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Purpose: The objective of this study was to identify the potential regulatory mechanisms, 
diagnostic biomarkers, and therapeutic drugs for heart failure (HF).
Methods: Differentially expressed genes (DEGs) between HF and non-failing donors were 
screened from the GSE57345, GSE5406, and GSE3586 datasets. Database for Annotation 
Visualization and Integrated Discovery and Metascape were used for Gene Ontology and 
Kyoto Encyclopedia of Genes and Genomes analyses respectively. The GSE57345 dataset 
was used for weighted gene co-expression network analysis (WGCNA). The intersecting hub 
genes from the DEGs and WGCNA were identified and verified with the GSE5406 and 
GSE3586 datasets. The diagnostic value of the hub genes was calculated through receiver 
operating characteristic analysis and net reclassification index (NRI). Gene set enrichment 
analysis (GSEA) was used to filter out the signaling pathways associated with the hub genes. 
SYBYL 2.1 was used for molecular docking of hub targets and potential HF drugs obtained 
from the connection map.
Results: Functional annotation of the DEGs showed enrichment of negative regulation of 
angiogenesis, endoplasmic reticulum stress response, and heart development. PTN, LUM, 
ISLR, and ASPN were identified as the hub genes of HF. GSEA showed that the key genes 
were related to the transforming growth factor-β (TGF-β) and Wnt signaling pathways. 
Sirolimus, LY-294002, and wortmannin have been confirmed as potential drugs for HF.
Conclusion: We identified new hub genes and candidate therapeutic drugs for HF, which 
are potential diagnostic, therapeutic and prognostic targets and warrant further investigation.
Keywords: differentially expressed genes, weighted gene co-expression network analysis, 
diagnostic biomarkers, therapeutic drugs, heart failure

Introduction
HF is a clinical syndrome characterized by congestion of the lungs and vena cava, 
leading to abnormal heart structure or function, which is the final stage of the 
development of heart disease.1 Approximately 40 million people worldwide suffer 
from HF, and the incidence rates are steadily rising.2 Despite significant progress in 
the HF management in recent decades, the treatment options are mainly palliative 
rather than curative.3 Given the complex pathogenesis of HF, it is essential to 
elucidate the underlying molecular mechanisms in order to identify potential 
therapeutic targets and prognostic markers.

Bioinformatics is a high-throughput technique that can screen multiple data
bases to identify the potential pathological biomarkers of various diseases.4 

Weighted gene co-expression network analysis (WGCNA) is a systems biology 
application that mines the genetic interaction networks to construct highly 
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coordinated gene modules.4 WGCNA has been widely 
used for detecting disease biomarkers, and elucidating 
biological mechanisms and drug interactions.5–7 

Although biomarkers of HF have been identified, but due 
to heterogeneity of HF and its complicated pathophysiolo
gical manifestations, a single gene cannot accurately pre
dict the characteristics of HF.8,9

In this study, the differentially expressed genes (DEGs) 
between HF patients and non-failing donors (NFD) were 
screened from multiple GEO datasets and functionally 
annotated. The hub genes were then screened through the 
degree of connectivity in the PPI network, and used to 
build a co-expression network with WGCNA. The inter
secting hub genes between DEGs and WGCNA were 
identified and validated in other human HF datasets. 
Gene set enrichment analysis (GSEA) was used to dis
cover the signaling pathways associated with these hub 
genes. Finally, the potential HF drugs were predicted 
through the Connectivity Map (cMap) database, and mole
cular docking between the drug candidates and hub genes 
was simulated using SYBYL 2.1 software.

We conducted a bioinformatics analysis using DEGS 
and WGCNA to further investigate the occurrence and 
development of HF and identify potential therapeutic 
drugs for biomarkers of HF.

Materials and Methods
Data Collection and Preprocessing
The study design is outlined in Figure 1. We searched 
the GEO database and included data on human heart 
tissue samples in this study. The mRNA expression 
profiles from HF and NFD samples were downloaded 
from the GSE57345, GSE5406 and GSE3586 datasets of 
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). 
The subjects included in our study suffered from heart 
failure with reduced ejection fraction (HFrEF) and heart 
failure with preserved ejection fraction (HFpEF). 
Among them were 96 patients with ischemic heart dis
ease, 84 patients with dilated cardiomyopathy (CMP), 
and 139 non-heart failure samples from GSE57345.10 

The GSE5406 dataset included 16 samples without 
heart failure, 86 patients with dilated cardiomyopathy 
(CMP), and 108 patients with ischemic heart disease.11 

The GSE3586 dataset included 13 patients with dilated 
cardiomyopathy and 15 patients without heart failure.12 

The gene annotation files of GSE57345, GSE5406 and 
GSE3586 were GPL11532, GPL96, and GPL3050 
respectively. GEO2R online tool was used for screening 
DEGs between HF and NFD with p < 0.05 (calculated 
by t-test) as the threshold.

