. Research should be
directed at developing anti-biofilm agents/molecules and determine their minimum effective concentration that can
completely eradicate biofilm with maximum potency without causing unwanted side effects to the host.
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Helicobacter pylori Biofilm
The formation of H. pylori biofilms decreases efficacy of conventional eradication treatments.7 Individual planktonic
bacteria which grow on agar plates or broths are often used as platforms for antibiotic susceptibility testing. However,
these bacteria do not exist as independent individuals, and the majority do not live as a single species.8 About 80% of the
world’s bacteria are known to exist as biofilms,9 and this has been their major means of survival for billions of years.10

Bacteria that form biofilms adhere to one another using extracellular polymeric substances (EPS) composed of
polysaccharides, proteins, extracellular DNA (eDNA), and share information using quorum sensing (QS) system,
allowing them to live in an organized manner similar to that of animal populations.4 In the event of a threat, such as
drastic changes in temperature and pH, nutrient and oxygen deficiency, antibiotic exposure, or other similar events, they
are able to respond immediately.

Steps of H. pylori Biofilm Formation
Majority of H. pylori strains are capable of forming biofilms in vivo and in vitro depending on the strain.11,12 Clinical
strains isolated from the gastric mucosa of patients have been reported to have higher capacity to form biofilm than other
strains.13 The formation of biofilms by H. pylori, like other bacteria, is divided into four steps: (1) attachment, (2)
growth, (3) maturity, and (4) dispersal (Figure 1).14 H. pylori adheres to the gastric epithelial cells in the gastric sinus.
Co-adhesion is the term used to describe adhesion that occurs between the bacterial cytosol and the gastric epithelial
cells.15 This process is driven by bacterial structures such as flagella, pili, and lipopolysaccharides, and it is also involved
in the initial step of H. pylori pathogenicity. Bacterial adhesion to a surface can upregulate the secretion of intercellular
signaling molecules via a QS mechanism within minutes and co-produce EPS with surrounding bacteria to establish firm
and irreversible microcolonies.16,17 Bacteria in microcolonies continue to proliferate and produce EPS, which promotes
bacterial coaggregation and results in the formation of an early biofilm structure.15 The biofilm matures after 2–4 days
after initial adhesion and is maintained for some time.17 When nutrients are depleted in the biofilm and waste metabolites
accumulate to a specific concentration threshold, the biofilm disintegrates into the dispersal stage. This process is
mediated by several mechanisms, including termination of the synthesis of biofilm matrix compounds, degradation of

Figure 1 Steps of H. pylori biofilm formation. Planktonic H. pylori (green) adhere to the surface of gastric epithelial cells and secrete molecules to create extracellular
polymeric substances (EPS) to form an early biofilm structure and biofilm H. pylori (blue) are protected from the adverse external environment. After the biofilm matures,
dead H. pylori (red) gradually appear due to the lack of nutrients in the biofilm and the biofilm dispersal into the next cycle.
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the matrix, and disruption of non-covalent interactions between matrix components.18 After dispersal, the bacteria
undergo the next stage of expanded infection and biofilm formation in a new ecological niche. In this regard, if the
concentration or dose of antimicrobial agents is insufficient, or if only anti-biofilm agents without antimicrobial activity
are used during the eradication of H. pylori with biofilm formation, it will not be possible to effectively eradicate all
bacteria, but rather flush out only the biofilm matrix, and the dispersed flora may re-adhere to the gastric epithelium,
further expanding the size of the biofilm and the scope of infection. This might be the primary reason why, in some
studies, the size of the biofilm increased rather than decreased following the application of sub-inhibitory doses of
antibiotics.19 This also implies that some anti-biofilm agents that lack antimicrobial activity may require to be
supplemented with antibiotics to improve the therapeutic effect, as they may otherwise make the infection more severe.

Regulatory Pathways Affecting Biofilm Formation of Helicobacter pylori
Research on regulatory pathways affecting H. pylori biofilm formation is still in its infancy. The most extensively
pathway is the intercellular communication mechanism known as the quorum sensing (QS) system.20 Bacteria are
capable of autonomous growth, division, sensing, and adaptation to environmental signals. The process of biofilm
formation is a community behavior in which bacteria interact with one another and regulate gene expression in response
to population density changes, allowing bacteria to adapt to changes in the external environment.21 The transition
between these two states is governed by QS signaling molecules such as N-acyl-homoserine lactones (AHL), autoindu-
cing peptide (AIP), autoinducer-2 (AI-2), and diffusion signaling factor (DSF).22,23 Cole et al found that specific
mutations in the cagE type IV secretion gene and quorum-sensing gene luxS may be associated with enhancing the
ability of H. pylori biofilm formation.24 Elsewhere, Wong et al used comparative genomics to sequence the entire
genomes of 32 biofilm-forming clinical strains and found that genes involved in H. pylori biofilm formation included
alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein, and a cag pathogenicity
island protein.25 These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen
synthesis, adhesion, and/or the type-IV secretion system (T4SS). The outer membrane protein AlpB plays a critical
role in the formation of strong biofilms by the TK1402 strain.26 In ArsRS mutant strains, the outer membrane protein
HomB is required for hyperbiofilm formation and aberrant regulation of this gene is sufficient to induce a hyperbiofilm
phenotype.27 SpoT has been implicated in biofilm formation in multi-drug resistant bacteria by upregulating the efflux
pump HP1174 and the neutrophil-activating protein (NapA; HP0243).28,29 The transporter proteins HP0939, HP0497,
and HP0471 are implicated in H. pylori biofilm formation.30

