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Abstract: Inflammation is the tissues’ defense response after the body is stimulated by 
microbial infection or damage signals, and it is initiated when pattern recognition receptors 
recognize pathogen-related molecular patterns and danger-related molecular patterns. The 
hyperactivation of NLRP3 inflammasome, the main driving force of immune outbreaks, is 
involved in a wide range of inflammatory diseases. Meanwhile, growing evidence has 
indicated that the development of NLRP3-targeted therapies offers great potential and 
promise for the treatment of related diseases. The search for and development of efficacious 
anti-inflammatory prodrugs from natural sources of plants and traditional Chinese medicines 
(TCMs) have received extensive attention. Glycyrrhiza, an important minister in the kingdom 
of TCMs, has high activity and a wide range of therapeutic effects. Studies have shown that a 
variety of active components found in Glycyrrhiza, such as licochalcone A, echinatin, 
isoliquiritigenin, and glycyrrhizin, produce a wide range of anti-inflammatory effects by 
discouraging NLRP3 inflammasome activation. Here, we summarize the role and mechanism 
of the active ingredients in Glycyrrhiza that target the NLRP3 inflammasome and treat 
related inflammatory diseases. We describe a favorable approach for the development of 
natural, safe, and efficient drugs that exploit these naturally occurring active ingredients to 
treat NLRP3-driven diseases. 
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Introduction
Inflammation is a tissue defense response after the body is stimulated by external 
microbial infection or by damage signals from itself. The pathological manifesta
tions include tissue exudation, degeneration, and hyperplasia in the inflammatory 
area, and are characterized by redness, swelling, heat, pain, and dysfunction. The 
inflammatory response is initiated when cell surface or intracellular pattern recog
nition receptors (PRRs) recognize pathogen-related molecular patterns (PAMPs) 
and danger-related molecular patterns (DAMPs).1 Many common clinical diseases, 
such as cardiovascular diseases, autoimmune diseases, wound repair, are character
ized by inflammation.2–4 In clinical treatment, anti-inflammatory drugs are the 
second largest class of drugs after anti-infective drugs; these drugs mainly consist 
of steroidal anti-inflammatory drugs and non-steroidal anti-inflammatory drugs. 
However, due to the strong adverse side-effects of many synthetic drugs,5 the 
search for and development of dependable and efficacious anti-inflammatory 
drugs from natural sources such as plants has received extensive attention. In 
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particular, traditional Chinese medicines (TCMs), the 
quintessence of disease prevention and control in China 
for thousands of years, are a very important part of the 
world medicine treasury and play a vital role in 
inflammation.

Innate immunity plays an important role in the devel
opment of a variety of diseases by regulating the immune 
and inflammatory responses that depend on PRRs. NLRP3 
inflammasome is part of the innate immune response and 
is activated in response to PAMPs or DAMPs, promoting 
the expression, maturation and release of multiple pro- 
inflammatory cytokines that trigger a cascade of inflam
matory responses. Recent studies have shown that the 
activation of NLRP3 inflammasome is the main driving 
force behind excessive immune outbreaks.6–8 The aberra
tion of NLRP3 inflammasome activation participate in the 
development of human diseases, such as metabolic pathol
ogies, cardiovascular diseases, inflammatory issues, and 
neurologic disorders.9–11 Glycyrrhiza, also known as 
“Guo Lao” in Chinese, is an important minister in the 
kingdom of TCMs. It is not only the most commonly 
used TCM in tonics and food, but also one of the most 
important TCMs with high levels of activity and a wide 
range of therapeutic effects. A wide range of pharmacolo
gical effects makes Glycyrrhiza useful for treating multi- 
system inflammatory diseases, allergic diseases, and 
immunocompromised diseases.12–15 A variety of active 
components in Glycyrrhiza exert a wide range of anti- 
inflammatory effects by inhibiting NLRP3 inflammasome. 
Therefore, in this review, we mainly focus on the role and 
mechanism of the active ingredients in Glycyrrhiza and 
how they target the NLRP3 inflammasome to treat related 
inflammatory diseases.

The Activation of NLRP3 
Inflammasome
Inflammasomes are protein polymer complexes that coor
dinate the host’s defense mechanism against pathogens 
and physiological abnormalities. The assembly of inflam
masome complexes is initiated by the nucleotide-binding 
domain and leucine-rich repeat receptors (NLRs) or absent 
in melanoma 2 (AIM2) like receptors (AIM2-like recep
tors, ALRs), etc.16,17 NLRs and ALRs mediate the recog
nition of PAMPs and DAMPs during bacterial, viral, 
fungal and cellular damage. In most cases, activated 
NLRs and ALRs will recruit the dimeric protein of apop
tosis-associated speck-like protein containing a caspase 