Figure 1 Flowchart of study outline. The flowchart constructed by Draw io online tool (http://www.draw.io/index.html).
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Functional Enrichment Analysis of the 
Overlapping DEGs
The overlapping DEGs were uploaded to the Database for 
Annotation, Visualization, and Integrated Discovery 
(DAVID, https://david.ncifcrf.gov/) and Metascape 
(http://metascape.org/) databases for Gene Ontology 
(GO) function and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses respec
tively. P<0.05 was considered statistically significant.

PPI Network Analysis
The protein-protein interaction (PPI) network was con
structed using the STRING database, and visualized with 
the Cytoscape software (3.7.2). DEGs with connectivity ≥ 
5 in the PPI network were considered to be the hub genes.

WGCNA
The R package WGCNA was used to construct the weight 
co-expression network of the GSE57345 dataset. The 
GSE57345 dataset was used in the WGCNA analysis 
because it contained the largest sample size. The weighing 
coefficient β was first calculated based on R2> 0.9 of the 
scale-free real biological network. After determining the 
adjacency function parameter β, a hierarchical clustering 
tree of different gene modules was constructed. The 
Pearson correlation coefficient was then used to transform 
the correlation matrix into an adjacency matrix and subse
quently to a topological overlap matrix (TOM).

Identification of Key Modules and Hub 
Genes
The correlation among the genes in the aforementioned 
modules was analyzed and a heatmap was constructed. 
The module most closely related to the HF state was 
considered the key module of HF. To verify specific mod
ulus-character associations, the correlation between GS 
and MM was investigated. Genes with |MM| > 0.8 were 
subsequently screened out as hub genes in the key module. 
The intersecting hub genes between the key module and 
the DEGs were finally defined as the hub genes of HF.

Validation of Hub Genes
We used the GSE57345, GSE5406, and GSE3586 datasets 
to confirm the identity of the hub genes that may be 
associated with HF. Then, we used the t-test to determine 
the significance of the correlation between the expression 
of hub genes and HF. Receiver operating characteristic 

(ROC) curves were drawn for the core genes in the three 
datasets, and the area under the curve (AUC) was calcu
lated. Specificity, sensitivity, and net reclassification index 
(NRI) were calculated to evaluate the value of the genetic 
diagnosis.

Functional Analysis of Hub Genes by 
GSEA
GSEA was performed to clarify the biological functions of 
the hub genes using the KEGG gene set (c2.cp. kegg. 
v7.2.) as the default and p < 0.05, as the threshold. The 
HF samples of the GSE57345 data set were divided into 
high and low expression groups of each hub gene. The 
enrichment graph was plotted using the clusterProfiler 
package of the R language and GSEA function.

Screening of Potential Therapeutic Drugs
The CMap database includes 1309 compounds and expres
sion data of > 7000 human genes. The DEGs intersecting 
GSE57345, GSE5406, and GSE3585 datasets were 
uploaded to CMap. The negatively correlated small mole
cules were screened out using p < 0.0001 and mean < 0.4 
as the criteria. ChemBioDrawUltta 17.0 software (http:// 
www.chemdraw.com.cn) was used to draw the 3D struc
tural formulas of potential therapeutic drugs and save them 
in mol2 format as small molecule compounds. The 3D 
crystal structures of the core targets were downloaded 
from the UniProt database (https://www.uniprot.org/). 
The Surflex-Dock module of SYBYL2.1 software was 
used for molecular docking, with total score >4 as the 
threshold for binding ability. The docking results were 
visualized using the Pymol software.