Methods for Detecting Biofilms
The most frequently used staining method for the quantitative determination of in vitro biofilms grown attached in micro-
titer polystyrene well plates is crystalline violet (CV).31,32 After staining, the scanning electron microscope is used to
observe the three-dimensional structure of biofilms.11 In contrast, the crystal violet staining method has its limitations,
since it requires repeated washing, which invariably decreases the number of biofilm cells. Other methods for detecting
biofilm formation include the tissue culture plate method,33 bioluminescence analysis,34 transmission percentage (%T)
method,35 and some other biofilm imaging techniques such as fluorescence microscopy examination, confocal laser
scanning microscopy (CLSM), infrared spectroscopy, and optical fluorimetry.36,37

The Mechanism of Drug Resistance in Helicobacter pylori Biofilm
At present, the mechanisms of H. pylori biofilm resistance are not fully elucidated, and there is considerable room for
doubt and evidence. However, according to current research, they are mostly related to the resistance mechanisms
described below.

EPS Barrier Protection
EPS plays a primary role in H. pylori biofilm resistance. Because the target of antibiotics is typically situated within the
bacterial cell and EPS is located in the outermost layer of the biofilm, EPS wraps around the bacterium, avoiding direct
interaction of the body’s immune cells with the bacteria and decreasing antibiotic penetration.38 Furthermore, because
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EPS is generally negatively charged and some of antibiotics are positively charged, the EPS component of the biofilm
also forms a natural charge barrier, limiting antimicrobial agents transport.39

H. pylori Coccoid Formation
There are two forms of viable H. pylori, the spiral form, which is highly culturable and colonizable, and the viable but
non-culturable (VBNC) coccoid form, also known as the persistent form, which is a dormant state of the bacterium.40,41

When the external environment is unfavorable for H. pylori growth and reproduction, such as lack of nutrients, changes
in oxygen concentration or pH, and antimicrobial drug intervention, H. pylori form biofilms and undergoes transforma-
tion from spiral to coccoid forms.42 In general, antimicrobial drugs have excellent inhibitory and bactericidal effects only
on bacteria in their active phase, while dormant bacteria located deep inside the biofilm are difficult to kill. Lewis
observed that while most cells in the biofilm are sensitive to antibiotics, a small proportion of persistent cells survive,
independent of the antibiotic concentration.43 Biofilm-protected cells can withstand large dosages of antibiotics as well as
immunological defense mechanisms. When antibiotic concentrations are reduced, coccoid H. pylori transform back into a
reproducible spiral and repopulate the biofilm or disperse out of it to form a new biofilm.43,44

Involvement of Efflux Pumps
The efflux pump is a multidrug transporter protein that is found on the bacterial cell membrane. The pump transports
antimicrobial drugs out of the bacterium, thereby decreasing the intracellular concentration of antimicrobial drugs which
promotes drug resistance. It is the primary cause of multi-drug resistance in H. pylori. A previous study showed that
when biofilms were exposed to clarithromycin, they developed substantial levels of resistance compared to planktonic
cells, and significant expression of efflux pump genes was detected in these biofilm cells.45 Other studies have revealed
that the expression of efflux pump genes Hp605, Hp971, Hp1327, Hp1489, Hp118, and Hp1174 is remarkably higher in
bacteria that form biofilms than in planktonic bacteria,5,28 implying that efflux pumps and biofilms can work synergis-
tically to increase drug resistance.