activation and recruitment domain (ASC) which partici
pates in caspase-1 activation.18 NLRP3 (also called 
CIAS1, Cryopyrin, NALP3 or Pypaf1) is composed of an 
amino-terminal pyrin domain (PYD), nucleotide-binding 
and oligomerization domain (NOD), C-terminal leucine- 
rich repeat domain.19–21 The activation of the canonical 
NLRP3 inflammasome requires the completion of two 
signals (Figure 1). Signal 1 (priming stage) is character
ized by toll-like receptors (TLRs), NOD2, tumor necrosis 
factor receptor 1 (TNFR1), TNFR2, etc., that induce NF- 
κB-mediated precursor protein production, including 
NLRP3, pro-IL-1β, and pro-IL-18. Signal 2 (activation 
stage) is the stage when a variety of PAMPs and DAMPs 
induce the assembly of the NLRP3 inflammasome com
plex (NLRP3-ASC-pro-caspase-1). Subsequently, pro-cas
pase-1 auto-cleaves to form active caspase-1, and caspase- 
1 then cleaves and activates the precursor proteins pro-IL- 
1β and pro-IL-18 into mature forms IL-1β and IL-18, 
which are secreted into the extracellular to participate in 
the subsequent inflammatory response. At the same time, 
the activation of NLRP3 inflammasome also leads to the 
occurrence of a programmed cell death, called pyroptosis.

Pharmacological Inhibitors of 
NLRP3 Inflammasome in 
Glycyrrhiza
Licochalcone A (Lico A)
Lico A (Figure 2A) is a chalcone occurring in Glycyrrhiza 
that has a wide range of pharmacological activities, includ
ing anti-inflammatory, anti-tumor, and anti-bacterial.14 

Here, we focus on the anti-inflammatory effect of Lico A 
via targeting NLRP3 inflammasome. Osteoarthritis (OA) 
is the most common arthritis in the elderly and is char
acterized by subchondral bone hyperplasia and articular 
cartilage degeneration, leading to the loss of joint 
function.22,23 NLRP3 inflammasome is a potentially 
novel therapeutic target for the management of OA.24,25 

In vitro, Lico A suppresses NLRP3 inflammasome activa
tion and GSDMD expression in primary mouse OA chon
drocytes via nuclear factor erythroid-2 related factor 2 
(Nrf2)/heme oxygenase-1 (HO-1)/NF-κB axis (Figure 3), 
indicating that Lico A attenuates LPS-induced chondro
cyte pyroptosis.26 In vivo, Lico A significantly attenuates 
the LPS-induced IL-1β and IL-18 protein expression in an 
air pouch mouse model.26 The above studies indicate that 
Lico A may have therapeutic potential in OA.
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Cell stress causes excessive accumulation of reactive 
oxygen species (ROS), leading to the separation of thior
edoxin interacting protein (Txnip) from thioredoxin-1 

(Trx-1).27 Then, Txinp binds to NLRP3, triggering the 
activation of NLRP3 inflammasome, which has been pro
ven to be a key signaling molecule connecting oxidative 

Figure 1 The process of canonical NLRP3 inflammasome activation. The priming signal (signal 1) is provided by microbial components, such as lipopolysaccharide (LPS), 
leading to the activation of the transcription factor NF-κB and subsequent upregulation of NLRP3, pro-interleukin-1β (pro-IL-1β), and IL-18. The activation signal (signal 2) is 
provided by a variety of stimuli including extracellular adenosine triphosphate (ATP), nigericin, pore-forming toxins, viruses et al, to induce the assembly of NLRP3-ASC-pro- 
caspase-1. Pro-caspase-1 then auto-cleaves and activates the precursor proteins pro-IL-1β and pro-IL-18 into mature forms IL-1β and IL-18. Moreover, active caspase-1 also 
leads to the occurrence of pyroptosis.

Figure 2 Chemical structure of compounds from Glycyrrhiza. (A) Licochalcone A; (B) Licochalcone B; (C) Liquiritigenin; (D) Echinatin; (E) Isoliquiritigenin; (F) Isoliquiritin; 
(G) Glycyrrhizin; (H) Glycyrrhetinic acid; (I) Carbenoxolone.

Journal of Inflammation Research 2022:15                                                                                          https://doi.org/10.2147/JIR.S344071                                                                                                                                                                                                                       

DovePress                                                                                                                         
411

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


stress and inflammasome activation.27,28 The LPS/GalN- 
induced inflammatory response is closely related to 
NLRP3 inflammasome activation.29–31 Studies have 
shown that Lico A treatment notably decreases Txnip, 
NLRP3, ASC, caspase-1 p20, and IL-1β p17 protein 
expression but enhances the expression of thioredoxin-1 
(Trx-1) protein in LPS/GalN-induced acute lung injury 
(ALI) (Figure 3),32 indicating that inflammation inhibited 
by Lico A may be responsible for suppressing activation 
of the Txnip-NLRP3 inflammasome.

NLRP3 inflammasome activation triggered by 
Propionibacterium acnes (P. acnes) is vital for inducing 
inflammatory response and worsening the development of 
acne.33–35 Lico A has been shown to suppress P. acne- 
induced NLRP3 inflammasome activation via inhibition of 
ASC speck formation and mitochondrial reactive oxygen 
species (ROS) in primary mouse BMDMs and immorta
lized human SZ95 sebocytes (Figure 3).36 Importantly, 

external use of Lico A on mouse ear skin reduces skin 
inflammation caused by P. acne, and blocks caspase-1 
activity and IL-1β production.36 These results provide a 
theoretical basis for the development of natural, safe, and 
efficient health care products or drugs derived from Lico A 
raw materials.