Results
Identification and Analysis of DEGs
A total of 583 DEGs were identified between the HF and 
NFD samples across three GEO datasets (Figure 2A–D). 
The most significantly enriched GO terms pertaining to 
biological process (BP) were negative regulation of angio
genesis (p = 1.55E-04), response to endoplasmic reticulum 
stress (p = 6.63E-04), heart development (p = 0.002463), 
regulation of ventricular cardiac muscle cell action poten
tial (p = 0.004523), MAPK cascade (p = 0.005025), and 
blood vessel development (p =0.007107) (Figure 3A and 
Table S1). The cellular components (CC) terms including 
extracellular exosome (p =2.72E-08), cytoplasm (p 
=9.57E-06), actin cytoskeleton p (p =4.94E-05), 
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mitochondrion (p =8.84E-05), nucleoplasm (p =1.03E-04), 
Golgi apparatus (p =1.21E-04) and lysosome (p =6.84E- 
04) were significantly enriched (Figure 3B and Table S1). 
The top enriched molecular function (MF) terms were 
activating transcription factor binding (p = 0.003852), 
actin filament binding (p =0.006599), cadherin binding 
involved in cell-cell adhesion (p = 0.00701), transcription 
coactivator activity (p =0.018332) and collagen binding (p 
=0.034108) (Figure 3C and Table S1). In addition, KEGG 
analysis revealed that the Ras signaling pathway (p 
=5.15548E-07), Focal adhesion (p =1.11814E-05), 
Lysosome (p = 2.43906E-05), MAPK signaling pathway 
(p = 4.23641E-05), PI3K-Akt signaling (p = 4.85396E- 
05), Protein processing in endoplasmic reticulum (p = 
5.21303E-05) and Hippo signaling pathway (p 
=7.03525E-05) were significantly enriched among the 
DEGs (Figure 3D and Table S1).

Construction of WGCNA Network
A total of 1589 genes were screened from the GSE57345 
dataset for WGCNA (p < 0.05, |Log2FoldChange| > 0.5). 
Sample clustering showed no significant differences in the 
WGCNA (Figure 4A). At β = 4, the scale-free network 

fitting index R2 was 0.9, and the average connectivity 
approached 0, indicating that this value could obtain 
a scale-free network that met all requirements. Thus, β = 
4 was selected to construct a scale-free network 
(Figure 4B–C). A dynamic shearing algorithm was used 
to cluster the genes and module divisions.

Identification and Visualization of the Key 
Module
Five gene co-expression modules were finally obtained by 
calculating the module feature vector of each and merging 
similar modules (Figure 5A). The genes were clustered in 
the black, blue, yellow and green-yellow modules, and 
those that could not be clustered into any module were 
specified to the gray module. The yellow module with 73 
genes showed the strongest correlation with HF (r = 0.77, 
p = 1e-61) (Figure 5B), as well as with the clinical phe
notype as per GS and MM analyses (cor = 0.96, p = 5.5e- 
41; Figure 5C–G). The genes distributed in the upper right 
corner were closely related to HF pathogenesis, and are 
likely the key disease genes. Twenty-one genes in the 
yellow module were confirmed as hub genes.

Figure 2 The DEGs between HF and NFD. The volcano plots of DEGs in (A) GSE57345, (B) GSE5406 and (C) GSE3586. (D) Venn diagrams of DEGs in three data sets.
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Identification and Verification of Hub 
Genes
From the 583 overlapping DEGs, 322 hub genes were 
selected for subsequent analysis (Figure 6A). The key 
intersecting genes between the 322 hub DEGs and 21 
hub genes of the yellow module included PTN, LUM, 
ISLR and ASPN. The expression levels of these poten
tially key genes were analyzed in the HF and NFD sam
ples of the GSE57345, GSE5406 and GSE3586 datasets. 
We further visualized their expression levels in the 
GSE57345 data set, and found that all four genes were 
overexpressed in HF samples compared to the NFD group 

(p < 0.05, Figure 6B). Afterwards, the genes were verified 
in GSE5406 and GSE3586, which verified higher expres
sion levels in the HF group (p < 0.05, Figure 6C and D).

ROC Curve Analysis of Key Genes
The potential diagnostic value of PTN, LUM, ISLR and 
ASPN was ascertained by plotting the ROC curve based 
on the expression data in GSE57345, GSE5406 and 
GSE3586. As shown in Figure 7A–C, the AUC of all 
genes in all datasets exceeded 0.9, except for 0.785 calcu
lated for ISLR in GSE3586. We uploaded AUC and 
Standard Error data into MedCalc software, and applied 