Other Drug Resistance Mechanisms
Research has revealed that increased propagation of antibiotic resistance genes in biofilms through horizontal gene
transfer, integration of conjugative elements, and natural transformation leads to drug resistance.46–48 Point mutations at
positions 2142 or 2143 in the V structural domain of 23S rRNA in biofilms results in development of drug resistance.45

Hathroubi et al found that biofilm formation causes changes in outer membrane proteins associated with antibiotic
resistance and that increasing proteinase K levels can alleviate clarithromycin resistance.49 Furthermore, eDNA in
biofilms promotes microbial adhesion, inhibits antibiotic diffusion, and chelates cations.50 Some extracellular enzymes
in the biofilm may have hydrolytic effects on antibiotics.51

Anti-Biofilm Agents Against H. pylori
Natural Products
As indicated in Table 1, most antibiofilm agents are mainly isolated from natural products, many of which are
“secondary” metabolites and can be produced by microorganisms,52 such as phytochemicals, biosurfactants, antimicro-
bial peptides, and microbial enzymes, etc.53 In addition, several quorum sensing inhibitors and probiotics have been
found to show anti-biofilm activity.54,55 It is interesting to note that all natural products in Table 1 have anti-H. pylori
biofilm activity, and nearly all of them also have antibacterial ability. These natural products have good anti-biofilm and
antibacterial abilities in vitro, whereas some of the natural products such as Pistacia vera L. oleoresin,
Dihydrotanshinone I (DHT), Amu-ru 7, and Casearia sylvestris leaf derivatives are effective against H. pylori both in
vitro and in vivo.56–59 It is noteworthy that some of the natural products tested for anti-biofilm and antibacterial ability
were carried out using H. pylori strains that were resistant to one or more drugs.12,56,60 This suggests that some natural
products have the potential to alleviate H. pylori multidrug resistance. Evidence from prior studies has indicated that H.
pylori eradication therapy requires a combination of different antibiotics such as clarithromycin (CLR), levofloxacin
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Table 1 Natural Anti-Biofilm Agents Targeting H. pylori Infection

Natural Anti-Biofilm Agents H. pylori Strains In vivo/in
vitro

Antibacterial
Activity

Synergistic
Antibiotics

References

Chelidonium majus and Corydalis
cheilanthifolia Extracts

H. pylori 8064 in vitro √ AMX [88]

Atractylodes lancea volatile oils NCTC 11637 in vitro √ [89]

Pistacia vera L. oleoresin clinical strains in vitro and
in vivo

√ LVX [56]

Dihydrotanshinone I G27

ATCC 43504

26,695
NSH57

clinical strains

BHKS159

in vitro and

in vivo

√ MTZ [57]

Armeniaspirol A G27

Hp159
clinical strains

BHKS159

in vitro and

in vivo

√ [12]

curcumin ATCC 43504 in vitro [90]

3-Bromopyruvate or Sertraline ATCC 51932
H. pylori 8064

in vitro √ [91]

Antimicrobial Peptide Cathelicidin SS1
H. pylori 10,783

in vitro √ [92]

Alginate Lyase ATCC 43629 in vitro CLR [93]

Aloe vera inner gel H. pylori 3/2013/A
H. pylori 21/2011/A
H. pylori 16/2012/A

ATCC 43629

in vitro √ [60]

Amu-ru 7 ATCC 43503

NCTC 11638

clinical strains

in vitro and

in vivo

√ [58]

Hibiscus rosa sinensis L. Flower ATCC 43504

ATCC 51932
clinical strains

in vitro √ [94]

Rhamnolipid SS1 in vitro √ CLR, AMX [95]

Sodium Lauryl Sulfate SS1 in vitro √ [96]

Lactobacillus salivarius LN12 SS1

ATCC43504

clinical strains

in vitro √ CLR, AMX [64]

Resveratrol ATCC 43629

clinical strains

in vitro √ LVX [97]

Myricetin ATCC 700824

ATCC 51932

in vitro √ CLR, AMX

LVX, MTZ, TET

[65]

(Continued)
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(LVX), amoxicillin (AMX), metronidazole (MTZ), and tetracycline (TET).61–63 A combination of classically used
antibiotics with natural products can synergistically fight against H. pylori. Pistacia vera L. oleoresin synergizes with
levofloxacin to suppress drug-resistance in H. pylori strains.56 When Lactobacillus salivarius LN12 cell-free supernatant
(CFS) was used in combination with AMX and CLR, they disrupted the biofilm structure of some strains much more
effectively than when each agent was applied alone.64 Myricetin was the only natural product that synergized with all five
traditional anti-H. pylori antibiotics to disrupt the transition of H. pylori from spiral to coccoid forms.65 In comparison,
several anti-biofilm agents appear to be more effective in eradicating H. pylori than a combination of some antibiotics.
Armeniaspirol A (ARM1) exerted potent antibacterial activity against H. pylori (including multidrug-resistant strains).
Moreover, a combination of ARM1 and omeprazole more effectively killed H. pylori in vivo compared to standard triple
therapy in a mouse model of multidrug-resistant H. pylori infection.12 The combination of DHT and omeprazole also
showed superior H. pylori-killing effect than standard triple therapy, suggesting that DHT may be suitable anti-H. pylori
drug when combined with a proton pump inhibitor.57 From the above, it follows that natural products have great potential
to combat H. pylori biofilms and to address the problem of drug resistance in H. pylori.