Licochalcone B (Lico B)
Lico B is known to have strong pharmacological proper
ties, such as anti-inflammatory, antibacterial, and 
anticancer.14,37 Although the content of Lico B 
(Figure 2B) in Glycyrrhiza is relatively low, it has a strong 
anti-NLRP3 inflammasome effect. Our previous studies 
have shown that Lico B could specifically suppress 
NLRP3 inflammasome activation via binding to NEK7 
and inhibiting the interaction between NLRP3 and NEK7 
in BMDMs, THP-1 cells and human peripheral blood 
mononuclear cells (PBMCs)38 (Figure 3). In vivo 

Figure 3 The mechanism of how active ingredients in Glycyrrhiza, including licochalcone A, licochalcone B, echinatin, liquiritigenin, isoliquiritigenin, and glycyrrhizin, target 
NLRP3 inflammasome to treat inflammation-related diseases. 
Abbreviations: ABCA1, ATP-binding cassette transporter; HMGB1, High mobility group Box 1; HO-1, Heme oxygenase-1;HSP90, Heat shock protein 90; LXRα, liver X 
receptor α; mtROS, Mitochondrial reactive oxygen species;NEK7, NIMA-related kinase 7; Nrf2, Nuclear factor erythroid 2-related factor 2; SGT1, Suppressor of G2 allele of 
skp1; Txnip, Thioredoxin-interacting protein.
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experiments show that Lico B ameliorates LPS-induced 
septic shock characterized by improving survival rate, 
inhibiting IL-1β production, reducing the number of peri
toneal exudative cells and peritoneal macrophages; 
Meanwhile, MSU-induced peritonitis, and methionine- 
and choline-deficient (MCD) diet-induced nonalcoholic 
steatohepatitis are significantly ameliorated by Lico B 
through targeting NLRP3 inflammasome.38 Taking these 
studies into consideration, we firmly believe that with 
further investigation of its pharmacological effects will 
lead to Lico B becoming a promising candidate in the 
treatment of NLRP3-related diseases.

Liquiritigenin
Hyperuricemia, a metabolic disease with a high prevalence 
rate, is typically related to high serum uric acid that could 
cause monosodium urate crystals to be deposited in the 
joints and kidneys, seriously endangering the life and 
health of patients.39,40 A large amount of evidence indi
cates that the inflammatory response mediated by the 
NLRP3 inflammasome plays a crucial role in the renal 
injury of rodent models for hyperuricemia and clinical 
patients.41–43 Liquiritigenin (Figure 2C), one of the flavo
none compounds extracted from Glycyrrhiza plants, 
reduces the level of uric acid in the serum and urine, and 
decreases renal inflammation in potassium oxonate- 
induced hyperuricemic rats by inhibiting the activation of 
the renal AQP4/NF-κB/IκBα signaling pathway and 
NLRP3 inflammasome.44 Hyperglycemia is considered a 
crucial element in the pathogenesis and progression of 
diabetic nephropathy (DN).45,46 Liquiritigenin suppresses 
high glucose-induced extracellular matrix accumulation, 
oxidative stress, and inflammation in the rat glomerular 
mesangial cell line HBZY-1 by inhibiting NF-κB and 
NLRP3 inflammasome pathways,47 thus showing potential 
for preventing the development of DN.

Echinatin
Echinatin is a bioactive flavonoid in Glycyrrhiza. It has 
been reported that echinatin exhibits strong scavenging 
activity and suppresses the production of nitric oxide, 
interleukin-6 and prostaglandin E2 in LPS-induced macro
phage cells.48 Moreover, echinatin could attenuate CCl4- 
induced liver injury and may be responsible for the hepa
toprotective activity of Glycyrrhiza.49 Our previous studies 
have shown that echinatin (Figure 2D) inhibits NLRP3 
inflammasome activation by binding to heat-shock protein 
90 (HSP90), inhibiting its ATPase activity and disrupting 

the association between the cochaperone SGT1 and 
HSP90-NLRP350 (Figure 3). In vivo experiments demon
strated that echinatin treatment could suppress NLRP3 
inflammasome activation and ameliorate LPS-induced sep
tic shock, dextran sodium sulfate-induced colitis, and 
MCD diet-induced nonalcoholic steatohepatitis in mice,50 

making it a favorable candidate approach for therapeutic 
interventions in NLRP3 inflammasome-driven disease.

Isoliquiritigenin (ILG)
ILG (2’,4’,4’-trihydroxychalcone) (Figure 2E) is an isofla
vone compound extracted from the Chinese herbal medi
cine Glycyrrhiza. It has been proven that ILG is biologically 
safe and has high levels of biological activity. Although 
Glycyrrhiza contains only low concentrations of ILG, ILG 
has a wide range of pharmacological properties, such as 
anti-inflammatory, anti-tumor, and antioxidant.51–53 In par
ticular, the anti-inflammatory effect of ILG has been a 
rapidly growing research topic in recent years. Therefore, 
the following sections mainly explains the anti-inflamma
tory effect of ILG from the perspective of inhibiting NLRP3 
inflammasome.