Figure 3 GO and KEGG pathway enrichment analysis. Significantly enriched GO terms for (A) Biological processes, (B) Cellular component, (C) Molecular function. (D) 
KEGG pathway Molecular function p < 0.05 is considered statistically significant.
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the Z test to compare the expression of PTN, LUM, ISLR 
and APSN between the datasets. The results showed that 
there was no statistical difference (p >0.05). We used the 
NRI to analyze differences in the expression levels of the 
four predicted HF hub genes in the GSE57345, GSE5406 
and GSE3586 datasets. The PTN and ISLR of the GSE5406 
dataset showed significant differences in predicting HF (NRI 
[95% CI]: 0.3228 [0.0361–0.6095], p: 0.027); the prediction 
effects of the PTN and ISLR genes were significantly dif
ferent, NRI [95% CI]: 0.3905 [0.0073–0.7736], p: 0.045). 
The prediction effects of ISLR and LUM gene in the 
GSE5406 dataset were significantly different (NRI [95% 
CI]: −0.5077 [−0.9361–0.0793], p: 0.020). Subsequently, 
ROC analysis was performed to determine the diagnostic 
value of the four key genes, and the results suggested that 
these four hub genes can diagnose HF with high sensitivity 
and specificity (Table 1).

GSEA of Hub Genes
GSEA of PTN, LUM, ISLR and ASPN revealed direct 
involvement in the pathogenesis of HF. As shown in 
Figure 8A–D, all genes were enriched in arrhythmogenic 

right ventricular cardiomyopathy (ARVC), dilated cardio
myopathy, ecm receptor interaction, focal adhesion, gap 
junction, hypertrophic cardiomyopathy (HCM), regulation 
of actin cytoskeleton and TGF-β signaling pathway. In 
addition, PTN, LUM and ASPN were enriched in the 
WNT signal pathway, LUM in the calcium signaling path
way, and ASPN is likely involved in seleno-amino acid 
metabolism.

Identification of Potential Therapeutic 
Drugs
There were 264 upregulated and 499 down-regulated 
genes intersecting across the three datasets. The genes 
were uploaded to the cMap database to filter out nega
tively related small molecule compounds (p < 0.0001 and 
mean < 0.4). Sirolimus, LY-294002, and wortmannin were 
identified as potential drugs of HF (Figure 9A–C). 
Molecular docking showed that sirolimus had good affi
nity for PTN, ISLR, LUM, and ASPN, and wortmannin 
for PTN and LUM (Figure 9D). The molecular docking 
diagrams of potential compounds and hub targets are 
shown in Figure 9E–J.

Figure 4 Determination of soft-threshold power β. (A) Clustering dendrogram of 319 samples. (B) Scale-free topology fit index as a function of the soft-threshold power. 
The red line indicates that R2 is equal to 0.9. (C) Mean connectivity as a function of the soft-threshold power.
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Discussion
In this study, we combined WGCNA and DEGs to screen 
for genes associated with HF and found that the expression 
levels of the PTN, ISLR, LUM, and ASPN genes were all 
upregulated in HF. Further analysis using the ROC curve 
showed that these four genes may be potential biomarkers 
of HF. At present, PTN and ISLR have not been reported 
to be associated with HF, but there is evidence that they 

may be potentially associated with HF. Single-gene GSEA 
showed that the hub genes of HF are related to arrhythmic 
right ventricular cardiomyopathy, dilated cardiomyopathy 
and hypertrophic cardiomyopathy, which is consistent with 
reports demonstrating that these cardiovascular disorders 
precede the final HF stage.13–15 Single-gene GSEA 
showed that the hub genes of HF are related to arrhythmic 
right.

Figure 5 Identification of key HF gene modules. (A) Clustering dendrograms of genes and module detecting. (B) Heat map of the correlation between HF modules. (C–G) 
Correlation of GS and MM in the HF-related module. p < 0.05 is considered statistically significant.
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GO analysis of the DEGs showed that endoplasmic 
reticulum stress (ERS) is closely related to HF pathogen
esis, which is consistent with previous reports.16–18 The 
risk factors of HF can induce ERS in myocardial cells, 
which culminates in apoptosis and cardiovascular dys
function. In addition, the DEGs were enriched in ferrop
tosis, MAPK signaling pathway, PI3K-Akt signaling 
pathway, and the Hippo signaling pathway, all of which 

are involved in HF. Liu et al19 detected a high level of 
ferroptosis in the cardiomyocytes of a rat model of pres
sure overload-induced HF. Exogenous expression of fer
ritin FTH1 and GPX4 and reduction in ROS levels 
through NOX4 knockdown inhibited ferroptosis in cardi
omyocytes and improved cardiac function. Fang and 
Koleini et al20,21 found that doxorubicin induced the 
accumulation of oxidized phospholipids in 

Figure 6 Analysis of key genes. (A) The Venn diagram of hub genes in the yellow module and hub genes in DEGs. Expression of PTN, LUM, ISLR and ASPN in the (B) 
GSE57345, (C) GSE5406 and (D) GSE3586 datasets. **p < 0.01 and ***p < 0.001 are considered statistically significant.