Nanoparticles
In recent years, nanomaterials have also been used to eradicate H. pylori biofilms and minimize drug resistance.66–68 New
Synthesized Silver Ultra-NanoClusters (SUNCs) alone or in combination with metronidazole exhibit good anti-biofilm
and antibacterial activity.69 Nanodrugs made of berberine derivatives and rhamnolipids (RHL) penetrated the mucus layer
and effectively cleared H. pylori biofilms in vitro and in vivo.70

Acetylcysteine
N-acetylcysteine is the only molecule in clinical trials that has been found to be effective against H. pylori biofilms.71 It is an
antioxidant that breaks down of mucus and is most frequently used to treat chronic respiratory tract infections.72 Numerous
studies have demonstrated that NAC inhibits bacterial adhesion, decreases the viability of sequestered cells, disrupts mature
biofilms of a variety of bacteria, and inhibits the production of extracellular polysaccharide substrates.73–75 NAC pretreatment
improves the outcome of patients with refractory Helicobacter pylori infection before initiating triple therapy.71

Table 1 (Continued).

Natural Anti-Biofilm Agents H. pylori Strains In vivo/in
vitro

Antibacterial
Activity

Synergistic
Antibiotics

References

Casearia sylvestris leaf derivatives ATCC 43504 in vitro and

in vivo

√ [59]

Lactobacillus plantarum LN66 ATCC 43504 in vitro CLR, LVX [98]

Nimbolide G27

26,695

HPAG1
SS1

J99

7.13
USU101

USU103UA1182

(ATCC 700684)

in vitro √ [99]

Carvacrol and Thymol NCTC 11637

(ATCC 43504)

in vitro [100]

Dioscin H. pylori J99 in vitro √ CLR, MTZ, LVX [101]
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Other
A previous study showed that Extremely Low-Frequency Electromagnetic Fields (ELFs) can reduce H. pylori biofilm
adhesion and formation.76 A combination of curcumin and blue light irradiation for more than 6 minutes disrupted H.
pylori mature biofilms by more than 50% and enhanced the antimicrobial effect.77,78 An Electrolyzed Superoxidized
Solution exerted antibacterial and anti-biofilm effects against H. pylori.79

Shortcomings of the Current Study
First, researchers have made significant progress in understanding biofilms for opportunistic pathogenic bacteria,
particularly those found in hospitals. Many of these bacteria are typically sequestered on surfaces of indwelling medical
devices.80 For example, Pseudomonas aeruginosa, which can form biofilms on medical equipments such as catheters,
implants, and contact lenses,81 Escherichia coli, which can also form biofilms on surfaces of indwelling catheters,82

Acinetobacter baumannii, which has been reported to cause ventilator-associated and catheter-associated biofilm
infections.83 Staphylococcus, which can result in mechanical heart valves-associated and central venous catheter-
associated biofilm infections,84 and Candida, which can form biofilms on medical devices such as vascular catheters,
joint prostheses, and dialysis catheters,85 etc. To date, there are few studies on H. pylori biofilms, and research is still at
the preliminary stage. Given that biofilms may be an important cause of H. pylori drug-resistant and long-term infections,
significant research attention should be directed at H. pylori biofilms. Second, most anti-biofilm agents targeting H.
pylori have been mainly tested in vitro using only standard strains such as SS1, ACTC43503, NCTC11639, and G27,
which are not geographic- or strain-specific.7,86 Even when clinical strains were used, the majority of them were isolated
from infected patients and cultured in vitro to form biofilms. This does not perfectly reflect the biofilm formation process
in the in vivo environment.87 Currently, there is no clinical guideline and therapeutic agent for biofilm infections. In vivo
and clinical trials must be improved and practiced. Finally, rapid and accurate diagnostic tools for H. pylori biofilms
should be developed for effective treatment and prevention of long-term chronic infection. In addition, conventional
microbial culture, molecular biology, and other tests, should carried out in the early stages of biofilm infection, for
accurate diagnosis and subsequent anti-biofilm treatment.

Conclusion and Perspectives
The emergence of drug resistance in H. pylori has become a unique clinical challenge. The formation of H. pylori
biofilms is considered an important factor contributing to antibiotic resistance in humans. Thus, anti-biofilm agents
should be developed because they have strong antagonistic effect against bacterial biofilms. This will decrease drug
resistance hence increase the eradication rate of H. pylori and providing us with a new approach to address the antibiotic
resistance problem. Unconfirmed speculation suggests that anti-biofilm agents will most likely become the new treatment
approach in addressing the failure of H. pylori eradication therapy and multi-drug resistance in the near future.
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