ILG plays a powerful role in repairing neuroinflamma
tion damage. ILG pretreatment prevents cognitive impair
ment, reverses synaptic dysfunction, alleviates neuronal 
injury, attenuates microglia and astrocyte activation, and 
reduces the production of TNF-α, IL-1β, and IL-18 by 
promoting Nrf2 signaling and suppressing NLRP3 inflam
masome activation in a kainic acid-induced seizure rat 
model.54 A study has shown that chronic nicotine exposure 
increases the protein levels of caspase-1, ASC, IL-1β, and 
exacerbates ischemic brain damage via activation of the 
inflammasome in the brains of female rats.55 As an NLRP3 
inflammasome inhibitor, ILG could decrease nicotine- 
induced ischemic neuronal death in hippocampal organo
typic slice cultures after oxygen-glucose deprivation.55 

Furthermore, spontaneous intracerebral hemorrhage 
(ICH) is a fatal cerebrovascular disease that accounts for 
a relatively high proportion of all stroke types and is 
usually accompanied by high morbidity and mortality.56,57 

ILG administration after collagenase IV–induced ICH 
decreases early brain impairments and neurological defi
cits, and the mechanism is related to triggering Nrf2 activ
ity and Nrf2-induced antioxidant system to regulate the 
activation of NLRP3 inflammasome pathway58 (Figure 3). 
The results of this experiment also indicate that ILG is a 
potential drug candidate for a new treatment strategy 
for ICH.
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Organs and tissues are susceptible to self-injury or 
infection by foreign pathogens, and these lead to the 
occurrence of the inflammatory response. ILG can reduce 
the inflammatory response by inhibiting NLRP3 inflam
masome activation, thus avoiding the occurrence of ser
ious diseases. NLRP3 inflammasome and its regulatory 
mechanisms play an important role in the pathological 
process of ALI.59–61 By activating AMP-activated protein 
kinase (AMPK)/Nrf2/antioxidant response element (ARE) 
signaling and inhibiting the activation of NLRP3 inflam
masome and NF-κB pathways, ILG significantly reduces 
lung injury in LPS-induced ALI mice, and it decreases the 
exudation of inflammatory cells and the levels of pro- 
inflammatory cytokines IL-1β, IL-6, and TNF-α in bronch
oalveolar lavage fluid,62 highlighting the beneficial effects 
of ILG and its related mechanisms in LPS-induced ALI 
and providing new insights for its application. Non-ster
oidal anti-inflammatory drug indomethacin could induce 
small intestinal damage and increase the protein levels of 
cleaved caspase-1 and mature IL-1β in the small intestine.
63 ILG treatment improves indomethacin-induced small 
intestinal damage by suppressing NLRP3 inflammasome 
activation.63 Therefore, there is an urgent need to carry out 
relevant clinical studies to evaluate the effectiveness and 
safety of ILG in the treatment of intestinal diseases caused 
by non-steroidal anti-inflammatory drugs.

In addition, ILG also plays an important role in other 
inflammatory diseases. Chronic periodontitis is a common 
disease, and its incidence and severity increase with age.64 

Periodontal ligament fibroblasts are the primary cell type 
in periodontal ligament tissues and play a vital role in the 
occurrence and development of periodontitis, including 
tissue repair and reconstruction.65,66 ILG markedly 
recovers the migration dysfunction induced by 
Porphyromonas gingivalis lipopolysaccharide by reducing 
NLRP3 inflammasome activation, caspase-1 activation, 
IL-1β and HMGB1 release in cultured mouse periodontal 
ligament fibroblasts.67 Pleurisy refers to inflammation of 
the pleura caused by a variety of infectious and noninfec
tious factors such as tumors, allergies, chemical sub
stances, and trauma. ILG significantly reduces 
histopathological damage and increases the levels of 
inflammatory cell exudation, protein leakage and pro- 
inflammatory mediators in carrageenan-induced pleurisy 
by inhibiting the NLRP3/NF-κB pathway and high levels 
of iNOS and COX-2.68 ILG strongly inhibits NLRP3 
inflammasome activation in macrophages and reduces 
HFD-induced obesity, lipid homeostasis, insulin 

resistance, and the accumulation of inflammatory cells 
and adipose tissue inflammation.69 Moreover, ILG treat
ment inhibits HFD-induced IL-1β and caspase-1 produc
tion in epididymal white adipose tissue culture.69

Isoliquiritin
Depression is a common and debilitating mental illness. It 
is characterized by poor mood, loss of pleasure, and avoid
ance of social interactions, all of which cause a major 
social and economic burden.70 Although a variety of anti
depressant drugs can be used for the treatment of depres
sion, most have a low cure rate, a wide range of side 
effects and poor treatment compliance.71 Therefore, there 
is an urgent need for new therapies with high curative 
effects and few adverse reactions. Current evidence indi
cates that the development of depression is related to 
pyroptosis mediated by the activation of NLRP3 
inflammasome.72–74 Isoliquiritin (Figure 2F) protects 
against LPS and ATP elicited NLRP3 inflammasome acti
vation in primary microglia.75 In vivo data show that 
isoliquiritin administration effectively ameliorates LPS or 
chronic social defeat stress (CSDS)-induced depressive 
symptoms by suppressing NLRP3-mediated pyroptosis 
via miRNA-27a/spleen tyrosine kinase (SYK)/NF-κB 
axis,75 and this provides a new treatment strategy for the 
treatment of depression.