Figure 7 The ROC curve of hub genes (A) GSE57345. (B) GSE5406. (C) GSE3586. The x-axis shows specificity, and the y-axis shows sensitivity. 
Abbreviations: ROC, receiver operating characteristic; AUC: area under the ROC curve.
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undifferentiated cardiomyocytes and up-regulated heme 
oxygenase1 (HMOX1), resulting in heme degradation, 
free iron overload, and ferroptosis, which eventually 
leads to HF. The loss of myeloid differentiation protein 
1 (MD1) activates ROS and exacerbates autophagy 
induced by the MAPK signaling pathway. Therefore, 
the MD1-ROS-MAPK axis is a novel therapeutic target 
for HF that can preserve the ejection fraction.22 Mao Liu 
et al23 showed that paeoniflorin reduced myocardial 
fibrosis and improved cardiac function in rats with 
chronic HF by regulating the p38/MAPK signaling path
way. Apelin-13 can slow down oxidative stress by inhi
biting the PI3K/Akt signaling pathway in the rat HF 
model and ameliorate angiotensin II–induced cardiac 
insufficiency, impaired cardiac hemodynamics, and fibro
blast fibrosis.24 Hou and Li et al25,26 showed that YAP/ 
TAZ can initiate the transcription of connective tissue 
growth factor by interacting with the TEAD domain 
family, increase the expression of extracellular matrix 
genes, promote cardiac remodeling and fibrosis, and 
thus delay the progression of HF. Leach et al27 found 
that knocking out the SALV gene increased the number 
of left ventricular myocardial cells in mice with myocar
dial infarction, which reduced ventricular fibrosis and 
increased the number of new capillaries around the 
injured myocardium, indicating that the Hippo signaling 
pathway can enhance heart function.

PTN is a highly conserved proto-oncogene closely 
related to tumor angiogenesis and metastasis.28 It is highly 
expressed in various malignant tumors, such as breast 
cancer, prostate cancer and rectal cancer,29,30 and 

promotes the proliferation, mitosis, differentiation, and 
migration of vascular endothelial cells.31 Overexpression 
of PTN gene can promote bone formation, whereas PTN 
gene knockout mice have dysfunctional bone growth and 
remodeling.32 LUM is a member of the SLRP family of 
leucine-rich proteins that are secreted by the extracellular 
matrix. It is widely distributed in various tissues, and 
shows aberrant expression levels in pancreatic cancer, 
colorectal cancer, breast cancer and cervical cancer.33 

LUM has both oncogenic and tumor-suppressive functions 
depending on the cancer type. For instance, LUM facili
tated the metastasis of colon cancer cells by reconstructing 
the actin cytoskeleton, but inhibited the adhesion of osteo
sarcoma cells via the TGF-β2 signaling pathway.34,35 

ISLR is a conserved immune-related protein that is mainly 
expressed in stromal cells.36 Xu et al37 showed that ISLR 
can inhibit Hippo signal transduction during intestinal 
regeneration and tumorigenesis and activate YAP factor 
in epithelial cells. Knocking out ISLR in mouse 
stromal cells significantly affected intestinal regeneration 
and inhibited colorectal tumorigenesis. Zhang and Hara 
et al38,39 further showed that the ISLR can promote muscle 
regeneration and improve myocardial tissue repair. 
However, little is known regarding the correlation between 
ISLR and HF. ASPN is an extracellular matrix protein and 
a member of the leucine-rich small proteoglycan family.40 

Sasaki et al41 showed that ASPN protected gastric tumor 
cells against oxidative stress by up-regulating HIF1α and 
reducing the levels of mitochondrial ROS. It also 
increased the expression of CD44 to accelerate the migra
tion and infiltration of gastric cancer cells. However, other 

Table 1 ROC Curve Analysis of Hub Genes

Data set Gene Specificity (%) Sensitivity (%) Youden Index AUC Standard Error 95% CI