Glycyrrhizin (GL)
Glycyrrhizin (Figure 2G) (also called glycyrrhizic acid) is 
a triterpenoid compound extracted from Glycyrrhiza. GL- 
related derivatives are mainly used as sweeteners in the 
food industry. As a medicine, GL preparation is a powerful 
liver cell membrane protector that has the effects of anti- 
inflammatory, immune regulation, and hepatocyte 
protection.76 It has been used clinically for many years 
as an effective drug for chronic hepatitis and has achieved 
good curative results.77,78

Metabolic disease is caused by disorders of amino acid, 
glucose and lipid metabolism in the body, and chronic 
inflammation is one of its main characteristics. Studies 
have shown that GL has significant therapeutic effects on 
metabolic diseases because of its ability to regulate 
NLRP3 inflammasome activation. Non-alcoholic steatohe
patitis (NASH) is a progressive stage of non-alcoholic 
fatty liver disease (NAFLD) that may lead to liver cirrho
sis and liver cancer.79,80 NASH seriously threatens the 
health of patients, and there is currently a lack of effective 
treatment options. In recent years, studies have shown that 
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NLRP3 inflammasome plays an important biological role 
in the occurrence and development of NASH.81–83 GL 
preparations are currently one of the first-line drugs used 
for anti-inflammatory and hepatoprotective treatments of 
liver diseases. GL could inhibit deoxycholic acid-induced 
NLRP3 inflammasome-associated inflammation in macro
phage cells.84 Importantly, an in vivo experiment shows 
that GL administration significantly attenuates MCD diet- 
induced hepatic steatosis, inflammation, and fibrosis and 
inhibited the activation of NLRP3 inflammasome. 
Moreover, both intraperitoneal injection of GA and oral 
administration of GL significantly reduce MCD-induced 
liver injury,84 suggesting that GL may attenuate NASH via 
its active metabolite GA. Atherosclerosis is the pathologi
cal basis of many vascular diseases, such as aneurysms, 
atherosclerotic obliterans and carotid artery disease.85 

Lipid metabolism disorder is the pathological basis of 
atherosclerosis. Inhibiting the atherosclerotic process is 
beneficial for controlling the development of the above
mentioned vascular diseases. GL significantly attenuates 
LPS/high-fat diet-induced atherosclerosis and NLRP3 
inflammasome-dependent high-mobility group Box 1 
(HMGB1) secretion in male ApoE−/− mice.86

In addition, GL has been shown to be effective in a 
variety of acute inflammatory injury models. 
Streptococcus aureus (S. aureus) infection facilitates pro- 
inflammatory cytokines production and induces damage to 
multiple organs, including ALI.87 GL treatment reduces 
serum and lung tissue IL-6, TNF-α, IL-8, IL-1β and 
HMGB1 levels, as well as lung tissue neutrophil and 
macrophage infiltration in S. aureus-induced ALI by inhi
biting NF-κB, p38/extracellular signal-related protein 
kinases (ERK1/2) pathways, and NLRP3 inflammasome 
dependent pyroptosis.88 In a corneal injury mouse model, 
it has shown that GL treatment attenuates the expression 
of IL-1β by directly inhibiting extracellular HMGB1 func
tions, suppressing the NF-κB-p65/NLRP3/IL-1β signaling 
pathway, resulting in the cornea regaining transparency 
and integrity89 (Figure 3). Acute glaucoma is a cause of 
irreversible blindness that seriously threatens vision and is 
characterized by a sudden and significant increase in 
intraocular pressure followed by the death of retinal gang
lion cells.90,91 HMGB1 is increased in ischemic retinal 
tissue during acute glaucoma, and the HMGB1 inhibitor, 
GL, reduces the severity of the disease via regulating the 
activation of NLRP3 and caspase-8 inflammasomes.92 

These results provide new insights toward understanding 
the role of the innate immune response in the pathogenesis 

of acute glaucoma and provide research strategies for new 
therapeutic targets for acute glaucoma. Traumatic spinal 
cord injury can lead to a large amount of nerve cell 
necrosis and severe functional-behavioral defects in the 
injured area.93 In addition to the primary injury, the sub
sequent inflammatory process also contributes to second
ary injury.94 Functional recovery is promoted by GL 
treatment in rat model subject to traumatic spinal cord 
injury. The GL treatment results in recovery accompanied 
by decreased expression of NLRP3 inflammasome compo
nents, such as ASC, NLRP3, and cleaved caspase-1, as 
well as IL-1β and IL-18.95

Glycyrrhetinic Acid (GA)
GA (Figure 2H), a triterpene saponin extracted from 
Glycyrrhiza plants, reduces LPS-induced ALI pathological 
damage, macrophage infiltration and pulmonary edema, 
and inhibits NLRP3 inflammasome and IL-1β secretion 
mediated by the ROS-PI3K/AKT pathway.96 This suggests 
that it may serve as a potent NLRP3 inflammasome inhi
bitor with great promise toward the attenuation of ALI- 
related inflammation and pathological status. Parkinson’s 
disease (PD) is one of the most common neurodegenera
tive diseases. It has clinical manifestations including rest
ing tremor, rigidity, bradykinesia, and postural instability, 
and is characterized by the loss of dopaminergic neurons 
in the substantia nigra region and the presence of Lewy 
bodies containing α-synuclein.97,98 A large amount of evi
dence confirms the relationship between Parkinson’s and 
NLRP3 inflammasome.99–101 GA, Glycyrrhiza inflata, and 
Shaoyao Gancao decoction (a formulated Chinese medi
cine) all exhibit anti-inflammatory effects that ameliorate 
neurotoxicity induced by α-synuclein in BV-2 and A53T 
SNCA-GFP SH-SY5Y cells by suppressing NLRP1/ 
NLRP3 inflammasome, IL-1β-mediated IκBα/P65, JNK/ 
JUN, P38/STAT1, and IL-6-mediated JAK2/STAT3 
pathways;102 This indicates that related components and 
preparations of licorice may be used as drugs for the 
treatment of neurodegenerative diseases such as PD.

Carbenoxolone (Figure 2I), a synthetic derivative of 
GA, is frequently used in the treatment of gastric ulcers, 
psoriasis, and wound healing. The NLRP3 inflammasome 
is a culprit behind the chronic inflammation that accom
panies insulin resistance in obese mice.103–105 

Carbenoxolone ameliorates insulin resistance in the liver 
and skeletal muscle of high-fat diet-induced obese mice by 
inhibiting IκB-α/NF-κB pathway and NLRP3 
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inflammasome activation,106 and it deserves further study 
for the treatment of obesity related diseases.

Licorice Extract
Glycyrrhiza plants, especially flavonoids, induce strong 
anti-inflammatory and immunomodulatory activities. 
The major flavonoid components in Glycyrrhiza uralen
sis are liquiritin apioside, liquiritin, naringin, liquiriti
genin, quercetin, Lico A and glabridin, as measured by 
high-performance liquid chromatography analysis.107 

The upregulated mRNA and protein levels of TNF-α, 
IL-1β, and IL-6, are significantly decreased by all of the 
flavonoids from Glycyrrhiza uralensis in the colonic 
tissue of irinotecan-induced colitis mice, and the flavo
noids also inhibit the activation of NLRP3 inflamma
some triggered by irinotecan.107 Huangqi decoction 
(Astragali Radix and Glycyrrhizae Radix et Rhizoma), 
a classic Chinese herbal formula, ameliorates 3,5- 
diethoxycarbonyl-1,4-dihydrocollidine-induced chole
static liver injury, and alleviates the increased hepatic 
expression of pro-inflammatory factors and NLRP3 
inflammasome activation.108

Discussion
Since NLRP3 inflammasome is involved in the occurrence 
of a variety of inflammatory diseases, NLRP3 inflamma
some may become a potential drug target for these 
diseases.27,109,110 Therefore, exploring the pathogenesis 
of these diseases from the perspective of inflammation 
and NLRP3 inflammasome activation, and then develop
ing related drugs may bring new hope for treatment. At 
present, therapeutic strategies targeting NLRP3 inflamma
some mainly block the interaction between IL-1β and its 
receptor using antibodies or antagonists that inhibit the 
inflammatory response. However, due to the pro-inflam
matory cytokines produced by the activation of NLRP3 
inflammasome, there are other pro-inflammatory factors in 
addition to IL-1β, such as the presence of IL-18. 
Therefore, the treatment strategy of blocking IL-1β 
requires further investigation, especially in diseases of 
complex etiology that may not respond as well to therapy. 
For this reason, the development of drugs targeting 
NLRP3 inflammasome itself and its related signaling path
ways will become a rapidly growing area of research. 
However, to date, the understanding of NLRP3 inflamma
some activation and its regulatory mechanisms is still very 
limited, and there is a lack of clinical drugs targeting 
NLRP3 inflammasome. In recent years, good progress 

has been made in research on intervention strategies tar
geting NLRP3 inflammasomes. Recent research in our lab 
has found that many active ingredients in TCMs could 
serve as candidate therapeutic drugs for NLRP3-driven 
diseases by suppressing NLRP3 inflammasome activation. 
Cardamonin (from Alpinia katsumadai) could reduce 
lethal LPS-induced mortality and attenuate IL-1β produc
tion in the septic-shock mouse model by inhibiting the 
activation of NLRP3 inflammasome.111 In addition, the 
active components carnosol and cryptotanshinone reduce 
caspase-1 activation and IL-1β secretion in MCD-induced 
NASH mouse model by regulating NLRP3 inflammasome 
activation.112,113 Therefore, the development of small 
molecule compounds targeting NLRP3 inflammasome 
may provide new treatment strategies for complex 
diseases.