GSE57345 PTN 87.5 81.9 0.6942 0.912 0.0171 0.875–0.941
LUM 83.8 93.2 0.7704 0.917 0.0177 0.881–0.945

ISLR 83.1 88.7 0.7179 0.921 0.0155 0.886–0.949
ASPN 80.1 91.0 0.7111 0.912 0.0182 0.875–0.941

GSE5406 PTN 91.8 93.7 0.8550 0.939 0.0303 0.898–0.967
LUM 90.7 87.5 0.7822 0.960 0.0187 0.924–0.982

ISLR 93.8 93.7 0.8756 0.940 0.0438 0.899–0.968
ASPN 98.5 87.5 0.8595 0.952 0.0324 0.914–0.977

GSE3586 PTN 73.3 100 0.7333 0.918 0.0508 0.751–0.988
LUM 86.7 100 0.8667 0.938 0.057 0.779–0.994

ISLR 73.3 84.6 0.5795 0.785 0.0909 0.589–0.916

ASPN 86.7 100 0.8667 0.938 0.0529 0.779–0.994

Abbreviations: AUC, Area under the ROC curve; 95% CI, 95% Confidence interval.
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reports indicate an anti-tumorigenic role of ASPN in breast 
cancer.42,43 Studies also show that ASPN is up-regulated 
during aortic stenosis or coronary artery ligation in 
ischemic cardiomyopathy patients and animal models.44 

ASPN may also increase the apoptosis and fibrosis of 
H9C2 cardiomyocytes.45 However, the exact role of 
ASPN in HF pathogenesis needs further investigation.

Lu A et al46 found that Wnt3a binds to FZD and LRP5/ 
6 receptors, thereby activating the classic Wnt-Dvl-β- 
catenin signaling pathway and promoting myocardial 
hypertrophy. Wnt signaling can inhibit Na+ channels by 
directly or indirectly inhibiting the expression of Scn5a. 
Thus, blocking these intracellular cascades is a rational 
therapeutic strategy against HF.46 He et al47 found that 

Figure 8 Results of GSEA. (A) PTN. (B) LUM. (C) ISLR. (D) ASPN.
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Wnt3a and Wnt5a ligand were up-regulated in a mouse 
model of cardiac hypertrophy, underscoring the role of the 
Wnt signaling pathway in HF pathogenesis. TGF-β is an 
important factor regulating myocardial fibrosis, which gra
dually worsens during HF and alters cardiac function from 
the compensatory phase to the decompensated phase.48 

Kakhi et al49 found that sirolimus, an mTOR inhibitor, 
reversed new HF after kidney transplantation in mammals. 
Gao et al50 also showed that rapamycin (sirolimus) can 
reduce cardiomyocyte apoptosis and promote autophagy 
by regulating mTOR and ERS, thus preventing myocardial 
damage caused by chronic HF. LY294002 and wortmannin 
are protein kinase inhibitors that block the PI3K signaling 
pathway. Melatonin alleviates cardiac hypertrophy by inhi
biting the Akt/mTOR pathway and reducing Atg5- 
dependent autophagy, which can be reversed by 

LY294002.51 Studies show that apelin may reduce the 
myocardial damage caused by acute HF by regulating the 
APJ/Akt/ERS signaling pathway. However, wortmannin 
and LY294002 can reverse the cardioprotective effects of 
apelin.52 The PI3K-Akt signaling pathway was also 
enriched among the HF-related DEGs, indicating a vital 
mechanistic role in its pathological progression. Molecular 
docking showed that sirolimus and wortmannin had a high 
affinity to the hub targets, LY-294002 bound weakly and 
may therefore have other targets. Nevertheless, all three 
drugs could be potentially effective for treating HF.

There are several limitations in this study. First, the data 
used in this study was obtained from the GEO database, 
which lacks clinical, in vivo, and in vitro experimental 
research certifications for pivotal genes and HF-associated 
genes. Second, the datasets used in this study were relatively 

Figure 9 The potential therapeutic drugs of HF. (A–C) The 2D structure of Sirolimus, LY-294002 and Wortmannin. (D) Heat map of the docking score between potential 
drugs and hub targets. The intensity of red color indicates binding ability. (E–J) Molecular docking diagram of certain core compounds and hub targets.
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small, and a larger sample size is needed to verify our results. 
However, our findings provide new insights into the under
lying molecular mechanisms of HF, along with potential 
diagnostic biomarkers and candidate therapeutic drugs, 
which will help provide new clues for HF research, diagnosis 
and treatment, and target selection.

Conclusion
PTN, LUM, ISLR, and ASPN are overexpressed in HF 
patients compared to NFD, and are mainly related to the 
TGF-β and Wnt signaling pathways. Sirolimus, LY- 
294002, and wortmannin are potential drug candidates 
for HF treatment. The in silico data will need to be verified 
by functional and clinical studies.
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