Glycyrrhiza contains a variety of active ingredients 
and is one of the most commonly used Chinese medi
cines. A common Chinese idiom is nine out of ten 
prescriptions contain Glycyrrhiza. Ancient documenta
tion on Chinese herbal classics record that Glycyrrhiza 
could “harmonize all kinds of drugs and cure all kinds 
of toxins”, but it is unclear how to regulate these activ
ities. This review details the extensive anti-inflammatory 
effects of various components in Glycyrrhiza via inhibi
tion of NLRP3 inflammasome activation. Our previous 
studies also show that the drugs carbamazepine, isonia
zid and nevirapine, as well as Chinese medicines such 
as Epimedium folium and Psoraleae frucitus, can pro
mote the activation of NLRP3 inflammasome and lead 
to liver injury.114–116 Therefore, we believe that one of 
the scientific connotations of the description of 
Glycyrrhiza’s ability to “harmonize all kinds of drugs 
and cure all kinds of toxins” is the broad spectrum of 
antagonistic effects: abnormal activation of NLRP3 
inflammasome signaling pathway is involved in the 
occurrence and development of various diseases, and 
active ingredients in Glycyrrhiza slow the process and 
reduce the development of related diseases by inhibiting 
NLRP3 inflammasome, and thus are capable of “mediat
ing various drugs and eliminating all toxins”.

The overall concept of TCMs and the characteristics of 
low adverse reactions have received more attention. The 
current application of Glycyrrhiza’s anti-inflammatory 
effects has demonstrated the unique advantages of redu
cing side effects, improving prognosis during disease treat
ment, and improving the survival rate of patients. This 
review summarizes current research on active ingredients 
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in Glycyrrhiza, such as Lico A, echinatin, GL, and ILG, 
that inhibit the activity of NLRP3 inflammasome in the 
treatment of ALI, DN, NASH, and other NLRP3-driven 
inflammatory diseases (Table 1). However, the pharmaco
logical mechanism and clinical application of Glycyrrhiza 
via suppression NLRP3 inflammasome activation have not 
been systematically and thoroughly studied, and the spe
cific action links are not yet detailed enough, especially at 
the cellular and molecular levels. As the chemical compo
sition of Glycyrrhiza is complex and contains a variety of 
anti-inflammatory components, it is not clear whether 

these components have a synergistic or an antagonistic 
effect on inflammatory responses. Therefore, in-depth 
research in this area still needs to be conducted. Since 
Glycyrrhiza is one of the most frequently used TCMs, 
clarifying the molecular biological mechanisms and signal 
transduction pathways explaining how Glycyrrhiza inhi
bits NLRP3 inflammasome will better characterize its anti- 
inflammatory effect, and provide the basis for developing 
new indications and for guiding clinical use of 
Glycyrrhiza. This has important theoretical and practical 
significance.

Table 1 NLRP3 Inflammasome Inhibitors as Well as Their Effects in Glycyrrhiza for NLRP3-Driven Diseases

Agent Cell/Animal Model Effect and Function Ref.

Lico A LPS/GalN-induced acute liver injury 

mouse model

Acute liver injury↓, TNF-α↓, IL-6↓, IL-1β↓, Txnip-NLRP3 inflammasome 

signaling pathway↓
[32]

Primary mouse chondrocytes IL-1β↓, IL-18↓, pyroptosis↓, Nrf2/HO-1 signal pathway↑ [26]

Air pouch mouse model IL-1β↓, IL-18↓ [26]

Bone marrow-derived primary 

macrophages (BMDMs) and human SZ95 
sebocytes

Caspase-1(p10) ↓, IL-1β↓, mitochondrial reactive oxygen species 

production↓
[36]

Intradermal infection of P. acnes mouse 
mode

Skin inflammation↓, caspase-1 activity↓, IL-1β↓ [36]

Lico B BMDMs, THP-1 cells, and human 
PBMCs

IL-1β↓, caspase-1 activity↓, caspase-1 p20↓, bind to NEK7↑, the interaction 
between NLRP3 and NEK7↓

[38]

LPS-induced septic shock Mouse survival↑, IL-1β↓, the number of peritoneal exudative cells↓, 
peritoneal macrophages↓

[38]

MSU-induced mouse peritonitis IL-1β↓, the number of peritoneal exudates↓, neutrophils↓ [38]

MCD diet-induced NASH mouse model Liver steatosis↓, balloon dilatation↓, fibrosis↓, the protein level of active 

caspase-1 in liver tissue↓, the pro-fibrotic marker alpha smooth muscle actin (α- 
SMA) ↓, mRNA expression of col1a1↓, TNF-α↓, IL-1β↓ and IL-18↓, serum IL- 

18↓

[38]

Liquiritigenin Potassium oxonate-induced 

hyperuricemic rat model

The level of uric acid in serum and urine↓, IL-1β↓, IL-6↓, TNF-α↓, renal 

AQP4/NF-κB/IκBα signaling and NLRP3 inflammasome activation↓
[44]

The rat glomerular mesangial cell line 

HBZY-1

High glucose-induced extracellular matrix accumulation↓, oxidative stress↓, 

IL-6 and IL-1β production↓, NF-κB and NLRP3 inflammasome pathways↓
[47]

Echinatin Mouse BMDMs and human PBMCs Bind to heat-shock protein 90↑, ATPase activity↓, the association between 

the cochaperone SGT1 and HSP90-NLRP3↓
[50]

LPS-induced septic shock mouse model IL-1β↓, TNF-α production↓, mouse survival↑ [50]

Dextran sodium sulfate-induced colitis 
mouse model

Colonic inflammation↓, mucosal barrier and inflammatory cell infiltration↓, 
caspase-1 activation↓, IL-1β production↓

[50]

MCD diet-induced NASH mouse model Morphological changes↓, hepatic steatosis↓, ballooning↓, fibrosis↓, caspase-1 
activation↓, mRNA expression of proinflammatory genes IL-1β and TNF-α↓

[50]

(Continued)
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Table 1 (Continued). 

Agent Cell/Animal Model Effect and Function Ref.

ILG Kainic acid-induced seizures rat model TNF-α↓, IL-1β↓, IL-18↓, NLRP3↓, Caspase-1↓ [54]

Carrageenan-induced pleurisy mouse 
model

TNF-α↓, IL-1β↓, IL-6↓, the NLRP3/NF-κB pathway↓, iNOS↓, COX-2↓ [68]

The mouse periodontal ligament 
fibroblasts

Chronic periodontitis↓, caspase-1 activation↓, IL-1β↓, HMGB1↓, ROS/ 
TXNIP/Nlrp3 inflammasome pathway↓

[67]

Collagenase IV–induced intracerebral 
hemorrhage rat model

Neurological deficits↓, histological damages↓, blood-brain barrier 
disruption↓, brain edema↓, neuronal degeneration↓, the NF-κB and NLRP3 

inflammasome pathways↓, Nrf2-mediated antioxidant system↑

[58]

LPS-induced ALI mouse model Recruitment of inflammatory cells↓, COX-2↓, iNOS↓, TNF-α↓, IL-1β↓, IL-6↓, 

the AMPK/Nrf2 signaling and its downstream antioxidant enzymes↑, the 

NLRP3 inflammasome and NF-κB pathways↓

[62]

In vitro model of ischemia in 

organotypic slice cultures

Ischemic neuronal death↓, NLRP3 inflammasome activation↓ [55]

Indomethacin-induced small intestinal 

damage mouse model

Small intestinal damage↓, cleaved caspase-1↓, mature IL-1β protein levels↓ [63]

Ex vivo culture of epididymal white 

adipose tissue

Adipose tissue inflammation↓, IL-1β↓, caspase-1 production↓ [69]

HFD-induced adipose tissue 

inflammation

The accumulation of inflammatory cells↓, adipose tissue inflammation↓ [69]

Isoliquiritin LPS or CSDS-induced depression 

mouse model

The protein levels of SYK↓, p-NF-κB↓, NLRP3↓, caspase-1↓, IL-1β↓, 

GSDMD-N↓; the concentration of IL-1β↓, IL-6↓, TNF-α↓
[75]

Mouse primary microglia Protein levels of p-NF-κB↓, NLRP3↓; cleaved caspase-1↓, IL-1β↓, GSDMD-N↓ [75]

GL MCD diet-induced NASH mouse model NASH-induced liver injury↓, liver fibrosis↓, hepatic lipid accumulation↓, bile 

acid accumulation↓, NLRP3 inflammasome activation and Meta- 
inflammation↓

[84]

Raw 264.7 macrophage cells Deoxycholic acid-induced NLRP3 inflammasome-associated inflammation↓ [84]

LPS/HFD-induced atherosclerosis in 

ApoE−/− mice

Atherosclerosis↓, serum HMGB1 levels↓, NLRP3 inflammasome activation↓ [86]

Streptococcus aureus-induced ALI 

mouse model

Serum and lung tissue IL-6↓, TNF-α↓, IL-8↓, IL-1β↓, HMGB1↓, lung tissue 

neutrophil and macrophage infiltration↓, NF-κB↓, p38/ERK pathways↓, 
pyroptosis↓

[88]

A corneal injury mouse model The expression of IL-1β↓, extracellular HMGB1 functions↓, the NF-κB-p65/ 
NLRP3/IL-1β signaling pathway↓

[89]

An acute glaucoma mouse model The severity of the disease↓, the activation of NLRP3 and caspase-8 
inflammasomes↓

[92]

Traumatic spinal cord injury rat model Expression of NLRP3 inflammasome components↓, ASC↓, NLRP3↓, cleaved 
caspase-1↓, IL-1β↓, IL-18↓

[95]

GA Mouse BV-2 microglial cells Nitric oxide↓, IL-1β maturation↓ [102]

LPS-induced ALI mouse model ALI↓, the activation of NLRP3 inflammasome↓, ROS-PI3K/AKT pathway↓ [96]

(Continued)
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